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Abstract: Chinese spelling correction (CSC) constitutes a pivotal and enduring goal in natural lan-
guage processing, serving as a foundational element for various language-related tasks by detecting
and rectifying spelling errors in textual content. Numerous methods for Chinese spelling correction
leverage multimodal information, including character, character sound, and character shape, to
establish connections between incorrect and correct characters. Research indicates that a majority
of spelling errors stem from pinyin similarity, with character similarity accounting for half of the
errors. Consequently, effectively modeling character pinyin and character relationships emerges as a
key challenge in the CSC task. In this study, we propose enhancing the CSC task by introducing the
pinyin character prediction task. We employ an adaptive weighting method in the pinyin character
prediction task to address predictions in a more granular manner, achieving a balance between
the two prediction tasks. The proposed model, SPMSpell, utilizes ChineseBERT as an encoder to
capture multimodal feature information simultaneously. It incorporates three parallel decoders for
character prediction, pinyin prediction, and self-distillation modules. To mitigate potential overfitting
concerning pinyin, a self-distillation method is introduced to prioritize character information in
predictions. Extensive experiments conducted on three SIGHAN benchmark tests showcase that the
model introduced in this paper attains a superior level of performance. This substantiates the correct-
ness and superiority of the adaptive weighted pinyin character prediction task and underscores the
effectiveness of the self-distillation module.

Keywords: Chinese spelling correction; multimodality; pinyin prediction

1. Introduction

Chinese spelling correction (CSC) is dedicated to identifying and rectifying spelling
errors in text, playing a pivotal role in natural language processing (NLP) with far-reaching
implications in downstream applications like search engines [1], OCR [2], and ASR. In
contrast to languages like English, Chinese spelling correction poses a more formidable
challenge owing to the intricacies of Chinese spelling rules. The Chinese language is char-
acterized by a profusion of homophones, morphologically similar characters, and intricate
phonetics, creating a fertile ground for spelling errors. Additionally, the complexity is
amplified as Chinese spelling correction must consider contextual nuances, word-matching
intricacies, and other linguistic features, further elevating the difficulty of error correction.
Spelling errors in Chinese typically fall into two primary categories: pinyin errors and
glyph errors, arising from the misuse of characters with similar pinyin pronunciations or
visual resemblances, respectively. Figure 1 illustrates instances of these errors, such as the
confusion between the pinyin-similar characters “稍” (meaning “little”) and “烧” (meaning
“burn”), or the misinterpretation of visually similar shapes “人” (meaning “human”) and
“入” (meaning “enter”). The origins of spelling errors predominantly stem from human
writing mistakes and machine recognition errors, particularly those induced by Automatic
Speech Recognition (ASR) and Optical Character Recognition (OCR) systems [3].
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Figure 1. Examples of pinyin error and glyph error, where red color indicates the wrong character.

In recent years, leveraging pre-trained language models (PLM) has emerged as a
dominant approach for Chinese spelling correction tasks. Prominent examples include
FASpell [4], Softmasked-BERT [5], SpellGCN [6], and PLOME [7]. Concurrently, certain re-
searchers have directed their focus towards the phonological and glyph features of Chinese
characters, aiming to enhance the model’s error correction capabilities by amalgamating
phonetic and visual information [7,8]. Previous studies underscore the significance of
pinyin and glyph similarities, revealing that 83% of spelling errors are attributed to pinyin
similarity and 48% to glyph similarity [9]. Effectively modeling Chinese pronunciation
in the context of the CSC task remains a pivotal challenge, and nearly all contemporary
state-of-the-art CSC methods explicitly or implicitly incorporate Chinese pronunciation.

Explicit methods delve into the Chinese pronunciation of entire characters, such as en-
coding the pinyin of a Chinese character and integrating it into the character representation
using specific strategies [10]. Alternatively, Chinese pronunciation prediction models the
relationship between similar characters in pinyin [7]. Implicit methods primarily focus on
pinyin glyph similarity between Chinese character pairs, either by increasing the decoding
probability of characters with akin pronunciations [6] or by incorporating pinyin glyph
similarity into the encoding process via graph convolutional networks (GCN) [6]. Despite
the notable performance gains achieved, these approaches confront two potential chal-
lenges: during training, pinyin information may either be overlooked or overshadowed by
textual information. For instance, a specific BERT model that exclusively considers pinyin
sequences, excluding Chinese characters, can still detect and rectify erroneous characters,
while models like REALISE [8] encode and merge textual and pinyin information through a
gating mechanism that overlooks an error. Second, the introduction of pinyin features may
compromise the representation of normal text. Using Figure 2 as an illustration, a standard
BERT model can correct the misspelled character “的” in the input, whereas REALISE
fails to do so. This issue is attributed to REALISE’s tendency to over-rely or over-fit on
pinyin information.

