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Abstract: Gear modification, which involves the removal of material from the theoretical surface to
improve the contact characteristics of the gear face, is widely applied in gear vibration reduction
and noise optimization design. This paper establishes a dynamic model of the straight bevel gear
(SBG) transmission system to accurately and efficiently evaluate the effects of different modification
strategies on the vibrational characteristics of SBGs. Initially, the time-varying meshing stiffness
(TVMS) of standard SBGs was calculated, and methods such as the slicing method and deformation
coordination equations were used to calculate the TVMS under tooth profile modification (TPM), Lead
crown relief (LCR), and comprehensive modification (CM), which were then validated against finite
element method (FEM) calculations. Subsequently, taking into account the impact of time-varying
meshing point vectors and the degree of contact overlap, a finite element node dynamic model of
the SBG transmission system was established. Finally, by comparing the dynamic characteristics
under different modification conditions, the study further elucidates that selecting the appropriate
modification method and amount according to different service scenarios is an effective means to
suppress gear transmission vibration. This research provides a theoretical basis for the design of gear
modification and vibration control for SBGs.

Keywords: straight bevel gears; vibration; dynamic; modification; time-varying meshing stiffness

1. Introduction

The internal structure of a gear system includes numerous mechanical components,
forming an elastic mechanical system where the components are coupled and connected [1].
The dynamic characteristics of vibration and noise have always been major challenges in
gear system research. The dynamic excitations of a gear system are mainly divided into
two parts: external and internal excitations. External excitation is similar to that of general
mechanical systems, such as the primary torque of the prime mover and load resistance,
while internal excitation is generated within the system during the gear meshing process.
Internal excitation is a key issue in gear system dynamics, and its correct establishment
ensures the rationality of dynamic response predictions for the system. SBGs are used
to transmit motion and power between intersecting shafts. They offer advantages such
as compact structure, ease of manufacture, easy maintenance, and low cost. As a result,
they are widely used in industrial transmission equipment and automotive differentials.
Because the gear teeth are straight, each pair of teeth engages suddenly along their full
length, resulting in impact loads and unstable operation during high-speed transmission,
which also generates considerable noise. Therefore, gear modifications are necessary to
achieve vibration and noise reduction [2,3].

The precise calculation of time-varying meshing stiffness has been a research hotspot
for many scholars. Tian [4] proposed a method for calculating the meshing stiffness of spur
gears based on the potential energy method, but it did not account for the fillets and gear
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bodies of typical gears. Sainsot et al. [5] developed a meshing stiffness calculation model
for gear blanks, providing a more detailed consideration of the overall stiffness during the
gear meshing process. Sun et al. [6] proposed a time-varying meshing stiffness model for
modified gears based on actual machining, which showed excellent agreement with finite
element results. Ma et al. [7] investigated meshing stiffness in spur gears with spalling.
Tang Jinyuan et al. [8] proposed a finite element method for calculating the meshing stiffness
of spiral bevel gears, which has general applicability but slower computational efficiency.
Chen et al. [9] fully considered the coupling effect between gear pairs and provided an
analytical solution for the meshing stiffness of straight bevel gears based on the slicing
method. Li et al. [10] divided spiral bevel gears and treated them as spur gears to further
calculate the deformation of the gear teeth and obtain the mesh stiffness of the spiral bevel
gears. In addition to time-varying meshing stiffness and backlash, many other nonlinear
excitations affect the dynamic response of gear pairs. Gou et al. [11] considered multi-state
meshing, load distribution rates, time-varying meshing stiffness, and backlash to establish
a dynamic model of a straight bevel gear system, investigating the effects of meshing
frequency and transmission error on the system’s dynamic characteristics; however, their
mesh stiffness model employed a calculation model based on the gear blank stiffness of
spur gears and did not consider the influence of contact stiffness.

Some researchers have shown interest in establishing more comprehensive gear system
dynamics. Li et al. [12] proposed a method for calculating static transmission error based
on measured tooth surfaces, which can determine the effects of assembly errors and eccen-
tricity. Peng [13] established a dynamic model of hypoid gears and studied the influence of
assembly errors, gyroscopic effects, gear eccentricity, external excitation, and dry friction on
the dynamic performance of gears. Wang [14,15] proposed a multi-point coupled meshing
model using multiple springs to simulate the meshing characteristics of multiple pairs of
teeth in multi-tooth regions. F. Djemal et al. [16] established a system dynamics model for
differential structures and studied the vibration characteristics of SBGs in differentials. Ma
et al. [17] established a dynamic model for spur gear transmission systems with different
modifications and sought optimal modification parameters. Habibollah Motahar et al. [18]
studied the vibration characteristics of bevel gears under tooth profile modification but
did not consider the time-varying spatial meshing characteristics of bevel gears. Alireza
Talakesh et al. [19] studied the calculation method of mesh stiffness for SBGs, but did not
consider Hertz contact stiffness under different loads. Moslem Molaie et al. [20] considered
the complex internal excitations of spiral bevel gears and conducted a detailed analysis of
their intricate dynamic behaviors, providing an approach for the parameter design and
dynamic characteristic control of spiral bevel gear drive systems. ES. Samani et al. [21]
studied the effects of shaft stiffness and elastic deformation on vibration response by con-
sidering different support positions and types of torque (constant torque and periodic
torque). Wassim Lafi et al. [22] studied the impact of time-varying uncertain parameters on
the system response in a two-stage straight bevel gear system. However, the calculation of
meshing stiffness was not validated, and the dynamic model established using the lumped
mass method could not comprehensively consider the transmission system. S.D. Yavuz
et al. [23] developed a dynamic model of a transmission system composed of spiral bevel
gear pairs, shafts, and bearings to investigate the influence of coupling effects on system
dynamics. S. Chowdhury et al. [24] modeled the shaft as a rotating cantilever beam to
analyze the vibration characteristics of helical gear transmission systems. Hongzheng Han
et al. [25] used the finite element method to calculate mesh stiffness and established a
dynamic model for bevel gear-coupled planetary gear transmission systems. However,
they did not address the actual spatial meshing characteristics of spiral bevel gears, using
equivalent meshing points to establish the meshing pair model. Despite the substantial
amount of research conducted, the aforementioned dynamic modeling does not take into
account the time-varying nature of the gear meshing position and the influence of the
degree of overlap. Therefore, the effects of gear modification on the dynamic character-
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istics of the gear system, as well as associated issues of vibration and noise, still require
further investigation.

