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Abstract: The goal of multimodal named entity recognition (MNER) is to detect entity spans in
given image–text pairs and classify them into corresponding entity types. Despite the success
of existing works that leverage cross-modal attention mechanisms to integrate textual and visual
representations, we observe three key issues. Firstly, models are prone to misguidance when fusing
unrelated text and images. Secondly, most existing visual features are not enhanced or filtered.
Finally, due to the independent encoding strategies employed for text and images, a noticeable
semantic gap exists between them. To address these challenges, we propose a framework called
visual clue guidance and consistency matching (GMF). To tackle the first issue, we introduce a visual
clue guidance (VCG) module designed to hierarchically extract visual information from multiple
scales. This information is utilized as an injectable visual clue guidance sequence to steer text
representations for error-insensitive prediction decisions. Furthermore, by incorporating a cross-scale
attention (CSA) module, we successfully mitigate interference across scales, enhancing the image’s
capability to capture details. To address the third issue of semantic disparity between text and
images, we employ a consistency matching (CM) module based on the idea of multimodal contrastive
learning, facilitating the collaborative learning of multimodal data. To validate the effectiveness of
our proposed framework, we conducted comprehensive experimental studies, including extensive
comparative experiments, ablation studies, and case studies, on two widely used benchmark datasets,
demonstrating the efficacy of the framework.

Keywords: multimodal named entity recognition; contrastive learning; feature pyramid

1. Introduction

Multimodal named entity recognition (MNER) has become an important research
direction in named entity recognition (NER), and it can improve text-based NER by using
images as additional inputs [1]. It assumes that image information can help to recognize
unambiguous named entities when textual information is insufficient. Considering the
given text example, “Rocky is ready for snow season”, there are obvious challenges in
determining named entity categories based on the textual content alone. “Rocky” could
refer to a person, an animal, or some other entity type. However, when we combine this text
with the corresponding image information (as shown in Figure 1), we can easily determine
its type as MISC. In this paper, we investigate MNER in social media posts.

Existing work achieved good performances compared to text-based NER methods [1–14].
Refs. [2–4] are pioneering works in multimodal named entity recognition. For the first
time, image information was added to assist entity recognition in text, which improved
the accuracy of entity recognition. However, although word-related visual representations
are generated, they are insensitive to the visual context and ignore the bias introduced
by the visual context. To address these issues, ref. [5] proposes an end-to-end model for
learning joint representations of text and images using a multidimensional self-attention
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technique that simultaneously captures text and improves the accuracy of the visual
context. The authors of [4] present a novel model based on visual attention that provides
deeper visual understanding in model decision-making. Ref. [6] utilizes object labels as
embeddings to achieve a bridge between visual and verbal aspects and introduces an
intensive co-attention mechanism for fine-grained interactions to recognize named entities
more accurately using the visual context. A multimodal interaction module was designed
for the first time using a Transformer to obtain information about the word representation
and visual representation of an image [7], and the authors propose to utilize plain text
entity span detection as an auxiliary module to mitigate the visual bias, considering both
textual and visual information to improve the recognition accuracy. A unified multimodal
graph fusion (UMGF) method is proposed to represent the input sentences and images as
a unified multimodal graph [1], stacking multiple graph-based multimodal fusion layers,
learning node representations by iteratively performing semantic interactions, and utilizing
graph structures to make fine-grained semantic associations between semantic text and
image units. However, there are limitations in all five approaches [1,4–7], which do not
fully utilize the knowledge behind image and text pairs. Therefore, ref. [8] proposes a
novel pretrained multimodal model based on Relational Inference and Visual Attention
(RIVA), which employs a teacher–student semi-supervised paradigm to utilize the large
unlabeled multimodal inferred corpus and labeled datasets for the classification of text–
image relations. A novel MNER neural model is proposed for acquiring image attributes
and image knowledge [9], and a multiple attention mechanism is designed to integrate this
information. Reference [10] proposes a MoRe framework for injecting knowledge-aware
information into a multimodal NER task using multimodal retrieval, which has rarely
been seen in previous research. However, the above three approaches [8–10] also have
drawbacks in that they cannot avoid the complexity of using external tools and datasets. To
address this problem, ref. [11] proposes a new multilevel semantic alignment approach that
captures coarse- to fine-grained interactions between images and language and directly
utilizes learned visual features to capture the relationship between images and text more
comprehensively, avoiding the complexity of using external tools and datasets. In addition,
ref. [12] had a unique idea [12–14] to utilize the external matching between different (text,
image) pair relationships and designed an R-GCN model to model these relationships,
using the external matching relationships between different (text, image) pairs within
the dataset to mitigate image noise in the MNER task while modeling both cross-modal
and intra-modal relationships. Ref. [13] proposed the SD-NER model, which models
the minimum distance matrix between entities and is easily transferable to other tasks.
Ref. [14] proposed a multimodal Chinese named entity recognition (USAF) model using
acoustic features, which unifies textual and acoustic features through a unique positional
embedding and fuses the features of both features using a multi-head attention mechanism.

Figure 1. An example of multimodal tweets. In this tweet, “Rocky” is the name of the dog.