Currently, only a fraction of the available multimodal information is harnessed in the
existing Chinese spelling correction (CSC) methods, highlighting the underutilization of
the inherent value in Chinese character multimodality. This underscores the unexplored
potential for enhancement within the field of multimodality for the CSC task. Building
upon this realization, we present a novel approach named SPMSpell (Self-Distillation and
Character Pinyin Prediction Based on Multimodality). SPMSpell introduces a finely tuned
pinyin prediction task, an adaptive weighting mechanism, and a self-distillation module,
aiming to refine the performance of the CSC task.

Concretely, when provided with a sentence containing spelling errors, Chinese-
BERT [11] serves as the encoder backbone to fuse three pivotal feature dimensions: semantic,
phonological, and graphemic. Three distinct decoders are then constructed based on this
fusion: one for accurate character prediction, another for predicting the consonant-rhyme of
each target character (i.e., pinyin prediction), and the last one devoted to the self-distillation
module, ensuring the model’s prediction consistency when presented with the original text
input. Throughout the training phase, the pinyin prediction task serves as an auxiliary task,
with its predictions discarded during inference.
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Figure 2. Two examples of Chinese spelling error correction and the predictions of different models.

The primary contributions of this paper can be succinctly summarized as follows:
(1) Introduction of the pinyin prediction task to enhance the efficacy of the CSC task,
adopting a fine-grained prediction approach for pinyin. (2) Proposition of a self-distillation
module to mitigate the risk of the model overly fixating on pinyin features. (3) Introduction
of an adaptive weighting method to harmonize subtasks within the pinyin prediction
task, encompassing consonant, rhyme, and tone predictions while simultaneously balanc-
ing character and pinyin prediction tasks. (4) Achievement of an elevated performance
benchmark across three prominent CSC datasets.

2. Related Work
2.1. Chinese Spelling Correction

Chinese spelling correction is a foundational task within the realm of natural lan-
guage processing. Simultaneously, the inherent complexities of the Chinese language,
such as polyphonic characters and morphologically similar characters, render this task
highly challenging. The increasing interest among natural language processing researchers
underscores the significance of Chinese spelling correction. Presently, neural network-
based models, particularly pre-trained language models, dominate this domain and can be
broadly classified into two research directions.

One line of research centers on enhancing the semantic modeling of text features [4,12,13].
This approach treats Chinese spelling correction as a sequence annotation task, utilizing pre-
trained language models to derive contextual representations. For instance, Soft-Masked
BERT [5] integrates a detection network to predict the correctness of individual characters.
It subsequently generates soft-masked embeddings for the correction network to rectify
errors. MDCSpell [14] introduces a multitasking detector-correction framework, merging
the representations of detection and correction networks.

Another avenue of research involves incorporating phonological information into
the correction process. This stems from the observation that homophones contribute
significantly to usage errors [9]. Models like MLM-phonetics [15] and PLOME [7] adopt a
word replacement strategy during pre-training, substituting randomly selected characters
with phonetically or visually similar ones. REALISE [8] and PHMOSpell [3] employ
multiple encoders to capture textual, phonological, and visual features, utilizing a selective
gating mechanism for fusion. SCOPE [16] introduces an assisted pronunciation prediction
task and devises an iterative inference strategy to enhance performance. Nonetheless, these
methods often amalgamate textual and phonological features without facilitating direct
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and deep interaction between them, potentially resulting in the underutilization of pinyin
information.

2.2. Multimodal Learning

Numerous studies have explored the integration of information from diverse modali-
ties to enhance overall performance. Notable advancements include multimodal sentiment
analysis [17,18], visual quizzing [19,20], and multimodal machine translation [21,22]. Re-
cent developments involve the introduction of multimodal pre-training models, such as
VL-BERT [23], Unicoder-VL [24], and LXMERT [25]. To incorporate visual information
from Chinese characters into language models, Meng et al. [26] innovatively designed
a Tianzige-CNN to enhance various NLP tasks, including named entity recognition and
sentence classification.

Subsequently, researchers have endeavored to embed multimodal character infor-
mation into error correction models to facilitate more accurate corrections. Xu et al. [8]
meticulously model the semantic, phonetic, and visual information of input characters,
introducing a gating mechanism to selectively blend information from these modalities for
the final correction prediction. Guo et al. [12] adopt a strategy of pre-training BERT with
artificially constructed obfuscated sets containing phonological and graphemic features
of similar characters. This approach enables BERT to fully leverage character speech and
visual features for error correction.