Tooth Contact Analysis (TCA) is a basic means of studying gear transmission sys-
tems, with detailed explanations provided by Litvin [26,27]. This paper addresses the
contact analysis of SBGs by determining the TVMS under various modification conditions
and performing a comparative analysis with the finite element method. The findings
demonstrate that computational efficiency is significantly enhanced while maintaining
accuracy, facilitating the resolution of practical engineering problems. By considering the
meshing characteristics of SBGs, a comprehensive dynamic model of a system comprising
two shalfts, bearings, and gears is constructed using the finite element node method. The
Newmark-beta method is employed to iteratively solve the system’s response, allowing for
a comparison of the impact of meshing stiffness under different modification conditions on
the gear system. This approach offers a dynamic perspective for selecting gear modification
techniques and extents.

2. Time-Varying Meshing Stiffness Calculation Model
2.1. The TCA Environment

TCA is capable of reflecting the contact performance of gears, providing relevant
parameters such as meshing position and overlap. Integrating contact analysis, calculating
the time-varying meshing stiffness of gears, and conducting dynamic analysis allow for a
more realistic representation of gear meshing performance and vibration characteristics.

2.1.1. The Principle of Straight Bevel Gear Tooth Surface Generation

As shown in Figure 1, generating surface C of a straight bevel gear is a circular subset
of a plane, with its center coinciding with the top O of the base cone and its radius equal to
the base cone distance R. The generating surface C is tangent to the cone generatrix length,
and the tangent line is A’A. When the generating surface C undergoes pure rolling around
the base cone, the tangent line A’A sweeps to form a curved surface called an involute cone,
the theoretical tooth surface of a straight bevel gear. A spherical surface is created with
the cone top O as the center and the cone distance R as the radius. The intersection of the
spherical surface and the involute cone results in the spherical involute. Straight bevel
gears’ theoretical tooth surface can also be composed of spherical involutes with different
radii centered on the cone top. For example, the small end spherical involute is a spherical
involute with a radius of OA’ as the spherical radius.

generating surface C

Figure 1. Principle of tooth surface formation for straight bevel gears.
Then, the A’A K'K equation is as follows [28]:

x(R;, @) = R;[cos(¢@-sin dy)- sin J, cos ¢ + sin(¢- sindy)- sin ¢|
rr =14 Y(R;, ¢) = Ri[cos(¢-sindy)- sin dy sin ¢ — sin(¢- sindy,)- cos @] 1)
z(R;, ¢) = R; cos(¢-sin dy)- cos
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where J;, represents the base cone angle, ¢ denotes the angle rolled by the occurring surface,
and i represents the angle between OK and the instantaneous axis of rotation ON, i = ¢
sin(dy), R; € (R — A’A, R). According to the tooth surface equation, the normal vector of the
tooth surface is obtained as:

*(Ri, ) = cos(@)R;-(sin(g-sin(3y)) — sin(g- sin(3))- sin (5,)?)
nf =14 y(Ri, @) = sin(@)R;-(sin(g-sin(6,)) — sin(g- sin(3))- sin (5,)?) (2)
z(R;, ¢) = —R;- sin(¢- sin(dy))- cos(dy)- sin(dp)

2.1.2. Contact Point Vector and Normal Vector

To perform contact analysis for straight-bevel gears, the contact range of the straight-
bevel gears is obtained as follows:

First, place the obtained straight bevel gears in their assembled position. Initially,
transform the coordinates of the midpoint of the tooth width on the pitch circles of both the
large and small gears to the zx plane in the positive x-direction and negative x-direction.
The transformation matrix is as follows:

[COS(,Bi) —sin(p;) 0]
M; = |sin(;) cos(Bi) 0
0 0 1

)

in the formula, 7 = p, g represents the pinion and the gear. ; represents the angle of rotation
of the gear projection onto the zx plane.

Then, rotate the large gear to its assembled position. ) represents the shaft intersection
angle, and the transformation matrix is as follows:

[ cos(Y) O sin(Z)]
My=| 0 1 0
—sin(Y)) 0 cos())

(4)

the point vector and the normal vector of one of the pinion can be represented as:

V}p = Mp?’fp (5)
I’l}p = Mp]’lfp

the point vector and the normal vector of one of the gear can be represented as:

{F%g = MZMgig (6)
n fg = MzMgn fg

The procedure described above is as shown in Figure 2. At this time, the driving
and driven gears are very close or slightly interfering. By gradually rotating the driving
gear, the two gears are made to approach or move away from each other until they meet
the conditions of the meshing principle, thus obtaining the initial value of the contact
point. the meshing trajectory is comprised of a series of meshing points. Starting from the
initial meshing point, the rotation angle 6, of the pinion can be gradually adjusted, either
increased or decreased. This adjustment allows for the calculation of the rotation angle 6,.
They are required for the large gear when the tooth surfaces are in contact. The iterative
process is used to determine the contact area following Formula (7).

!/ /
{Mepri” _Mals 7)
Mgpnfp = —Mggi’lfg
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The rotation angle matrices for the driving and driven gears are denoted as My, and
My, respectively.

This process allows us to accurately identify the coordinates of the contact points
vector (r; = (i 1yi12i)) on the tooth surfaces of straight bevel gears, as well as their respec-
tive normal vectors (n; = (1y;,1,,11)), where i = P, G represents the pinion and the gear,
respectively. It also allows us to define the meshing region and the meshing line for the
straight bevel gears, as shown in Figure 3, illustrating the meshing lines at the midpoint of
the tooth width.

Line of Action

Contact Area

Contact line

Figure 3. Schematic diagram of contact analysis.

Analysis based on the parameters in Table 1 reveals the calculated results of TCA for
straight bevel gear transmission under no-load conditions. Appendix A and the red line in
Figure 3 illustrate the meshing point at the middle position of the tooth width. The results
indicate that the meshing line is arc-shaped, and the angler of action obtained through TCA
calculations can be utilized to determine the contact ratio.

Table 1. Parameters of straight bevel gears.