Although existing methods are a great improvement [1–14], they have three main
shortcomings. Firstly, existing methods assume that each piece of text and its corresponding
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image are matched and that the image can help recognize named entities in the text, but
not all texts are matched with their corresponding images. As shown in Figure 2, ref. [7]
incorrectly predicts “Aquamarine” as ORG due to the influence of the house, indicating
that the existing model has difficulties in filtering the noise introduced by the mismatched
text–image pairs. According to [15], about 34.1% of the text content in Twitter-2015 has an
imperfect match with images. Secondly, existing work on images usually relies only on the
Residual Network (ResNet) [16] or Mask-RCNN [17] and other image encoders to extract
visual features without enhancement or filtering and feed them directly into cross-modal
interaction mechanisms along with text. Finally, most existing approaches fail to construct
a consistent representation to bridge the semantic gap between the two modalities. As
shown in Figure 3, ideally, the words “Danielle” and “Melissa” in the text should show a
high degree of similarity with the region associated with the “rabbits” in the image and low
similarity with other regions in the image. However, due to the inconsistent representation
between the text and the image, the similarity between “Danielle” and “Melissa” in the
text and the “rabbits” in the image may be lower than the similarity between “Danielle”
and “Melissa” in the text and the “rabbits” in the image in the calculation of the similarity
score. The similarity between “Danielle” and “Melissa” in the text and the “rabbits” in the
image may be lower than the similarity with other regions in the image. To address these
shortcomings, we propose a visual clue guidance and consistency matching framework
(GMF). Firstly, we design a visual clue guidance module (VCG), which collects image
features through the Resnet50 image encoder. On this basis, we propose a cross-scale
attention (CSA) module, which combines low-level, high-resolution image information with
high-level, strong semantic image information to enhance visual features. Further, feature
fusion is performed by a structured mapping function F(θ), and, finally, the above vectors
are processed using a gating mechanism for path decision-making. Secondly, we utilize
Contrastive Language–Image Pretraining (CLIP) [18] based on the idea of multimodal
contrast learning, and we design the consistency matching module (CM), defining contrast
loss to bring matched image–text pairs closer together and push them away, enhancing the
learning of the multimodal potential semantic space, and making the representation of two
modalities more consistent. In addition, the attention mechanism of the pretrained Bert
model is utilized to obtain text-aware image representations. Finally, the MNER task is
performed by a Conditional Random Field (CRF) decoder.

Figure 2. (Aquamarine MISC) (2006).

The main contributions of this paper can be summarized as follows.
Firstly, we propose a visual clue guidance and consistency matching framework for

the MNER task, which, through the visual clue guidance (VCG) module, reduces the effect
of mismatched text–image pairs using a cross-scale attention (CSA) module. This enriches
the information of visual modality. In addition, a consistency matching (CM) module is
used to make the representation between images and text more consistent. Secondly, the
three modules we proposed (VCG, CSA, and CM), which do not require additional data
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annotation, can be extended to other multimodal tasks. Finally, experiments on two publicly
available datasets, Twitter-2015 and Twitter-2017, show that an excellent performance is
achieved, outperforming powerful existing models and achieving F1 scores of 75.81% and
87.11%, respectively. We also conducted ablation studies, case studies, and further analysis
to show that the VCG module, CSA module, and CM module play an important role in
our framework.

Figure 3. RT @theteamof1D: (MISC Danielle) and (MISC Melissa) are friends now lmaoooo.

2. Related Work

In this section, we review and summarize the works most relevant to our study.
Starting from [2–4], multimodal named entity recognition has become an important

research direction in named entity recognition (NER), which significantly extends the
traditional text-based NER by using images as additional inputs [1]. The key challenge
is to combine text representation with image representation. Reference [2] proposes an
LSTM-CNN architecture that combines text and image information through a generic
modal attention module. The authors of [3] propose an adaptive co-attention network to
dynamically control the combination of text representation and image representation. The
authors of [4] propose an attention-based model to extract image features from the regions in
the image most related to the text and use a gate to combine text features and image features.
Meanwhile, refs. [2–4] propose methods that can integrate text and image information
and improve the accuracy of entity recognition. However, they have the disadvantages of
ignoring the bias brought about by the visual context and insensitivity to visual context
information. In order to solve the above problems, ref. [5] proposes an end-to-end model
to learn joint representations of text and images using multidimensional self-attention
techniques. Ref. [6] utilizes object labels as embeddings to achieve a bridge between the
visual and the verbal, introducing an intensive co-attention mechanism for fine-grained
interactions. The authors of [7] pioneered the use of Transformers in multimodal tasks, and
they proposed a multimodal interaction module that acquires word representations and
visual representations of images and utilizes plain text entity span detection as an auxiliary
module to mitigate visual bias. Ref. [1] proposes a unified multimodal graph fusion (UMGF)
approach, which represents input sentences and images as a unified multimodal graph,
stacks multiple graph-based multimodal fusion layers, and learns node representations
by iteratively performing semantic interactions. However, refs. [1,5–7] mitigated to some
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extent the bias caused by the visual context and the problem of insensitivity to visual
contextual information. However, they suffer from two shortcomings. First, these methods
assume that each text and its accompanying image are matched and that the image can
be used to help named entity recognition. In addition, they cannot construct a consistent
representation to bridge the semantic gap between the two modalities. Other unique ideas,
e.g., the R-GCN model, were designed to model the external matching relationship between
different (text, image) pairs [12], which is utilized to mitigate image noise in the MNER task
by using the external matching relationship between different (text, image) pairs within
the dataset and to model both cross-modal and endo-modal relationships. The authors
of [10] used retrieval to inject relevant knowledge information from input text and images
into a knowledge corpus into the MNER and Multimodal Relation Extraction (MRE) tasks,
and they proposed the Mixed Expert (MoE) for MNER and MRE algorithms to combine
the predictions of text and image models and make a final decision, which has rarely been
seen in previous research. Disappointingly, refs. [10,12] also do not effectively solve the
two problems mentioned above.