Wang et al. [10] enhance error correction by utilizing a pinyin-enhanced candidate
based on character pronunciation features. This method, combined with an attentional
mechanism to model neighboring token dependencies, contributes to more accurate predic-
tions. Zhang et al. [15] integrate a pre-trained detection module and an error correction
module based on speech features, effectively predicting the final correction. Guo et al. [12]
combine a pre-trained set of character speech features with an error correction module for
final corrections. Zhang et al. [15] undertake joint fine-tuning error correction based on
pre-trained detection and error correction modules with phonological features.

Liu et al. [7] employ a GRU to extract phonological and visual features of characters,
predicting the pronunciation of the target character in a coarse-grained, non-adaptive
manner. Li et al. [13] introduce a speech prediction assistance task, combining fine-grained
phonological features of characters to achieve adaptive weighting. Wei et al. [27] establish
two new pre-training targets for the error corrector, capturing the phonetic and shape
information of characters. These features are later fused with semantic information to
achieve effective error correction.

2.3. Self-Distillation

Knowledge distillation [28] functions as a methodology to extract concise student
models from their larger teacher counterparts. As a specialized distillation strategy, deep
mutual learning [29] facilitates collaborative knowledge acquisition among various student
models, enabling them to guide and refine each other throughout the training process.
Specifically, when these student models share identical parameters, this methodology is
termed self-distillation [30].

The implementation of self-distillation in the context of Chinese spelling correction
(CSC) has resulted in significant performance enhancements. SDCL [31] autonomously
encodes both the original sentence and its correct counterpart, employing contrast loss to
enhance contextual representations. On the other hand, CRASpell [32] generates a noisy
sample for each input, applying KL dispersion to both outputs to augment the performance
in handling multiple misspelled sentences. In this study, the self-distillation module is
intricately designed to alleviate the risk of overfitting associated with pinyin information
during the model training phase.
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3. Methodology

In this section, we present the SPMSpell model designed for the Chinese spelling
correction task. We begin by providing a clear problem definition and subsequently delve
into the intricate details of the proposed model’s implementation.

3.1. Problem Definition

The Chinese Spell-Checking (CSC) task is to detect and correct spelling errors in
Chinese text. Given a source sentence X = {x1, x2, . . . , xn}, with n characters containing
spelling errors, the CSC model takes X as input, detects the errors and corrects them at the
character level, and outputs the correct target sentence Y = {y1, y2, . . . , yn}. The lengths
of X and Y are equal, and thus, the task can be regarded as a sequence labeling task, i.e.,
modeling the p(Y|X) probability. We further give the fine-grained pinyin of each character
yi in the correct sentence Y, denoted as a ternary of the form (αi, βi, γi), where αi, βi and
γi denote the vowel, rhyme, and tone, respectively. Please note that this transformation
of output utterances is required and is only provided during training. Usually, there are
no or only a small number of misspelled characters in the sentence. Most of the characters
should be copied, and the misspelled character xi ∈ X bears some similarity to its correct
character yi ∈ Y.

3.1.1. Architecture

The fundamental concept driving SPMSpell is to employ self-distillation, fine-grained
pinyin character prediction tasks, and an adaptive task weighting mechanism to augment
the effectiveness of the Chinese spelling correction (CSC) task. To realize this objective,
SPMSpell is constructed around a shared encoder featuring three parallel decoders. The first
is primarily dedicated to character prediction, addressing the core CSC task. The second
decoder focuses on the fine-grained pinyin prediction task, while the third serves the self-
distillation module. The equilibrium between the two prediction tasks, as well as within the
pinyin prediction task itself, is dynamically determined based on the pinyin character and
vowel-rhyme-tone similarities discerned between the input and target sentences. Figure 3
provides a comprehensive overview of the overall architecture of SPMSpell.
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Figure 3. SPMSpell overall framework.

3.1.2. Encoder

Chinese is hieroglyphic, and character shapes and character sound features contain
important information. Similar to the recent CSC methods utilizing multimodal informa-
tion [7,8], we use ChineseBERT [11] as an encoder, as shown in Figure 4 ChineseBERT is a
pre-trained language model that incorporates both Chinese pinyin and glyph information
in a pre-trained language model to extract semantic, phonological and morphological
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features for the CSC task. Since the multimodal information of characters is captured and
fused by the same model without adding additional networks, the problem of ambiguity
between different feature information can be largely mitigated; furthermore, using only
ChineseBERT as a multimodal encoder further simplifies the architectural complexity of
the overall model of the CSC; on the other hand, in terms of the degree of pinyin feature
extraction, the model uses a fine-grained level, i.e., the consonants, rhymes and tones of
characters are extracted as graphemic features instead of capturing the whole pinyin as in
previous work. Fine-grained pronunciation feature capture allows for better modeling of
the phonetic similarity between the target character and the error character. Specifically,
for each character Xi in the input sentence X, the encoder first generates all its character
embeddings, pinyin embeddings, and grapheme embeddings with embedding size D.
These three embeddings are then concatenated in series and mapped to the D-dimensional
fusion embeddings via a fully connected layer. Afterward, as in most other pre-trained
language models, the fusion embeddings are added to the positional embeddings and fed
into the Transformer’s stack to generate a contextual representation hi ∈ RD of the input
character xi. We denote the representation of the character after this encoding process as
H = {h1, h2 . . . , hn}.
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Figure 4. ChineseBERT framework.