Parameters Pinion 1 Gear1 Pinion 2 Gear 2
Teeth number: Z 37 74 37 74
Module: m (mm) 0.5 0.5 2 2
Pressure angle: « (°) 20 20 20 20
Face width: B (mm) 5 5 20 20
Addendum coefficient: ha 1 1 1 1
Tip clearance coefficient: ¢ 0.2 0.2 0.2 0.2

shaft intersection angle ) (°) 90
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2.2. Standard Straight Bevel Gear

Based on elasticity, the total meshing stiffness of a single gear pair can be expressed
as [6]:

1

K, = 8
TIFET R R A AR ®
The bending stiffness, shear stiffness, axial compression stiffness, tooth blank base
stiffness, and Hertz contact stiffness for tooth pair i = p, g are denoted as ky, ks, ks, kf, and
ky,, respectively. As the tooth shape of SBGs varies along the width direction, it is not
possible to directly calculate the complete SBG bending stiffness, shear stiffness, axial
compression stiffness, and tooth blank base stiffness. Therefore, as illustrated in Figure 4,
base on reference [29], slicing is applied to SBGs. The slices are oriented perpendicular to
the contact line, and the TCA outcomes are integrated into each cross-section to compute
the meshing stiffness. The bending stiffness, shear stiffness, and axial compression stiffness
for eachslicej (j =1, 2, ..., n) are represented as Jk;, dks and Jk,, respectively. These values
are cumulatively obtained by summing them according to the number of slices, resulting

in ky, ks and k,.

~ Gear section

it

10 Y

|

l

l

Contact line ~ |
~

Figure 4. Slicing the straight bevel gear.

According to the potential energy method, the bending energy U, shear energy sU,
and axial compressive energy oU, for each slice are expressed as follows:

r2 i 3(Fy(t — x) — E;h)?

oy = 24k, = o  AER%D ax,
0Us = 350 = Jo 4Gh£(bdx’

F? i Fa
ou, = dx

20k, 0 4Eh.b

Bending stiffness dk;, shear stiffness ok, axial compressive stiffness dk, for each slice
can be obtained [30].

F? d 2ER3h
ok = ——— = - dx,
" 24, 0 3(cosa(t — x) — sinah)?
2
Sk = L 2GMb (10)

26U, 70 12cosa2™™

2
Sk, = L~ o Lf%"f dx
SIN &
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hand I denote the distances from the meshing point to the gear teeth’s line of symmetry
and to the base circle, respectively. At this meshing point, the interaction force F can be
decomposed into a radial force F, and a tangential force F; along the direction of the
meshing line. The variables for the elastic modulus and shear modulus are represented by
E and G, respectively.

n n n
ky =Y 0kp ko =Y 6ka ks =Y ks (11)
j=1 j=1 j=1
The Hertz contact stiffness is obtained based on the applied load [6]:
E0.9pg0.8 0.1
= (12

The fillet-foundation stiffness is obtained based on the geometric shape of the tooth
germ [31].

_ 1 Tp?
uy = E/dx/(ﬂ) dA (13)
Ih A
FZ

T is the torque, Ip is the polar moment of inertia of the section, p is the distance from
the point on the cross-section to the center of the circle.

Based on TCA and determining single or double-tooth contact regions through overlap
assessment, the TVMS of SBGs is formulated as follows:

2
K=Y K, (15)
=1

where | denotes the number of meshing pairs.

2.3. Lead Crown Relief

Due to the minor modification, this article considers the modification amount as a
tooth shape error and calculates the meshing stiffness with its initial value given before.
The LCR is illustrated in Figure 5, with the specific formula presented as follows [32]:

Ex = B%/8R; (16)
LCR
E,
[~ ]
= B

Figure 5. Straight bevel gear.
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LCR varies along the tooth width direction. The non-coupled slice method is used
to calculate LCR meshing stiffness. The deformation is set as J; at the initial engagement.
Based on the number of slices j. By comparing the engagement deformation and modifica-
tion amount for each slice: if § > E,, the gears are considered meshing; whereas if § < Ey,
the gears are considered non-meshing. E,; represents the modification amount for the tooth
pair after slicing [33]. The quantification for each slice can be expressed as follows:

1
k= ——— (17)
1 1 1
& Tk ok

The tooth stiffness, tooth bending stiffness, tooth shear stiffness, and tooth axial
compression stiffness of each tooth after slicing are dk;,, ks and Jk,, respectively.

Kp = diag(okY, k5, ..., 6k}), kyj =k /n
Ey =diag(Ey1, Exa, ..., Exn), 8™ =diag(61,02,...,0n) (18)
Fd = diﬂg(Fl,Fz, ‘e ,Pn), Fm = sum(Fl,Pz, ‘e ,Fn)

Kp, 8™, 8P, Ex and F; are the stiffness matrix of the pinion, total deformation matrix,
deformation matrix of the pinion, total modification matrix, and total meshing force matrix.
F,, represents the resultant force of the sliced meshing forces.

Firstly, calculate the initial value of F; (when the gear is unmeshed, consider 6 — E,; = 0):

dkSky,;
A= b
kS Ky -dk K-k Ky
&P = A8™
Kp(8” — Eyj) = Fy

(19)

Iterating on 8" and F,, set a meshing force error of F,, and the load on the gear is F.
When F, — F > F,:
m m F—Fy
M =06"(1+ (20)

GFm
8P =A™ (21)

where ¢ is the cycle coefficient, the right choice can speed up the calculation, choose
¢ =8]J6l.
Bring &7 into the calculation of F; again.
Kp(8” —E) = Fy 22)
If the following equation is met, the iteration is completed.

|Fw — FI< Fe (23)

After the iteration is completed, LCR meshing stiffness based on the slice method is:

(24)

2
K=Y K, (25)



Appl. Sci. 2024, 14, 11919

9 of 25

2.4. Tooth Profile Modification

The TPM is shown in Figure 5. The change in meshing stiffness of the TPM only
changes in the double-tooth zone and does not change in the single-tooth zone. Ej; repre-
sents the TPM amount in the double-tooth area of the main and driven gears, respectively.
The tooth profile modification formula is expressed as [34]:

Eyj(max) = Egy(max)R;/R

(26)
Ej = Ek]-(max)xej/Le}'5

As depicted in Figure 5, the TPM is positioned following design requirements within
the second double-tooth contact region. The change in meshing stiffness is limited to this
double-tooth contact region, with no alterations occurring in the single-tooth contact region.
The symbols o] represent the elastic deformations of tooth pairs within the double-tooth
contact region under loading conditions. Ej, respectively, represents the TPM amounts
within the double-tooth contact region for both the driving and driven gears.