Therefore, we propose a visual clue guidance and consistency matching framework
(GMF) that can effectively reduce the impact of mismatched text–image pairs, enrich the
information of visual modalities, and make the representation between images and text
more consistent.

3. Methodology

In this section, we will provide a detailed exposition of the GMF’s application in
multimodal named entity recognition (MNER). Prior to elucidating our proposed approach,
we will commence with an overview of the MNER task.

3.1. Task Definition

The multimodal named entity recognition (MNER) task is designed to extract and
categorize specific entities from a given sentence S along with its corresponding image I.
The central challenge of this task is to accurately assign each entity to predefined categories.
Drawing from existing research, MNER is conceptualized as a sequence-labeling task.
Specifically, S = (s1, s2, . . . , sn) describes the composition of the sentence, where each sn
represents the nth word. Simultaneously, we use Y = (y1, y2, . . . , yn) to denote the entity
labels associated with each word sn in S. These labels adhere to the BIO2 annotation
scheme [19].

3.2. Framework

Our visual clue guidance and consistency matching framework (GMF) is illustrated in
Figure 4 and is composed of five key components: (1) input representations, (2) a visual clue
guidance module, (3) a cross-scale attention module, (4) a consistency matching module,
and (5) a CRF decoder. Subsequently, we will commence with an exploration of the input
data transformation methods and then delve into the functionality and roles of each module.
Finally, we will provide a detailed description of the training strategy for the MNER task.

3.3. Input Representations
3.3.1. Text Feature Extraction

To capture the deep semantic information in the text, we opted for BERT as the text
encoder. Before presenting the sentence to BERT, we introduced specific tokens at the
beginning and end positions of the sentence, namely [CLS] and [SEP]. Thus, the extended
sentence representation is denoted as S′ = (s0, s1, s2, . . . , sn, sn+1), where s0 represents the
[CLS] token and sn+1 represents the [SEP] token. After passing S′ to BERT, we obtained
the encoded output sequence C = (c0, c1, c2, . . . , cn, cn+1). Subsequently, we utilized a fully
connected layer with a Tanh activation function to process c0, obtaining the overall text
representation Cg.
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Figure 4. Overall architecture of GMF.

3.3.2. Image Feature Extraction

Given an image, we followed the approach outlined by [1,20] to first employ a visual
localization toolkit to locate the top salient local objects in the image. On this basis, we ad-
justed these local visual objects and the global image to a consistent size of 224 × 224 pixels,
serving as the global image I and visual objects O = (o0, o1, o2, . . . , on). For image process-
ing, we chose ResNet50 to obtain the regional and global representations of the image. The
regional representation D=(d1, d2, . . . , d48, d49) comes from the last convolutional layer
of ResNet, with dimensions 2048 × 7 × 7, where 7 × 7 = 49 denotes the number of regions
in the image and 2048 is the dimension of each region’s representation, with each region’s
size being 32 × 32 pixels. We utilized a 7 × 7 average pooling layer to obtain the global
representation Vg ∈ R2048, representing the entire image.

3.4. Visual Clue Guidance Module

The visual clue guidance module serves two primary purposes. Firstly, it captures
multiple visually relevant objects associated with the text in a mutually aligned text–image
pair, thereby enhancing the semantic knowledge for information extraction. Secondly,
global image features often encompass abstract conceptual information, providing the
model with a weak learning signal. In light of this fact, we aggregate various visual clues
to strengthen the recognition of multimodal named entities. This strategy not only incorpo-
rates local region features as crucial clues but also introduces the global image as auxiliary
information. Therefore, as illustrated in Section 3.3.2, we employed the aforementioned
strategy to extract image features in this study. In computer vision research, the fusion
strategy of features from different blocks, implemented through pretrained models [21–23],
has been proven as an effective method to enhance model performances. To fully leverage
these research findings, we particularly focus on exploring the potential of applying feature
pyramids in multimodal scenarios. For this purpose, we propose embedding layered image
features in each Transformer layer. Initially, encoding the image based on the above strategy
generates a collection of pyramid feature maps at different scales {F1, F2, . . . , Fb}, as shown
in Figure 5.
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Figure 5. Pyramid feature maps.

3.4.1. Cross-Scale Attention Module

The detailed structure of the cross-scale attention (CSA) module is depicted in Figure 6.
Given an input feature map F ∈ RC×H×W , CSA infers a 3D attention map M(F) ∈ RC×H×W .
The refined feature map F′ is computed as follows:

F′ = F + F ⊗ M(F) (1)

where ⊗ denotes element-wise multiplication. We employed a residual learning scheme
combined with attention mechanisms to facilitate gradient flow. To design an efficient
yet powerful module, we initially computed channel attention Mc(F) ∈ RC and spatial
attention Ms(F) ∈ RH×W separately in two branches. The attention map M(F) was then
calculated as follows:

M(F) = σ(Mc(F) + Ms(F)) (2)

where σ is the sigmoid function. The outputs from both branches were resized to RC×H×W

before being added.