3.1.3. Character Prediction Decoder

This decoder is used to predict the character in the correct sentence Y based on the
coded output H. Specifically, given each input character xi, we first project its coded
output hi into the character-specific feature space (GeLu is a Gaussian error linear unit
activation function, and its derivative is continuous, which makes it easier to propagate the
gradient when training a deep neural network, avoiding the problem of discontinuity of
the derivative at zero, thus reducing the problem of gradient vanishing during training):

hc
i = GeLu(Wchi + bc) (1)

The corresponding correct character ŷi is then predicted based on the projected output
Softmax is an activation function that normalizes a numerical vector into a probability dis-
tribution vector, where the sum of all probabilities is equal to 1. It is commonly employed
as the final layer in neural networks, particularly for the output in multi-class classifi-
cation problems. The Softmax layer is often used in conjunction with the cross-entropy
loss function:

p(ŷi|X) = so f tmax(Wyhc
i + by) (2)
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where Wc ∈ RD×D, bc ∈ RD is the learnable parameter of the character-specific feature
projection layer; Wy ∈ RV×D, by ∈ RV is the learnable parameter of the character prediction
layer; and V is the vocabulary size.

3.1.4. Pinyin Prediction Decoder

This decoder is used to predict fine-grained predictions, i.e., to determine the vowel,
rhyme, and tone of each character in the correct sentence Y, based on the coded output H.
Similarly, given each input character xi and its encoded output hi, we project hi into the
feature space specific to pronunciation:

hp
i = GeLu(Wphi + bp) (3)

Based on the projected output, we predict the consonant α̂i, rhyme β̂i, and tone γ̂iof
the corresponding correct character:

p(α̂i | X) = so f tmax(Wαhp
i + bα) (4)

p(β̂i | X) = so f tmax(Wβhp
i + bβ) (5)

p(γ̂i | X) = so f tmax(Wγhp
i + bγ) (6)

where Wp ∈ RD×D, bp ∈ RD is the learnable parameter of the articulation-specific feature
projection layer; Wτ ∈ RU×D, bτ ∈ RU , where τ ∈ {α, β, γ} is the learnable parameter of
the articulation prediction layer; and U is the total number of articulatory units (consonants,
rhymes, and tones).

3.1.5. Self-Distillation Decoder

The decoder is used for the self-distillation module, i.e., based on the encoded output
H, which is generated by taking the last layer of hidden states of the encoder. Then, hi is
projected into a pronunciation-specific feature space, and the probability distribution si for
the i character is computed based on hi:

p(si | X) = so f tmax(Wshc
i + bs) (7)

After obtaining the output distribution for each character, the model performs another
forward pass with the original sequence X as input, generating for each character xi another
output distribution qi ∈ RV . The two sets of distributions are then forced to be close
together by applying a bidirectional KL divergence:

Lkl =
1
n

n

∑
i=1

1
2
(Dkl(si||qi) + Dkl(qi||si)) (8)

3.1.6. Adaptive Weighting

We design an adaptive weighting method to balance the character prediction and
pinyin prediction tasks during training, as well as the balance of consonant, rhyme, and tone
prediction within pinyin prediction. Given an input sentence X, the character prediction
task aims to match the predicted character {ŷi}n

i=1 with the truth value {yi}n
i=1, while the

pinyin prediction task aims to match the predicted fine-grained character {(α̂i, β̂i, γ̂i)}n
i=1

with the ground truth value {(αi, βi, γi)}n
i=1 match. Where the character prediction task

loss function is defined as:

Lc
i = −logp(ŷi = yi | X) (9)

Then, as we discussed in the previous introduction, the phonetic prediction task may
provide different levels of benefit with different input characters. The more similar the
pronunciation of the input and target characters, the more likely it is that spelling errors
caused by phonetic similarity will occur. In this case, the pinyin prediction task may
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provide greater benefits and should be assigned greater weights. To compute such adaptive
weights, we feed the target correct sentence Y to the encoder and subsequent pronunciation-
specific projection layers. Then, we compute the cosine similarity cos(hp

xi , hp
yi ) for each

input character xi and its target character yi based on their pronunciation-specific feature
representations hp

xi , hp
yi , and accordingly define the adaptive weights at the i position as:

wp
i = sin((

cos(hp
xi , hp

yi ) + 1
2

)2) (10)