According to the principle of deformation coordination, the relative comprehensive
error between two adjacent meshing tooth pairs can be obtained as follows:

— _ pP? 92 pl g1
Ei =0 - =Ej +E; —E; — E; (27)
In the formula, E,l(l] represents the amount of modification for each meshing tooth pair
at every slice position on the pinion and the gear.
The meshing stiffness of the TPM gear at this time is [35]:

_ _Ka+Ke _ .
Ki = 3,578 o1 —p2 = E > 0; 28)

— Kel""l<2 _ — .
Kt — 1—K51E:/F’ p] p2 - Et < 0,

Due to the TPM involving cutting at the tooth apex, what was originally a double-
tooth contact region has now become a single-tooth contact region. Therefore, the meshing
stiffness for the single-tooth contact region should be expressed as:

Ke = max(Ke1, Keo, Kt) (29)

The TPM alters the gear mesh overlap. After calculating the overlap following profile
modification using TCA, the time-varying meshing stiffness of gears during single and
double-tooth alternation is computed according to Equation (15).

2.5. Comprehensive Modification

The TPM affects the alternating of single and double teeth, alleviating the sudden
change in meshing stiffness. LCR changes the contact area, thus affecting the overall
meshing stiffness. As shown by the green dashed line in Figure 5, the combination of the
TPM and LCR forms a comprehensive modification (CM). Based on the above analysis,
calculating the meshing stiffness for the CM involves separately computing the effects of
the TPM and LCR, with the process illustrated in Figure 6.



Appl. Sci. 2024, 14, 11919 10 of 25

TVMS for a straight bevel gear pair with comprehensive modification

Y

r Calculate the TVMS without modification T
K, =diag(ok,, 5k ,,...,0k,,)

Slicing the gear and Slicing the gear and
calculate the Exi E, = diag(Ex,, Ex,,..., Ex,) calculate the Eki
* " = diag(5,,5,,..,0,)
kh
K,(®"-E,)=F, ki :;

F, =diag(F,F,,...F,) |«
F, = sum(F,,F,,... )

* F-F

|Fm-F|SF; _N0_>6 26 (1"’ é:Fm)

I m
YeS 6p = /16

v

1

Klei =

1 1 F
—
K, K, max(") |

K, +K
t=1 ;EE;F’ pl_pzzEt>0

+ KL, <Et:01_62:Ep2+Eg2_Ep1_Eg1
— Ke1+Ke2 _ =F <0
t I_KQIE,/F’ Pr— P t

Y

Kte = maX(Kel ’Ke2’ ch)

Figure 6. Calculation procedure of TVMS for a straight bevel gear pair with CM.

3. Finite Element Verification of TVMS

To validate the accuracy of the meshing stiffness calculations, gear models with
varying parameters were established. Three-dimensional solid geometric models were
imported into finite element preprocessing software to generate their finite element mesh
models. Additionally, according to contact mechanics, it is known that contact pressure
is highly concentrated in the vicinity of the contact area, with its intensity decreasing
sharply as the distance from the contact point increases. Therefore, stress in the contact
area does not depend on the geometric shape and boundary conditions far from the contact
region. Considering that this study primarily focuses on stiffness variations during single-
tooth contact and to avoid the influence of edge rigid body coupling constraints on the
computational results, the analysis was performed by joining all gear teeth.
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3.1. Finite Element Calculation Method for TVMS

This section uses a pair of straight bevel gears with different module sizes to test
the accuracy of the calculation method. The three-dimensional finite element model and
the modeling process are shown in Figure 7, where the drive gear is the pinion [36].

Mi = (/\xlir Aylis
denoted by ¢,, and (0 = LT, NLT) represent the working load and minimal load, respectively.

/\zlz‘) represents directional rotation radius [37], transmission error is

Axti = =Nyt zi + Nty
Ayli = Nyl z1i — Mgyl (30)
Agli = =Nyt + Myli¥yli

/ Finite element model preprocessing \

Import the gear mesh model and Set boundary conditions: h

proceed with the assembly 1.To ensure contact, a small rotational angle

of'the driven gear is provided to cause

interference between the tooth surfaces.

) ™ 2.Set the rotation angle of the driving gear.
3.In order to eliminate the influence of errors

} when there is no load transferred, set both the

)
~N

( Set the material properties

working load and a very small load
\separately.

Define the analysis step: output
the contact force CFNM, the

J
resultant center of contact /
ressure XN, and the rotation - = — — — — _—— == == —

. angle UR {// Finite element model post-processing > \
¥ ( Output of results )

Create contact surfaces and central Ay = NI 0,
point sets ( directional rotation radius )

o

z
( transmission error ) &

tatal

Set up the interaction of contact
surfaces and the coupling between
the central point sets and the inner

surface of the gear ring

FEA —
]“:g (eL’l' —Enir )

/\ ( time-varying meshing stiffness ) )

I I
I I
I I

I
: T <=0,-20,,
| I
I I
I I

Figure 7. Finite element model of meshing gears.

To improve computational efficiency, a finer mesh is adopted for the selected mesh
pair, while a coarser mesh is used for other mesh pairs. In the coupling relationship settings,
the nodes on the inner circle of the gear correspond to the center position of the gear and
are placed in the global coordinate system as shown in Figure 2.

The gear models with geometric parameters and modification parameters of the gear
model are shown in Table 2. Using analytical and finite element methods, the time-varying
meshing stiffness is calculated, respectively, followed by a comparative analysis to verify
the results.

Table 2. Parameters of straight bevel gears.

Parameters Pinion 1 Gear1 Pinion 2 Gear 2
Teeth number: Z 37 74 37 74
Module: m (mm) 0.5 0.5 2 2
Pressure angle: « (°) 20 20 20 20
Face width: B (mm) 5 5 20 20
Young’s modulus: E (Gpa) 206 206 206 206
Poisson’s ratio: v 0.3 0.3 0.3 0.3
Addendum coefficient: ha 1 1 1 1
Tip clearance coefficient: ¢ 0.2 0.2 0.2 0.2
Torque load: T (Nm) 0.5 0.5 10 10
TPM (um) 3 3 5 5
LCR (um) 3 3 5 5
TPM (pm) 3 3 5 5
CM (jum) LCR (um) 3 3 5 5
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3.2. Standard Straight Bevel Gear

The time-varying meshing stiffness of standard straight bevel gears, calculated based
on the relevant parameters obtained from contact analysis such as contact points, «, and
overlap, is compared with the finite element simulation results, as shown in Figure 7. It is
observed that the meshing stiffness of straight bevel gears exhibits significant jumps at the
points of single and double-tooth alternation. However, in the finite element simulation,
due to the influence of loads during gear contact, the single and double-tooth alternation
does not manifest as a step-like jump as in theoretical simulations; instead, it exhibits a
certain inclined angle.