Figure 6. Structure diagram of the cross-scale attention module.

Channel attention branch. We leverage relationships between channels since each
channel contains specific feature responses. To aggregate feature maps in each channel, we
apply global average pooling to the feature map F, generating a channel vector Fc ∈ RC×1×1.
This vector softly encodes global information across all channels. To estimate cross-channel
attention from the channel vector Fc, we employ a multilayer perceptron (MLP) with
a single hidden layer. To save on parameter costs, the hidden activation size is set to
RC/r×1×1, where r is the reduction ratio. Following the MLP, we add a batch normalization
(BN) layer [24] to scale the output in proportion to the spatial branch. In summary, the
channel attention computation is as follows:
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Mc(F) = BN(MLP(AvgPool(F)))

= BN(W1(W0 AvgPool(F) + b0) + b1)
(3)

Spatial attention branch. A spatial attention map Ms(F) ∈ RH×W is generated to
emphasize or suppress features at different spatial positions. It is crucial to utilize contextual
information to determine which spatial locations should be attended to. Effectively utilizing
contextual information requires a larger receptive field. We employ dilated convolution [25]
to efficiently expand the receptive field, as dilated convolution is known to construct
spatial mappings more effectively than standard convolution. Our spatial branch adopts
the “bottleneck structure” recommended by ResNet [16], reducing the parameter count
and computational cost. Specifically, the feature map F ∈ RC×H×W is projected to the
reduced dimension RC/r×H×W through a 1 × 1 convolution, integrating and compressing
the feature map in the channel dimension. For simplicity, we use the same reduction ratio
r as the channel branch. After reduction, two 3 × 3 dilated convolutions are applied to
effectively leverage contextual information. Finally, the features are reduced to the spatial
attention map R1×H×W again through a 1 × 1 convolution. To adjust to the scale, a batch
normalization layer is applied at the end of the spatial branch. In summary, the spatial
attention computation is as follows:

Ms(F) = BN
(

f 1×1
3

(
f 3×3
2

(
f 3×3
1

(
f 1×1
0 (F)

)))))
(4)

where f denotes a convolution operation, BN denotes a batch normalization operation, and
the superscript denotes the size of the convolution filter. There are two 1 × 1 convolutions
for channel reduction. The intermediate 3× 3 dilated convolutions are applied to aggregate
contextual information with a larger receptive field, F

′
= F + F ⊗ M(F), which allows a

model with stronger information perception for the image
{

F
′
1, F

′
2, . . . , F

′
b

}
to be obtained.

Next, we adopt a structured mapping function F(θ) for feature fusion, including Conν1×1,
Pool, and Concat, represented as follows:

Vb = Conv1×1
(

F′
b
)

(5)

Vm = Conv1×1
(
Pool

(
F′

m
))

, m = 1, 2, b − 1 (6)

where m represents the m-th block of the main model and b represents the number of blocks
in the visual backbone model (in this case, ResNet has four blocks). Conν1×1 denotes the
1 × 1 convolution operation used to adjust the number of channels, and the Pool operation
ensures that all features are mapped to the same spatial dimension.

3.4.2. Dynamic Gating

Understanding that appropriate feature representations appear at corresponding
scales of differently sized objects, the decision of mapping which module from ResNet50
to each layer of the Transformer is not straightforward. To address this challenge, we
introduce a dense routing structure, enabling the hierarchical multiscale visual features
to interact with each layer of the Transformer. The motivation behind dynamic gating is
to predict a normalization vector, describing the importance of features from each visual
block corresponding to a specific layer in the Transformer, for path selection. In the
dynamic gating module, g(l)i ∈ [0, 1] represents the path probability from the i-th block in
ResNet50 to the l-th layer of the Transformer. The computation formula for the gate signal
is given by g(l) = G(l)(V) ∈ Rd, where G(l)(·) is the gating function for the l-th layer of the
Transformer and d is the number of modules in ResNet50. Now, let us discuss the logit of
the gating signal.

γ(l) = σ

(
Wp

(
1
d

d

∑
i=1

P(Vm)

))
(7)



Appl. Sci. 2024, 14, 2333 9 of 18

where σ(·) is the Leaky_ReLU activation function and P is the global average pooling
layer. Initially, we perform average pooling on the features Vm obtained from the i-th block
(with a shape of (di, hi, w)). Next, we accumulate these block features to obtain an average
vector. Through the MLP layer Wp, we adjust the dimensions of these features to d while
considering a soft gating mechanism, generating continuous values as path probabilities.
Furthermore, we obtain the probability vector g(l) for the l-th layer of the Transformer:

g(l) = Softmax
(

γ(l)
)

(8)

3.4.3. Hierarchical Feature Fusion

Based on the dynamic gating signal g(l), we form the fused hierarchical visual features
V(l)

gated corresponding to the l-th layer of the Transformer:

V(l)
gated = g(l)V(l) (9)

To more precisely represent the visual features Ṽ(l)
gated that correspond to the final l-th

layer of the Transformer, we perform the following concatenation operation:

Ṽ(l)
gated =

[
V(l,I)

gated ; V(l,o1)
gated ; . . . ; V(l,on)

gated

]
(10)

This structure enhances the hierarchical representation of the text modality through
the attention mechanism based on visual clue guidance.