The higher the cosine similarity, cos(hp
xi , hp

yi ), the greater the weight wi will be. Sim-
ilarly, for the pinyin prediction task internally, consonants, rhymes, and tones provide
different levels of benefit for different input characters. However, empirically, tones should
be weaker than the previous two in comparison to consonants and rhymes, so their weight
values should be smaller than the previous two when weighting. Therefore, the fine-grained
pinyin prediction task loss function is defined as follows:

Lp
i = −k1wαlogp(α̂i = αi|X)− k2wβlogp(β̂i = βi|X)− k3wγlogp(γ̂i = γi|X) (11)

where, wα, wβ, wγ re the weights of consonants, rhymes, and tones computed based on
cosine similarity, and k1, k2, k3 hyperparameters. Finally, the total loss function is defined
as the sum of the character prediction loss and the pinyin prediction loss, as well as the
self-distillation loss:

L =
1
n

n

∑
i=1

(wc
i Lc

i + wp
i Lp

i + Lkl) (12)

where wc
i is the character prediction, and the target correct sentence Y is computed based

on the cosine similarity. Two points are worth noting here: (1) The branch that encodes and
maps the target sentence Y is used to compute the adaptive weights only in the forward
passes, while it will be separated in the backward passes. (2) The pinyin prediction, the
self-distillation module, and the adaptive weighting scheme are introduced only during
training. During inference, we use the character prediction decoder alone for prediction.

3.2. Inference

Similar to the models proposed by Liu et al. [32] and Devlin et al. [33], addressing the
challenges of error correction in multi-error texts remains a substantial hurdle, leading to
suboptimal effects. In an effort to overcome these challenges and mitigate the tendency
toward excessive error correction, this paper introduces a novel polling error correction
strategy during the inference phase.

Specifically, during inference, each input sentence undergoes an iterative process of
character detection and correction, deviating from the conventional all-at-once correction
approach. In each iteration, only erroneous characters within a specified window size
around each correction position from the preceding iteration are eligible for correction. If a
position undergoes modification in every iteration, it is reverted to its original character
without any correction. Drawing from experimental insights, the paper opts for two
iterations, with a window size set to 5.

This iterative correction process involves counting a specified number of low-probability
words as the targets for the subsequent error correction after each prediction. The corrected
information from the previous round is then incorporated into the next round, enriching
contextual information and facilitating more nuanced error correction. This iterative
strategy proves conducive to elevating the overall quality of error correction.

4. Experiments

In this section, we provide a comprehensive overview of the experiments conducted
to assess the efficacy of the proposed models.
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4.1. Datasets and Metrics

As with the previous work [6–8], our training data consists of two parts. One part is
manually annotated training samples from SIGHAN 13 [34], SIGHAN 14 [35], and SIGHAN
15 [36]. The other part comprises 271k training samples generated by Wang et al. [37] using
methods based on Automatic Speech Recognition (ASR) and Optical Character Recognition
(OCR). We use the test sets of SIGHAN 13, SIGHAN 14, and SIGHAN 15 for evaluation.
We follow previous work [6,8] to convert them to Simplified Chinese using OpenCC.
We further used pypinyin (pypinyin is a very popular Python library for converting
Chinese characters to pinyin. It can output the corresponding pinyin according to the
Chinese characters and supports polyphonic words and tone selection. Pinyin link address:
https://pypi.org/project/pypinyin, 15 November 2023) to obtain the pronunciation of
each character and segment them into consonants, rhymes, and tones using a predefined
vocabulary of consonants and rhymes provided by Xu et al. [8].

We use the metrics of sentence-level precision, recall, and F1 to evaluate our model
for detection and correction. Sentence-level metrics are more stringent than character-
level metrics because a sentence is considered correct when and only when all errors in
the sentence are successfully detected and corrected. Errors were reported on the Detect
and Correct subtask. In addition to the game-level evaluation, we also considered the
character-level evaluation and the official SIGHAN evaluation.

4.2. Baselines

We compare SPMSpell to the following baseline methods. All these methods use
character speech information in some way and represent the current state of the art on the
SIGHAN baseline.

• GAD [12]: This method learns the global relationship between potentially correct
input characters and candidates for potentially incorrect characters.