As shown in Figure 8, the FEM and TAM display high consistency. Table 3 presents a
comparative analysis of the errors and computational efficiency for both FEM and TAM.
In Tables 3-6, A and B represent the locations of maximum error in the double-tooth and
single-tooth meshing regions, respectively.

(a) (b)

x10° x10°
~ ~
Z 9 == =FEM Z. == =FEM
~— N—
w w7
|72] 2]
2 =
£ 15) £ 6
@ @
5
< <
|72] 2]
o 17 Sy
= >
0 0.1 0.2 0.3 0 0.1 0.2 0.3
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Figure 8. TVMS of Straight Bevel Gears. (a) gear pair 1. (b) gear pair 2.
Table 3. Comparison of FEM and TAM.
k-Error-Max (MN/m) Mean-k (MN/m) TIME
aA a.B b.A b.B a b a b
FEM 170.3 99.47 689.7 407.5 147.0 545.0 6.32 (h) 6.45 (h)
TAM 177.9 100.5 670.7 389.5 149.8 581.0 1.84 (s) 1.96 (s)
error 4.27% 1.02% 2.75% 4.42% 1.20% 5.68%
Table 4. Comparison of LCRFEM and LCRTAM.
k-Error-Max (MN/m) Mean-k (MN/m) TIME
aA a.B b.A b.B a b a b
LCRFEM 57.39 3743 212.0 141.1 52.74 192.7 6.34 (h) 6.45 (h)
LCRTAM 58.66 38.23 215.6 139.3 51.79 187.0 4.72 (s) 3.94 (s)
error 1.3% 2.09% 2.60% 1.28% 1.80% 2.96%
Table 5. Comparison of TPMFEM and YPMTAM.
k-Error-Max (MN/m) Mean-k (MN/m) TIME
aA a.B b.A b.B a b a b
TPMFEM 178.0 94.00 663.3 400.1 126.5 493.6 6.5 (h) 6.56 (h)
TPMTAM 170.7 100.4 681.6 383.0 128.1 485.5 2.52 (s) 1.49 (s)
error 4.1% 6.37% 2.68% 4.27% 1.30% 1.64%
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Table 6. Comparison of CMFEM and CMTAM.

k-Error-Max (MN/m) Mean-k (MN/m) TIME

a.A

a.B b.A b.B a b a b

CMFEM
CMTAM
error

48.61
51.91
6.36%

38.23 190.2 141.1 46.81 170.6 6.12 (h) 6.25 (h)
39.72 198.1 134.5 45.50 167.2 3.82(s) 2.79 (s)
3.75% 3.99% 4.68% 2.80% 1.99%

Mesh stiffness (N/m)
(o)}

x 10

3.3. Lead Crown Relief

Unmodified straight bevel gears are line contacts. After the LCR, the gear changes
along the tooth width, turning from line contact to point contact and moving the contact area
to the center of the tooth surface. The LCR changes the contact characteristics, resulting in a
decrease in meshing stiffness. Hence, the size of the sudden change in stiffness in the single
and double-tooth alternation region decreases, which means the fluctuations caused by the
single and double-tooth alternation are diminished. Compared to the meshing stiffness
of the unmodified situation, the shape of the meshing stiffness after tooth modification
remains unchanged, but there’s a significant alteration in amplitude.

As shown in Figure 9, the LCRFEM and LCRTAM are highly consistent. Table 5
provides a comparison of the errors and computational efficiency between LCRFEM and
LCRTAM:

(a) (b)
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Figure 9. TVMS considering the LCR of Straight Bevel Gears. (a) gear pair 1. (b) gear pair 2.

3.4. Tooth Profile Modification

Figure 10 demonstrates that the TPM involves selectively removing material from the
crest of the tooth, thereby enhancing the gear pair’s meshing action. This refinement leads
to a smoother transition between engagements of single and paired teeth, which effectively
smooths out the ‘stepped’ characteristics in the meshing stiffness curve. Nevertheless,
applying the TPM reduces the proportion of double-tooth contact during a full meshing
cycle, which, consequently, diminishes the gear’s load-carrying capacity. This reduction in
contact area, due to material removal from the gear teeth, inherently weakens the gear’s
load-bearing strength.

Therefore, the tooth profile modification length should not be chosen to be excessively
large or too small. A considerable modification length can significantly reduce the gear’s
load-carrying capacity if it exceeds the transition point between single and double-tooth
meshing on the gear. Modifying the single-tooth contact region can significantly compro-
mise the gear’s strength, which should be avoided in engineering. Conversely, selecting a
modification length that is too small will not effectively reduce meshing impact phenomena.
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Therefore, reasonably choosing the gear tooth modification length is essential based on the

specific circumstances.
Table 5 provides a comparison of the errors and computational efficiency between

TPMFEM and TPMTAM:
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Figure 10. TVMS considering the tooth profile modification of Straight Bevel Gears. (a) gear pair 1.
(b) gear pair 2.

3.5. Comprehensive Modification

CM combines the advantages and disadvantages of both LCR and the TPM. It not only
adjusts the gear’s contact area to be centered on the tooth surface but also improves the
abrupt changes occurring during the transition between single and double-tooth contact,
making the transition process smoother and reducing the sudden changes in meshing
stiffness as well as decreasing the amplitude of meshing stiffness. However, it reduces
the degree of gear overlap. From the figures, it can be seen that the amplitude of the
meshing stiffness in the single and double-tooth regions under CM is the same as that
under LCR. The main changes occur in the single- and double-tooth transition areas and
the gear overlap. Depending on the location of the TPM, the shape of the meshing stiffness
will change, and the effects of CM will vary.