3.4.4. Visual Clue Guidance

We describe the hierarchical multiscale visual features as visual clue guidance and
insert these sequences of visual clue guidance into the text sequence in the self-attention
layer of BERT. Specifically, for a given input sequence S = (s1, s2, . . . , sn), the context
representation C ∈ Rn×d first undergoes linear projection to obtain the Q, K, and V vectors:

Ql = CW Q
l , Kl = CWK

l , V l = CWV
l (11)

For the integrated hierarchical visual features Ṽ(l)
gated, we use a linear transformation

Wϕ
l ∈ Rd×2×d (for the l-th layer) to project it into the embedding space matching the text rep-

resentation. Furthermore, we define the operations for visual cues ϕl
k, ϕl

v ∈ Rhw(m+1)×d

as follows: {
ϕl

k, ϕl
v

}
= Ṽ(l)

gated Wϕ
l (12)

where hw(m + 1) represents the length of the visual sequence and m denotes the number of
visual objects detected by the object detection algorithm. Based on the visual clue attention
mechanism, the calculation is as follows:

Pre f ix_Attentionl = so f tmax(
Ql [ϕl

k ; Kl ]T
√

d
)[ϕl

v ; V l ] (13)

We take the hierarchical multiscale visual features as visual cue prompts for each
fusion layer and update the final hidden representation H = (h0, h1, . . . , hn+1) after text
and image fusion through the multimodal attention mechanism layer by layer.

3.5. Consistency Matching Module

To address the inconsistency issue when integrating two modalities in the previous
model, we designed a cross-modal consistency matching module to ensure the consistency
of text and image representations. Inspired by contrastive learning [26–28], we constructed
the consistency matching module. The module takes the text representation Cg and the
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global representation of the image Pg as inputs, and the overall process can be summarized
in the following three steps. First, in the input pairs (Cg, Pg) with a batch size of N, we
generate positive and negative samples. Here, Cm

g represents the text representation for the
m-th pair in the batch, and Pn

g is the image representation for the n-th pair. We define posi-
tive samples as the text and image representations from the same data pair {(Cm

g , Pn
g )m=n},

while negative samples are selected from different data pairs {(Cm
g , Pn

g )m ̸=n}. Although
there might be a small number of mismatched positive samples, the literature [3] suggests
that their impact can be negligible. Next, for each (Cm

g , Pn
g ) example, we process them using

two independent multilayer perceptrons (MLPs) to obtain text representation Cn ∈ Rd

and image representation Pn ∈ Rd. This MLP processing technique effectively assists the
encoder in obtaining better representations, aligning with the results in the studies. Finally,
we adjust the similarity of positive and negative samples by minimizing two contrastive
loss functions. Specifically, the contrastive loss functions from image to text and text to
image are defined as follows:

For the i-th positive sample, the loss from the image to the text is

L(Pn→Cn)
i = − log

exp
(
(Pi

n)
T

Ci
n/∥Pi

n∥∥Ci
n∥

τ

)
∑N

k=1 exp
(
(Pi

n)
T

Ck
n/∥Pi

n∥∥Ck
n∥

τ

) (14)

where (Pi
n)

TCi
n/ ∥ Pi

n ∥∥ Ci
n ∥ is the cosine similarity between Pi

n and \Ci
n and τ is the

temperature coefficient. Similarly, for the i-th positive sample, the loss from the text to the
image is

L(Cn→Pn)
i = − log

exp
(
(Ci

n)
T

Pi
n/∥Ci

n∥∥Pi
n∥

τ

)
∑N

k=1 exp
(
(Ci

n)
T

Pk
n/∥Ci

n∥∥Pk
n∥

τ

) (15)

Finally, integrating all the losses for positive samples, we define the total loss as

LCM−LosS =
1
N

N

∑
i=1

(
λL(Pn→Cn)

i + (1 − λ)L(Cn→Pn)
i

)
(16)

In this equation, λ ∈ [0, 1] is set as a hyperparameter. Minimizing this loss function
ensures the representations of both modalities are more consistent.

3.6. CRF Decoder

After incorporating the contextual information from the image, we employ a Condi-
tional Random Field (CRF) as the decoder for the MNER task. The CRF decoder takes the
final hidden representation H described in Section 3.5 and combines it with the original
text S mentioned in Section 3.1 and the corresponding image I to predict the conditional
probability of the sequence y. Specifically, this probability is defined as follows:

P(y | S, I) =
exp(point(H, y))

Z(H)
(17)

Z(H) = ∑
y

exp

(
n

∑
i=1

Ehi ,yi
+

n

∑
i=0

Tyi ,yi+1

)
(18)

point(H, y) =
n

∑
i=1

Ehi ,yi
+

n

∑
i=0

Tyi ,yi+1 (19)

Ehiyi
= wyi

MNER · hi (20)
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where Ehi ,yi
and Tyi ,yi+1 , respectively, denote the emission score for the i-th label yi and the

transition score from yi to yi+1. wyi
MNER represents the weight parameter for yi, and the

normalization factor Z(H) is used to sum and normalize the emission and transition scores
for all possible sequences y. To train this module, we utilize the logarithmic likelihood
loss function:

Lmner = − 1
|Dmner |

N

∑
j=1

(
log P

(
yj | Sj, I j

))
(21)

where Dmner = {Sj, I j, yj}N
j=1 denotes the training data batch.