• DCN [10]: Through a unique dynamic connection network, Kn paths (K denotes the
number of candidate words, n denotes the length of the sentence) are generated in the
output stage of the model, and then an optimal path is selected by scoring through
the dynamic connection network; an attentional mechanism is introduced to model
the dependency relationship between neighboring characters.

• REALISE [8]: The method predicts the output by encoding phonological and graphemic
information based on semantic information and finally introduces a gating mechanism
to selectively fuse semantic, phonological, and graphemic information.

• uChecker [38]: A masked pre-trained language model is proposed as an unsupervised
Chinese spell checker. The method uses the pre-trained model to learn contextual
information and uses a masked language modeling task to predict misspelled words
for spell-checking.

• MDCSpell [14]: The method designs a multitasking framework with BERT as a
corrector that captures visual and phonetic features of characters and integrates the
hidden state of the detector to minimize the impact of errors.

• ECOPE [13]: This thesis proposes a method for Chinese spell correction using error-
driven comparison probability optimization to improve the accuracy of future spell-
checking by learning the comparison between past spelling errors and correct spellings.

• UMRSpell [39]: It aims to unify the detection and correction parts of the pre-trained
model to achieve Chinese missing, redundancy, and spelling correction. The method
utilizes the contextual information of the pre-trained model and the Transformer
structure to achieve spelling detection and correction by means of joint learning.

4.3. Experimental Parameter Setting

We use the pre-trained ChineseBERT as the encoder. In the specific training process,
the dimension of the hidden layer feature vectors was set to 768 based on the model’s
representational capacity and computational efficiency. The learning rate, determining
the magnitude of weight adjustments during each update, was set to 5 × 10−5 with linear

https://pypi.org/project/pypinyin
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decay, as determined by experimental considerations. Dropout was generally set to 0.1.
The Batch Size, determining the number of samples used for each weight update, was set
to 32 based on experimental conditions and device capabilities. The number of epochs
set to 30 based on fitting results during the experimental process represented the training
iterations. The AdamW optimizer was employed and widely recognized for its effectiveness
in various deep-learning tasks. All experiments are conducted on one GeForce RTX 3090.
(The GeForce RTX 3090 is manufactured by NVIDIA from Santa Clara, CA, USA).

4.4. Overall Results

The comprehensive results presented in Table 1 illustrate the evaluation outcomes
of the proposed SPMSpell model alongside seven baseline models. The F1 scores for
sentence-level detection and correction, as well as character-level detection and correction,
are reported on the SIGHAN 13/14/15 test datasets, with bold font highlighting the best-
performing results. The results showcase the superiority of the SPMSpell model across
all test sets, both at the sentence and character levels. Particularly noteworthy is the
exceptional performance on the SIGHAN 15 test set, where SPMSpell outperforms all
baseline models, affirming the model’s efficacy. When compared to models incorporating
speech and visual features, such as REALISE, SPMSpell achieves a notable improvement in
detection/correction F1 by 0.9%, 0.9%, 4.3%, and 2.9% on SIGHAN 14/15, respectively. This
underscores the effectiveness of ChineseBERT-based encoders in mitigating the mismatch
phenomenon arising from the fusion of multiple feature information.

It is noteworthy that the observed improvement in recall and F1, while substantial,
is accompanied by a disparity in accuracy compared to other baseline models. This dis-
crepancy may stem from the limitation of the training data volume. To address this, the
introduction of a new public dataset could augment the training volume and potentially
bridge the existing gap. Nevertheless, it is essential to highlight that the model’s perfor-
mance remains competitive, particularly in comparison to other methods incorporating
speech information for this task.

Table 1. Experimental results of each model on test sets.

Dataset Model Detection-Level Correction-Level Char-Level
D-P D-R D-F C-P C-R C-F D-F C-F

SIGHAN13

GAD 85.7 79.5 82.5 84.9 78.7 81.5 87.6 93.5
DCN 86.8 79.6 83.0 84.7 77.7 81.0 85.2 86.4
REALISE 88.6 82.5 85.4 87.2 81.2 84.1 86.1 88.4
uChecker 75.4 73.4 74.4 72.6 70.8 71.7 - -
MDCSpell 89.1 78.3 83.4 87.5 76.8 81.8 - -
ECOPE 87.2 81.7 84.4 86.1 80.6 83.3 - -
UMRSpell 83.0 73.6 78.0 80.0 71.0 75.2 84.9 96.4

SPMSpell (our) 87.7 83.7 85.6 86.9 82.8 84.6 92.1 95.3

SIGHAN14

GAD 66.6 71.8 69.1 65.0 70.1 67.5 82.9 87.6
DCN 67.4 70.4 68.9 65.9 68.7 67.2 78.9 86.2
REALISE 67.8 71.5 69.6 66.3 70.0 68.1 78.5 80.1
uChecker 61.7 61.5 61.6 57.6 57.5 57.6 - -
MDCSpell 70.2 68.8 69.5 69.0 67.7 68.3 - -
ECOPE 65.8 69.0 67.4 63.7 66.9 65.3 - -
UMRSpell 69.0 56.6 62.2 63.9 57.2 60.4 73.2 93.3

SPMSpell (our) 68.6 73.5 70.5 67.0 71.2 69.0 81.5 89.0
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Table 1. Cont.