As shown in Figure 11, the CMFEM and CMTAM are highly consistent. The following
provides a comparison of the errors and computational efficiency between CMFEM and
CMTAM:

(a) (b)
x 10

— CMTAM
== =(CMFEA

— CMTAM
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N
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—_—
W

Mesh stiffness (N/m)
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Rotation angle of pinion (rad)

0.15 02 025 0 0.1 0.2
Rotation angle of pinion (rad)

Figure 11. TVMS considering the CMs of Straight Bevel Gears. (a) gear pair 1. (b) gear pair 2.
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4. Dynamic Model of Straight Bevel Gears

A typical supported bevel gear-rotor system, as shown in Figure 12, consists of an
elastic support shaft, gear rotor, and support bearings. The parameters of each component
are listed in Tables 7 and 8. The previous analysis determined that the contact line of the
straight bevel gear is not a straight line but rather a curved one. A time-varying point-
matrix meshing model for the straight bevel gear considering multi-tooth engagement was
derived based on this condition. The finite element node diagram for the gear transmission
system is depicted in Figure 12, where the input and output shafts are divided into 18
nodes, each with 6 degrees of freedom.

SBG1
SBG---Straight Bevel Gear | | . L2 Li
Br---Bearing ol T ]
Br2

PR
I3

Lal B 110 Br3

A .
SBG2 ‘ .
L

> 170 [Br4

8]

la—]) 11—

Figure 12. Illustration of bevel gear transmission system.

Table 7. Geometrical parameters of shafts.

Parameters L L, Ls Ly Ls Lg D1 D2
Length (mm) 40 20 20 16 20 30
Radius (mm) 16 32
Density (kg/m?) 7860
Young’s modulus E (Gpa) 206

Poisson’s ratio 0.3
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Table 8. Parameters of straight bevel gears and bearing.

Parameters Pinion 1 Gear 1
Teeth number Z 37 74
Module m (mm) 2
Pressure angle « (°) 20 20
Face width B (mm) 20 20
Young’s modulus E (Gpa) 206 206
Poisson’s ratio 0.3 0.3
Addendum coefficient ha 1 1
Tip clearance coefficient c 0.2 0.2
Enter Torque load T (N-m) 10
Density (kg/m?) 7860
Diameter moment of inertia I, (Kg~m2) 1.53 x 1074 0.003
Polar moment of inertia I, (Kg-m?) 2.78 x 10~* 0.006
Backlash bl (um) 20
Meshing damping c;; (Ns/m) 1500

4.1. Element Model of Gear Rotor

As shown in Figure 13, the gear wheel is simplified as a rigid rotor with three transla-
tional and three rotational degrees of freedom. According to the Lagrangian theorem, its
equations can be written as [38]:

Myid,; + OGyq,; = Fi (31)
My; = Diag(mgy, Mgy, Man, Lin, Lin, Lim) (32)
d d _d d d d
qdi:{xi'yi'zifexi' 6% Bxi} (33)
0 0 O 0 0 0
000 O 0 0
000 O 0 of .
Gi=1o 00 0o 7y of/'™FS8 (34)
000 —Jp; 0 O
000 O 0 0

4
C%’ >

Figure 13. Element model of gear rotor.

4.2. Gear Mesh Model

As shown in Figure 14, the input gear shaft and output gear shaft are coupled through
a gear pair. The TVMS and time-invariant meshing damping (c,;) along the normal direction
at the meshing point are connected between the gears. These are in series with geometric
transmission error (es) [39]. As detailed in Section 2.1 via TCA, the r;; are separately
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calculated in the local coordinate systems of each gear during the meshing cycle, along
with the time-varying normal vectors n);. Subsequently, as shown in equation (30), the Aj;
values are computed for the pinion and gear, respectively [23].

doublel

| double2
| ;
| |

|
Rotation(rad)+ 0.15 +

Cm

Ke

Figure 14. Straight bevel gear pair.

Construct vector V; and the deflection of gear pair of action q,, for the gear pair:
V= {nlpxr Mipys Mpz, /\lpxr )Llpyr Alpzz Migxs Mgy, Nigz, Algxz Algy/ /\lgz} (35)

qQn = {xp; Yp, Zp, prr pr/ sz/ Xer Ygr Zg, ggx/ Ggy/ ng} (36)

In the equation, x; represents the vibration displacement of the gear along the three
directions x, y, and z, and 6y, 0;,, 0;; represents the angular displacement around the x, y,
and z axes.

The gear overlap in straight bevel gears typically does not exceed 3, so the dynamic
displacement of the gear pair along the line of action(DTE) [2] for the gear pair can be
expressed as:

o = 1dr V1 q,, +1dr,V1q,, — es(t) (37)

where Idr; denote the load distribution ratio on the gear meshing pair, it can be expressed

as follows:
Z?‘dl = Kel/K (38)

The dynamic meshing force along the meshing line direction between the straight
bevel gears can be expressed as [2]:

Eu = K(Ym00m + Ym1bl) + cmYmoOm (39)

where bl is half of the total gear backlash, and the index of the backlash function is:

-1 by > bl
1 |0mo| > —0I
Ym1 =40 |(5m0| <bul, Ym1 = ’ mO‘ (40)
0 |Omo| < b1
1 Omo < —bl

Based on the above analysis, the motion equations for the meshing pair of straight
bevel gears in matrix form can be expressed as:

M"q,, + (n*Cly + rraCls + 1t G + 122C50)Ymody + (n*Kiy + rinaKfy + rar K3y + 127K ) ymod,

: 41
= (knmoe(t) + cnrmoe (1)~ b) (VAT +72V2T) @
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where M™, Cj and K]} are the mass matrices, stiffness matrix, and damping matrix of
the gear pair, respectively.

K = KV{TV,

K, = KViTv,

K2 = KV,TV,

K, = KV,Tv,

71711 = CmV1TV1

11112 = CmV1TV2

Cl = cuVaTVy

Cgé = CmVZTVZ

(42)

4.3. Element Model of the Shaft Element

As shown in Figure 15, for continuous rotor systems with variable cross-sections, it
is common in engineering to discretize the physical prototype and then approximate the
solution by rigorously handling the discrete model mathematically. In this section, we will
use a discrete Timoshenko beam-axis finite element formulation for dynamic modeling of
the axial elements. The entire continuous shaft is divided into N nodes and N-1 elements.

Figure 15. Element model of the shaft element.

The elastic support shaft is divided into several shaft segments, and each shaft seg-
ment is modeled using two-noded Timoshenko beam elements. By using the Lagrangian
equations, the motion equations for the undamped system can be obtained as follows [40]:

MG + OGq° +K°q° = F° (43)

where q°, M?, G°, and K represent the displacement vector, mass matrix, gyroscopic matrix,
and stiffness matrix of the Timoshenko beam element, respectively [2].