3.7. Model Training

In summary, our framework encompasses both a supervised learning task (MNER)
and an auxiliary self-supervised learning task (consistency matching). To achieve joint
training and optimization, we formulate the comprehensive loss function as follows:

LTotal_Loss = (1 − α)LCM_Loss + αLmner (22)

where LCM_Loss represents the loss of the consistency matching module (see Section 3.5) and
Lmner corresponds to the loss of the MNER task (see Section 3.6). In this equation, α is a
hyperparameter that needs to be fine-tuned.

4. Experiments
4.1. Dataset

In the evaluation phase of this study, we utilized two widely adopted datasets, namely
Twitter-2015 and Twitter-2017, which were provided by [3,4], respectively. Each data
sample consists of a {sentence, image} pair. It is noteworthy that due to the absence of
the image modality in certain samples during the collection process, we took measures to
ensure the data integrity and consistency. For these instances lacking image information,
we uniformly substituted them with predefined blank images. Specific details regarding
data distribution and the quantities of various entity classes can be found in Table 1.

Table 1. Summary statistics of the two MNER datasets.

Type Twitter-2015 Twitter-2017
Train Dev Test Train Dev Test

PER 2217 552 1816 2943 626 621
LOC 2091 522 1697 731 173 178
ORG 928 247 839 1674 375 395
MISC 940 225 726 701 150 157

Total 6176 1546 5078 6049 1324 1351
# Tweets 4000 1000 3257 3373 723 723

4.2. Parameter Settings

In the experimental phase, we used an NVIDIA GTX 3090 GPU and PyTorch version
1.13.1 for all relevant tasks and experiments. To ensure the accuracy and efficiency of the
framework, we set specific parameters and configuration strategies for each module. For text
encoding, we chose bert-base-uncased as the text encoder for our model. In the image pro-
cessing phase, we used ResNet50 as the image encoder. In addition, considering two different
Twitter datasets, we used the following hyperparameter settings: for the Twitter-2015 dataset,
the temperature coefficient is 0.21, and for the Twitter-2017 dataset, the temperature coefficient
is 0.174. In addition, our uniform hyperparameter setting is 0.7. Regarding the training
strategy and details, for the Twitter- 2015 dataset, we set the training batch size to 16, the
learning rate to 5 × 10 −5, and the random seed to 1234. As for the Twitter-2017 dataset, we
adjusted the training batch size to 32, and, again, the learning rate was kept at 5 × 10 −5, and
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the random seed remained at 1234. In order to set up the most appropriate epoch, we refer to
Figure 7. These parameters and configuration choices were made to ensure that our model
achieves an optimal performance and accuracy on the given dataset. Finally, we set the epochs
of Twitter-2015 and Twitter-2017 to 30 and 50, respectively.

Figure 7. GMF test results on the development set and loss on the training set.

4.3. Baselines

To comprehensively evaluate the effectiveness of our proposed visual clue guidance
and consistency matching framework (GMF), we selected representative text-based and
multimodal NER models for comparison. Text-based NER methods include BiLSTM-
CRF [29], a classical NER model employing a bidirectional LSTM structure and an CRF layer;
HBiLSTM-CRF [30], a variant of CNN-BiLSTM-CRF that replaces the CNN layer with LSTM
for character-level word representations; BERT [19], serving as a multilayer bidirectional
Transformer encoder followed by a softmax decoder; and BERT-CRF, similar to BERT
but using a CRF decoder for label prediction; and T-NER [3,31], a NER system designed
specifically for tweets, utilizing a range of effective features, including dictionaries, context,
and positive word features. Multimodal NER methods include GVATT-HBiLSTM-CRF [4],
which combines HBiLSTM-CRF with an attention mechanism to obtain representations
merging text and visual information, and UMT-BERT-CRF [7], a leading multimodal NER
model comprising a multimodal interaction module and an auxiliary module for pure text
entity span detection. Additionally, we include other state-of-the-art multimodal models
for comparison: MAF [32], which calculates similarity scores between text and images
and uses the score to determine the proportion of visual information to retain; UMGF [1],
which proposes a unified multimodal graph fusion method to capture fine-grained semantic
correspondences between semantic units of different modalities; BFCL [33], which leverages
a Transformer-based bottleneck fusion mechanism to reduce noise propagation in the visual
modality; and DebiasCL [34], which utilizes hard sample mining and debiased contrastive
loss to alleviate biases in both the quantity and entity types, enabling global learning
for aligning text and image feature spaces. Lastly, GMF, the model proposed in this



Appl. Sci. 2024, 14, 2333 13 of 18

study, aims to enhance the MNER performance by integrating visual clue guidance and
consistency matching.