Dataset Model Detection-Level Correction-Level Char-Level
D-P D-R D-F C-P C-R C-F D-F C-F

SIGHAN15

GAD 75.6 80.4 77.9 73.2 77.8 75.4 88.2 90.1
DCN 77.1 80.9 79.0 74.5 78.2 76.3 85.0 84.9
REALISE 77.3 81.3 79.3 75.9 79.9 77.8 87.4 86.2
uChecker 75.4 72.0 73.7 70.6 67.3 68.9 - -
MDCSpell 80.8 80.6 80.7 78.4 78.2 78.3 - -
ECOPE 78.2 82.3 80.2 76.6 80.4 78.4 - -
UMRSpell 77.2 72.2 75.0 69.3 64.8 67.0 83.0 91.5

SPMSpell (our) 81.7 85.6 83.6 79.4 83.4 81.3 88.3 92.8

Note: The test sets are SIGHAN13, SIGHAN14, and SIGHAN15. In the table results, Detection-level and
Correction-level represent sentence-level metrics, Char-level represents character-level metrics, D-P means detec-
tion module precision, D-R means detection module recall, D-F means detection module F1 value, C-P, C-R, and
C-F are correction module corresponding metrics, and black bold in the table is the optimal result.

4.5. Ablation Study

In this subsection, we explore the impact of the hyperparameters k1, k2, k3 in the loss
function on the model performance as well as the contribution of the pinyin prediction task,
the self-distillation module, and the adaptive weighting method to the SPMSpell model.
For this ablation experiment, we evaluate the model using the SIGHAN 2015 test set.

According to what was mentioned earlier, in the pinyin prediction task, the gap be-
tween the roles of tones and rhymes is small and theoretically larger than the roles provided
by tones, so for exploring the effects of hyperparameters k1, k2, k3 can be transformed into
exploring the effects of hyperparameter k. The transformation is as follows:

k1, k2, k3 → (1 − k)
2

,
(1 − k)

2
, k (13)

The effect of hyperparameter k taking value on F1 value of model performance is
shown in Figure 5. Based on the experimental results, we can find that the F1 scores
are basically increasing with increasing values of k. However, after the value exceeds
0.3, the F1 scores begin to decrease. Therefore, setting k to 0.2 achieves the overall best
corrected F1 score. We further explored the reasons for this and found that in Mandarin,
pinyin is the official system used for phonetic transcription. It uses the three components
of consonants, rhymes, and tones to express the pronunciation and spelling of Chinese
characters. Since the similarity of pronunciation of Chinese characters is mainly determined
by their consonants or rhymes rather than their tones, its proportion of tones should be
relatively low, and its proportion of consonants and rhymes high, i.e., the value of k should
be taken to be relatively low.

Effect of the hyperparameter K on the F1 valueEffect of the hyperparameter K on the F1 value

Figure 5. Effect of hyperparameter k on F1 value.
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To further validate the effect of analyzing several constituent modules, this paper also
performs ablation experiments on the SIGHAN 2015 test set in the following settings to
explore the contribution of each module: (a) w/o PP refers to the removal of the pinyin
prediction task from the SPMSpell model; (b) w/o SD refers to the removal of the self-
distillation module from the SPMSpell model; and (c) w/o AW refers to the removal of the
adaptive weighting method from the SPMSpell model.

The experimental results, as presented in Table 2, showcase precision (P), recall (R), and
F1 scores for sentence-level detection/correction, along with the F1 scores for character-level
detection/correction. The primary aim of this study is to leverage a multimodal language
model to unveil the intricate relationships between characters, therefore addressing the
challenge of uneven fusion of multimodal feature information. Notably, upon excluding
the pinyin prediction task, there is a discernible decrease in detection/correction F1 scores
by 2.6% and 1.9%, respectively. This underscores the effectiveness of the pinyin prediction
task in capturing the nuances of Chinese character pronunciation. Similarly, upon removal
of the self-distillation module, there is a reduction in detection/correction F1 scores by 2.4%
and 2.2%, respectively, affirming the efficacy of the introduced self-distillation module in
mitigating the risk of overfitting to pinyin features.

Table 2. Results of model ablation experiments.