4.4. Element Model of Bearing
The dynamic model for the bearing module is as follows:

Cpq + Kpq, =0 (44)

In the equation, Cp, represents the support damping matrix, and K represents the
support stiffness matrix.
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Cxx  Cxy Cxo, Cxb, 0 kex — kxy  kug, kay 0
Cyxr  Cyy  Cyox  Cyp, O kyx Ky kyo,  kys, O
Cp= |co.x Coy Co0, Co0, O Kp= |kox koy koo, Koo, O (45)
0 0
0 0

0 0 0 0 0 0 0 0

4.5. Overall Assembly Matrix

The generalized displacement vector q for the entire gear-rotor system can be ex-
pressed as:

q= {q1,q2, P qn+l} (46)

Assembling all the elements, you can obtain the system’s overall damping matrix C,
gyroscopic torque matrix G, and stiffness matrix K. The equation for the overall system of
the straight bevel gear transmission system can be written as [2]:

Mq + (C+QG)q+Kq=Q (47)
The damping in various parts of the system is implemented using proportional damping:
C=AM+7K (48)

Here, A,  refer to the coefficient of mass matrix and stiffness matrix (« =0, f = 1077),
respectively.

5. Numerical Analysis

In this section, considering TVMS, ¢s, and the variation in meshing position, vibration
response analysis of the coupled rotor system is performed for four scenarios: unmodified,
TPM, lead crown modification, and CM. The time-varying mesh stiffness is calculated as
discussed in the second section, while other parameters are as Tables 7-9 shown.

Table 9. Parameters of bearing.

Parameters Bearing 1 Bearing 2 Bearing 3 Bearing 4
K, Diag(1.6 x 108, 1.6 x 108, 1.6 x 108,10, 10°)
Cp Diag(103, 103, 103, 103, 10°)
Node position 2 8 10 16

The natural frequencies of straight bevel gears with the TPM and standard straight
bevel gears are nearly identical. The natural frequencies of standard straight bevel gears,
bevel gears with profile modification, and bevel gears with both profile and tooth direction
modifications are as shown in Tables 10-12.

Table 10. Critical speed and mode description for the geared rotor system.

Order f/Hz rpm/(r/min)
1 1426 2312
2 1480 2400
3 1651 2677
4 1727 2800
5 1730 2805
6 2272 3684
7 2695 4370
8 3511 5693
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Table 11. Critical speed and mode description for the LCR geared rotor system.

Order f/Hz rpm/(r/min)
1 1283 2080
2 1331 2158
3 1665 2700
4 1772 2873
5 1855 3008
6 2224 3606
7 2695 4370
8 3496 5669

Table 12. Critical speed and mode description for the CM geared rotor system.

Order f/Hz rpm/(r/min)
1 1420 2302
2 1480 2400
3 1643 2664
4 1727 2800
5 1730 2805
6 2217 3595
7 2695 4370
8 3495 5667

The dynamic transmission error (DTE) under different modification scenarios is ob-
tained and presented in Figures 16-18.

5 T T T T

I
1500 2000 2500 3000 3500 4000 4500 5000
RPM(r/min)

Figure 16. DTE of TPM.

6 T T T T

[— )
| 1.57 = =LCMI
L] LCM2
== LCM3
—A—LCM4 |-

LCMS5

g
T 3r05
F
A

N\

1000 /1500—— —20%— \2‘5(&
-~

3000

—_— —

0 | | el B— 1 | |

| |
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

RPM(r/min)

Figure 17. DTE of LCR.
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Figure 18. DTE of CM.

From Figure 16, it can be observed that for the unmodified gear pair and the gear
pair with the TPM, resonance peaks occur when the meshing frequency equals the 4th and
6th-order natural frequencies of the gear system. Due to the influence of nonlinear stiffness
excitation and geometric transmission error, superharmonic resonance peaks appear when
the meshing frequency is f4/2 and {6/2.

However, when the TPM is applied to the gear pair, the abrupt change in nonlinear
stiffness excitation becomes smoother. Considering the modification, the superharmonic
resonance peaks at f4/2 and f6/2 disappear, and the peak value of DTE significantly
decreases. However, the extent of the reduction in DTE peak value varies depending on
the degree of modification. Therefore, the TPM should be chosen based on the fluctuation
of time-varying mesh stiffness and the vibration response.

From Figure 17, it can be observed that for the unmodified gear pair and the gear
pair with LCR, the reduction in the amplitude of nonlinear stiffness after LCR affects the
system’s natural frequencies. Resonance peaks occur when the meshing frequency equals
the gear system’s 3rd and 6th-order natural frequencies. Superharmonic resonance peaks
appear at meshing frequencies f2/2 and f6/2. The amplitude of DTE significantly increases,
and the resonance peaks at f6 have higher peak values (LCM3, LCM4, LCM5) compared to
the unmodified resonance peaks.

Figure 18 shows that resonance peaks occur when the meshing frequency equals the
3rd and 6th-order natural frequencies of the gear system. However, when considering
a CM, the superharmonic resonance peaks at f4/2 and f6/2 disappear. The vibration
response amplitude of the gear pair increases after CM, primarily due to the significant
impact of LCR on the system’s vibration response. LCR alters the contact performance,
leading to a substantial change in nonlinear time-varying meshing stiffness and an increase
in displacement amplitude in the vibration response. On the other hand, the influence of
the TPM leads to a smoother transition in the nonlinear time-varying meshing stiffness,
resulting in a relatively minor displacement amplitude in the vibration response.

In this chapter, based on the calculation of the time-varying meshing stiffness of
straight bevel gears in previous chapters, the vibration responses of straight bevel gear
systems with profile modification, axial modification, and CM are studied. Firstly, a
dynamic model of the gear-rotor system is established. Then, the effects of different
modification methods and amounts on the vibration response of the straight bevel gear
pair rotor system are analyzed. The analysis of gear modification optimization parameters
on the vibration response of the straight bevel gear pair system concludes that selecting
suitable modification parameters for different gear pairs can reduce the amplitude of
system vibration responses. The analysis of gear modification optimization parameters
on the vibration response of the straight bevel gear pair system concludes that selecting
suitable modification parameters for different gear pairs can reduce the amplitude of system
vibration responses.
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6. Conclusions

This study addresses the meshing stiffness of straight bevel gears under various modi-
fication conditions and verifies the results using the finite element method. Additionally,
a dynamic model of the straight bevel gear transmission system is developed using the
finite element node method to analyze the effects of different modification conditions on
the dynamic characteristics of straight bevel gears. The findings are as follows:

1. The analytical algorithm for meshing stiffness of SBGs in this paper has been validated
through comparison with the finite element method. The finite element calculation in
this paper takes about 6 h (varying significantly based on computer configuration),
while the analytical algorithm often requires only a few seconds, greatly improving ef-
ficiency while ensuring accuracy. Therefore, in dynamic simulation analysis, different
modification schemes can be quickly designed according to vibration requirements.