4.4. Effectiveness

This thesis uses precision (P), recall (R), and the F1 score (F1) as metrics tested on
two benchmark MNER datasets. For an entity, it is judged to be correctly predicted only
if both its boundaries and categories are correctly predicted. Precision is the proportion
of correct entities among the predicted entities, and recall is the proportion of correctly
predicted entities among all entities in the sample. A high precision rate indicates that the
model predicted a high percentage of correct entities but did not necessarily cover more
entities. A high recall indicates that the model predicted most of the entities in the data; it
covered more entities but did not necessarily predict a high proportion of correct entities.
The F1 value is a weighted average of the precision and recall, taking into account both
the precision of the prediction and the number of correct entities covered. Table 2 displays
the performance of four text-based models and eight multimodal models on Twitter-2015,
while Table 3 presents their performance on Twitter-2017. Below is a detailed analysis.

Table 2. Experimental results on the Twitter-2015 dataset.

Modality Methods
Twitter-2015

Single Type (F1) Overall
PER LOC ORG MISC P R F1

Text

BiLSTM-CRF 76.77 72.56 41.33 26.8 68.14 61.09 64.42
HBiLSTM-CRF 82.34 76.83 51.59 32.52 70.32 68.05 69.17

BERT 84.72 79.91 58.26 38.81 68.3 74.61 71.32
BERT-CRF 84.74 80.51 60.27 37.29 69.22 74.59 71.81

Text+image

GVATT-HBiLSTM-CRF 82.66 77.21 55.06 35.25 73.96 67.9 70.8
GVATT-BERT-CRF 84.43 80.87 59.02 38.14 69.15 74.46 71.7

BFCL 85.6 81.77 63.81 40.3 74.02 75.07 74.54
UMT-BERT-CRF 85.24 81.58 63.03 39.45 71.67 75.23 73.41

MAF 84.67 81.18 63.35 41.82 71.86 75.1 73.42
UMGF 84.26 83.17 62.45 42.42 74.49 75.21 74.85

DebiasCL 85.97 81.84 64.02 43.38 74.45 76.13 75.28
GMF (ours) 87.02 82.51 63.25 45.2 75.47 76.15 75.81

Firstly, comparing all text-based NER methods, it is evident from the data that meth-
ods based on BERT outperform others, indicating the potential advantage of optimizing
pretrained models through transfer learning rather than starting from scratch. Additionally,
approaches combining BERT with the CRF surpass pure BERT strategies, suggesting the
crucial role of the CRF in capturing label constraints and thereby achieving more accurate
label predictions.

Next, we compare MNER methods with competitive text-based models, such as
GVATT-HBiLSTM-CRF and HBiLSTM-CRF. The majority of multimodal strategies notably
outperform their corresponding text-only models, further indicating the contribution of
image information to named entity recognition in text. Furthermore, compared to the
latest MNER method, DebiasCL, our GMF method, incorporating both the proposed visual
guidance module and consistency matching module, enhances image information aligned
with the text.
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Table 3. Experimental results on the Twitter-2017 dataset.

Modality Methods
Twitter-2017

Single Type (F1) Overall
PER LOC ORG MISC P R F1

Text

BiLSTM-CRF 85.12 72.68 72.5 52.56 79.42 73.43 76.31
HBiLSTM-CRF 87.91 78.57 76.67 59.32 82.69 78.16 80.37

BERT 90.88 84 79.25 64.63 82.19 83.72 82.95
BERT-CRF 70.25 83.05 81.13 62.21 83.32 83.57 83.44

Text+image

GVATT-HBiLSTM-CRF 89.34 78.53 79.12 62.21 83.41 80.38 81.87
GVATT-BERT-CRF 90.94 83.52 81.91 62.75 83.64 84.38 84.01

BFCL 91.17 86.43 83.97 66.67 85.99 85.42 85.7
UMT-BERT-CRF 91.56 84.73 82.24 70.1 85.28 85.34 85.31

MAF 91.51 85.8 85.1 68.79 86.13 86.38 86.25
UMGF 84.26 83.17 62.45 42.42 86.54 84.50 85.51

DebiasCL 93.46 84.15 84.42 67.88 87.59 86.11 86.84
GMF (ours) 93.42 84.68 84.83 69.42 86.95 87.27 87.11

Finally, on Twitter-2015 and Twitter-2017, our model shows overall F1 improvements
of 0.53% and 0.27%, respectively. This suggests that the introduced modules can assist the
model in better integrating text and image representations.

4.5. Ablation Study

In order to evaluate the contribution of the visual clue guidance module (VCG) cross-
scale attention module (CSA), and consistency matching module (CM) to the overall
performance of the GMF model, we conducted detailed culling experiments. The data
in Table 4 show the following: (1) Overall, the visual clue guidance module, cross-scale
attention module, and consistency matching module all contribute significantly to the
performance of the GMF model. (2) In the absence of the visual clue guidance module
(labeled “w/o VCG”), the F1 score for the Twitter-2015 dataset decreased by 0.74%, while
that for the Twitter-2017 dataset decreased by 0.66%. The critical role of the visual clue
guidance module in integrating and enhancing visual features is emphasized. (3) In the
absence of the cross-scale attention module (labeled “w/o CSA”), the F1 scores of the
Twitter-2015 dataset decreased by 0.58%, while the Twitter-2017 dataset decreased by
0.5%, and both F1 scores are smaller than w/o VCG and w/o CM, suggesting that CSA
plays a role in GMF to assist other modules. (4) In the case of removing the consistency
matching module (labeled “w/o CM”), the F1 scores of the Twitter-2015 dataset decreased
by 0.87%, while that of the Twitter-2017 dataset decreased by 0.78%. This indicates that the
consistency matching module effectively aligns the text with the relevant image regions.
(5) With the removal of the visual clue guidance module, the cross-scale attention module,
and the consistency matching module (labeled “w/o VCG + CSA + CM”), the F1 score
for the Twitter-2015 dataset decreased by 1.18%, while that for the Twitter-2017 dataset
decreased by 0.99%. It is shown that the visual clue guidance module, the cross-scale
attention module, and the consistency matching module alleviate the problems caused by
text–image mismatch, enrich the information of the visual modality, and ensure a high
degree of consistency of modal representations between text and images.