Dataset Model Detection-Level Correction-Level Char-Level
D-P D-R D-F C-P C-R C-F D-F C-F

SIGHAN15

SPMSpell 81.7 85.6 83.6 79.4 83.4 81.3 88.3 92.8

w/o PP 79.0 82.5 81.0 77.4 80.6 79.4 87.0 90.9
w/o PP 80.1 82.3 81.2 78.0 80.2 79.1 87.1 91.2
w/o PP 80.4 84.3 82.3 77.5 80.5 79.5 87.1 90.3

Note: The dataset used in the ablation experiment was SIGHAN15. In the table results, Detection-level and
Correction-level represent sentence-level metrics, Char-level represents character-level metrics, D-P means detec-
tion module precision, D-R means detection module recall, D-F means detection module F1 value, C-P, C-R, and
C-F are correction module corresponding metrics.

To further verify the effectiveness of different encoders, this study conducted ablation
experiments with the following configurations on the SIGHAN13 test set to explore encoder
selection: (a) SPMSpell (BERT) refers to using BERT as the encoder in the SPMSpell model;
(b) SPMSpell (REALISE) refers to using the REALISE model as the encoder in the SPMSpell
model; (c) SPMSpell (ChineseBERT) refers to using ChineseBERT as the encoder in the
SPMSpell model, which is the proposed SPMSpell model in this paper.

The experimental results, as shown in Table 3, display the precision (P), recall (R),
and F1 score of sentence-level detection/correction. Overall, compared to using BERT
as the encoder, the REALISE and ChineseBERT models, possibly due to incorporating
character shape and pinyin information into language model pre-training, achieve bet-
ter performance. With the assistance of character shape and pinyin information, better
performance is attained. When comparing REALISE with the ChineseBERT model, using
ChineseBERT as the encoder yields superior results. This may be because the REALISE
model is multimodal, emphasizing the integration of text, sound, and visual information,
while ChineseBERT focuses on the features of the Chinese language, particularly the fusion
of character shape and pinyin information. It can simultaneously capture semantic, charac-
ter shape, and pronunciation features without encountering the issue of re-fusing different
features obtained by different models, effectively addressing the problem of uneven feature
information. On the other hand, using ChineseBERT alone as the multimodal encoder
backbone further simplifies the overall architecture complexity of the CSC model.
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Table 3. Results of encoder ablation experiments.

Dataset Model Detection-Level Correction-Level
D-P D-R D-F C-P C-R C-F

SIGHAN13
SPMSpell (BERT) 85.0 77.0 80.8 83.0 75.2 78.9
SPMSpell (REALISE) 87.6 82.5 85.4 87.2 81.2 84.1
SPMSpell (ChineseBERT) 87.7 83.7 85.6 86.9 82.8 84.6

Note: The dataset used in the ablation experiment was SIGHAN13. In the table results, Detection-level and
Correction-level represent sentence-level metrics, D-P means detection module precision, D-R means detection
module recall, D-F means detection module F1 value, C-P, C-R, and C-F are correction module corresponding
metrics, and black bold in the table is the optimal result.

In essence, the performance of SPMSpell experiences a decline when any individual
component is removed. This provides compelling evidence for the effectiveness of each
component within our approach, emphasizing the integral role played by each element in
contributing to the overall efficacy of SPMSpell.

5. Conclusions

The paper presents SPMSpell, a Chinese spelling error correction model grounded in
multimodal features. Although prior studies have emphasized the importance of character,
character sound, and character shape information, our approach innovatively employs the
multimodal language model ChineseBERT as an encoder. This enables the simultaneous
capture of character, character sound, and character shape features. Feature fusion is then
applied to model character and character sound effectively, addressing issues related to
multimodal feature information mismatch. This not only reduces model complexity but also
mitigates training costs. For the character prediction task, fine-grained pinyin prediction
task, and the self-distillation module, we utilize three parallel decoders. To tackle potential
overfitting in pinyin prediction, we introduce the self-distillation method, ensuring a
predominant role for character information in predictions. Adaptive weighting methods are
incorporated to balance the model between character prediction and pinyin prediction tasks,
as well as among their respective subtasks. Experimental results on the SIGHAN public
dataset demonstrate SPMSpell’s superior performance compared to other comparative
models. Detailed analyses and studies reveal SPMSpell’s excellence in leveraging pinyin
features within multimodal information, showcasing robust generalization capabilities
in the realm of Chinese spelling error correction. Looking ahead, our contributions lie in
advancing the state of the art by effectively integrating multimodal features for improved
spelling error correction. Future work will explore further optimizations, new multimodal
architectures, and incorporating large language models to enhance the overall performance
and applicability of the model.
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