2. With profile modification, the abrupt changes in nonlinear stiffness excitation are
smoothed, reducing dynamic transmission error within a specific range. When de-
signing profile modifications, it is crucial to consider the varying requirements of
time-varying meshing characteristics and vibration response characteristics when
selecting profile modification amounts.

3.  Considering axial modification, the reduction in nonlinear time-varying meshing
stiffness increases the dynamic transmission error amplitude, affecting the system’s
natural frequencies. Consequently, resonance peaks shift. In designing axial modifica-
tions, the axial modification amount can be adjusted according to actual operating
conditions to move resonance peaks away from the operating speed.

4. When assessing the combined effects of profile and axial modifications, the change in
vibration response is not merely additive, and their impacts on vibration response
differ significantly. Therefore, when selecting modification parameters based on
gear pair parameters and the vibration response induced by time-varying meshing
stiffness excitation, minimizing or avoiding axial modification is advisable if resonance
peaks do not require adjustment. Instead, control the profile modification amount to
reduce system vibration while ensuring stability, thus achieving vibration reduction
through modification.

Although this paper accounts for the coupling effects of gears, bearings, and shafts,
it does not address the role of the gearbox housing and the flexibility of the gear disc.
This oversight could result in neglecting the lateral vibration of the system’s web and the
resonance of the housing under high-speed and heavy-load conditions. Future research
will aim to refine the model further to more comprehensively consider all components of
the entire transmission system.
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Abbreviations

generating surface

origin of the coordinate system
radius of the spherical radius
normal vector of the tooth surface
base cone angle

Transformation matrix of the gear projection
to the zx plane

the pinion or the gear

rotation angle matrices for the driving
and driven gears

normal vectors of contact points vector
Module

Face width

Tip clearance coefficient

bending stiffness

Hertz contact stiffness

bending stiffness of slice

axial compression stiffness of slice
bending energy of slice

axial compressive energy of slice

the distances from the meshing point
to the base circle

radial force

elastic modulus

polar moment of inertia of the section

time-varying meshing stiffness of straight bevel gears

Modification of Lead crown relief
stiffness matrix of the pinion
deformation matrix of the pinion

total meshing force matrix

meshing force error

Modification of tooth profile modification

The distance from the start of the modification

to the tip of the tooth.

meshing stiffness of the tooth profile modification

Shaft end length

Diameter moment of inertia
Backlash

Bearing stiffness matrix
Construct vector

dynamic transmission error

load distribution ratio

stiffness matrix of the gear pair
the displacement vector

of the Timoshenko beam element
gyroscopic matrix

of the Timoshenko beam element
system’s stiffness matrix
system’s gyroscopic torque matrix
coefficient of mass matrix

A'A

Sm
Ex
Fin

Le

Idm
Cm
Gy
A
s
M
K™
Me

KL’

~ 0

base cone distance

tangent line

Gear tooth equation

angle rolled by the occurring surface

the angle between OK and the instantaneous axis
of rotation ON

Gear Assembly Variation Matrix

the angle of rotation of the gear projection onto the zx plane
contact points vector

Teeth number

Pressure angle

Addendum coefficient

total meshing stiffness of a single gear pair
shear stiffness

axial compression stiffness

shear stiffness of slice

Number of slices

shear energy of slice

the distances from the meshing point to the gear teeth’s line
of symmetry

interaction force

tangential force

shear modulus

distance from the point on the cross-section to the center
of the circle

the number of meshing pairs.

deformation

total deformation matrix

total modification matrix

resultant force of the sliced meshing forces

cycle coefficient

The distance from the modification position to the tooth tip.
elastic deformations of tooth pairs within the double-tooth
contact region under loading conditions.

directional rotation radius

external diameter

Polar moment of inertia

Meshing damping

Bearing Damping Matrix

the deflection of gear pair of action

geometric transmission error

mass matrices of the gear pair

damping matrix of the gear pair

mass matrix of the Timoshenko beam element

stiffness matrix of the Timoshenko beam element
system’s damping matrix

system’s stiffness matrix
coefficient of stiffness matrix
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Appendix A

Table A1. Contact point vector and normal vector.

Pinion Txp Typ Tzp Nyxp nyp Nzp
1 —4.63 30.95 65.66 —0.94 —0.34 0.09
2 —-3.75 31.26 65.57 —0.94 —0.33 0.1
3 —2.86 31.57 65.46 —0.94 —0.32 0.12
4 —1.98 31.87 65.35 —0.94 —-0.32 0.13
5 —-1.09 32.17 65.23 —0.94 —0.31 0.14
6 —0.21 32.46 65.09 —0.94 —0.31 0.15
7 0.68 32.75 64.94 —0.94 -0.3 0.16
8 1.56 33.03 64.78 —0.94 -0.3 0.17
9 245 333 64.62 —0.94 —0.29 0.18
10 3.33 33.57 64.44 —0.94 —0.28 0.2
gear Txg Tyg Tzg Nxg Tyg Nzg
1 —4.63 65.66 —30.95 —0.94 0.09 0.34
2 —3.75 65.57 —31.26 —0.94 0.10 0.33
3 —2.86 65.46 —31.57 —0.94 0.12 0.32
4 —1.98 65.35 —31.87 —0.94 0.13 0.32
5 —1.09 65.23 —-32.17 —0.94 0.14 0.31
6 —0.21 65.09 —32.46 —0.94 0.15 0.31
7 0.68 64.94 —32.75 —0.94 0.16 0.30
8 1.56 64.78 —33.03 —0.94 0.17 0.30
9 2.45 64.62 —33.30 —0.94 0.18 0.29
10 3.33 064.44 —33.57 —0.94 0.20 0.28
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