Table 4. Ablation studies of the GMF model.

Methods Twitter-2015 Twitter-2017
P R F1 P R F1

GMF 0.7547 0.7615 0.7581 0.8695 0.8727 0.8711
w/o VCG 0.7422 0.7596 0.7508 0.8557 0.8734 0.8645
w/o CSA 0.7504 0.7542 0.7523 0.861 0.8712 0.8661
w/o CM 0.749 0.7499 0.7494 0.8549 0.8719 0.8633

w/o VCG + CSA + CM 0.7347 0.7583 0.7463 0.8615 0.8608 0.8612
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4.6. Case Study

Figure 8 presents a case study showcasing the effectiveness of our proposed GMF and
DebiasCL methods. In the first scenario, DebiasCL and GMF w/o CM misclassify the PER
entity “Isis” as an ORG entity, whereas our methods GMF and GMF w/o VCG accurately
identify it. Similarly, in the second scenario, DebiasCL and GMF w/o CM fail to recognize
the MISC entity “Oscars”, while our methods GMF and GMF w/o VCG do so correctly.
These examples underscore the efficacy of the CM module in associating entities in the
text with relevant image regions, thereby enhancing the accuracy of entity recognition.
In the third scenario, DebiasCL and GMF w/o VCG incorrectly classify the MISC entity
“Mufasa” as a PER entity. This misclassification may be attributed to the metaphorical
emotions depicted in the image and the significant noise introduced by the characters,
posing challenges for the MNER model. Conversely, our GMF approach, along with the
GMF w/o CM modules, accurately predicts the MISC entity “Mufasa”. This instance
illustrates the effectiveness of the VCG module in filtering image noise and leveraging deep
textual semantics for accurate entity prediction. Moving forward, we intend to explore the
visual clue guidance module further and explore more advanced strategies for improved
entity recognition accuracy. Additionally, we aim to apply our method to other multimodal
tasks such as multimodal relationship extraction and multimodal entity linking.

Figure 8. Case study of GMF vs. DebiasCL methodology.

4.7. Further Analysis

In order to better understand the importance of the three main contributions (VCG,
CSA, and CM modules) in our proposed GMF approach, we performed additional analysis
on both test sets. In Figure 9, we show the number of entities incorrectly/correctly pre-
dicted by BERT-CRF and the number of entities correctly/incorrectly predicted by each
multimodal approach. First, we can see in Figure 9a,b that our GMF method correctly
identifies more entities compared to the three multimodal baselines. In addition, we can
see in Figure 9c,d that the GMF method has a lower error probability compared to the three
multimodal baselines, and we believe that the reason is that GMF can significantly reduce
the bias caused by the visual environment by incorporating our VCG module, and at the
same time, with the aid of the auxiliary CSA module, it successfully reduces the inter-scale
noise and strengthens the ability of detail capturing using the CM module that narrows the
semantic gap between text and images.
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Figure 9. (a,b) both show the number of entities incorrectly predicted by BERT-CRF but corrected
by each multimodal method (shown in the y-axis). (c,d) both show the number of entities correctly
predicted by BERT-CRF but incorrectly predicted by each multimodal method (shown in the y-axis).

5. Conclusions

In this paper, we propose a visual clue guidance and consistency matching framework
(GMF), which improves the state-of-the-art performance of multimodal named entity
recognition for social media posts. Specifically, the VCG module is used to combine low-
level, high-resolution image information and high-level, strong semantic image information.
On this basis, the CSA module is used to enrich the information of visual modalities. In
addition, the CM module is used to minimize the contrast loss and align the entities in the
text with the most relevant objects in the image. We conducted a number of experiments,
ablation studies, case studies, and further analyses to show that the VCG module can help
the model filter out most of the image information that is irrelevant to the text and reduce
the effect of image mismatch on the text. The CSA module mitigates cross-scale interference
and enhances the ability of images to capture details by augmenting visual features. The
CM module can help the model establish a connection between the named entities in the
text and the regions in the image where the corresponding objects are located and reduce
the interactions with other regions in the image.

However, the method proposed in this paper still has some shortcomings. For example,
there is a lack of stress testing of the model in different environments. In the future, we plan
to increase the dataset of social media posts to better reflect the diversity and uncertainty of
the data and to stress test the model at different data distributions, noise levels, and so on.
In addition, we would like to apply the methods in this paper to other multimodal tasks,
such as multimodal relationship extraction and multimodal entity linking.
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