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Abstract: Up to 30% of people over the age of 60 are at high risk of falling, which can cause injury,
aggravation of pre-existing conditions, or even death, with up to 684,000 fatal falls reported annually.
This is due to the difficult task of establishing a preventive system for the care of the elderly, both
in the hospital environment and at home. Therefore, this work proposes the development of an
intelligent vision system that uses a novel methodology to infer fall risk from the analysis of kinetic
and spatiotemporal gait parameters. In general, each patient is assessed using the Tinetti scale. Then,
the computer vision system estimates the biomechanics of walking and obtains gait features, such as
stride length, cadence, period, and range of motion. Subsequently, this information serves as input to
an artificial neural network that diagnoses the risk of falling. Ninety-six participants took part in the
study. The system’s performance was 99.1% accuracy, 94.4% precision, 96.9% recall, 99.4% specificity,
and 95.5% F1-Score. Thus, the proposed system can evaluate the fall risk assessment, which could
benefit clinics, hospitals, and even homes by allowing them to assess in real time whether a person is
at high risk of falling to provide timely assistance.

Keywords: fall risk; machine learning; gait assessment; computer vision; physiotherapy; biomechanics;
elderly

1. Introduction

A fall is defined as an event in which a person is unintentionally thrown to the ground.
It is the second leading cause of unintentional injury death with 684,000 fatal falls per
year, primarily in adults over the age of 60 [1]. In addition, it has been observed that more
than 30% of older adults suffer a fall each year, with 14% of these falls being recurrent [2],
resulting in disability, loss of independence, limitation of activities of daily living, and
functional impairment [3]. This is often associated with the natural degeneration of the
gait due to the physiological changes associated with aging. For example, 10% of people
between the ages of 60 and 69 have gait disorders, and more than 60% of people over the age
of 80 have gait disorders [4]. Gait disorders occur in 10% of people between the ages of 60
and 69 and up to 60% of people over the age of 80 [4]. Gait disorders can have a significant
impact on the quality of life of older adults and their participation in social activities,
and a strong association has been observed with an increased risk of falls [5]. Therefore,
worldwide guidelines for the prevention of falls in the elderly have recommended the use
of devices that can measure the risk of falling, with the use of gait speed as one of the most
important indicators [6].

To meet these needs, machine learning (ML) algorithms have been implemented in
recent years. These are based on a structure inspired by the human brain for analyzing com-
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plex and unstructured information [7]. This has facilitated the processing of large amounts
of information from images, text, and sound, the analysis of which is not feasible with tradi-
tional methods due to ambiguities in the information [8]. Based on this, intelligent systems
have been developed to provide fall risk information, classified according to the type of
sensor used and the function of the system [9]. Commonly used sensors can be divided
into three categories: wearable sensors, computer vision systems, and environmental or
fusion sensors [10]. Wearable sensor systems typically consist of accelerometers [11–13], gy-
roscopes, or a combination of both [14]. These are referred to as inertial measurement units
(IMUs) and are placed directly on the user to provide continuous individual monitoring,
which, in many cases, allows free movement [10]. Chen et al. [15] and Mehmood et al. [16]
achieved promising results by developing systems with an accuracy of 99% for fall de-
tection, which alerts the hospital or clinic staff. However, these have the disadvantage
that patients may forget to use the device or recharge their batteries [17]. Alternatively,
there are computer vision systems that operate in a predetermined area, such as a hallway,
room, or garden, among others, to monitor one or more people within the field of view
(FOV), which is continuous and non-invasive [9]. This is carried out using deep learning
APIs for image processing, such as Mediapipe [18] or YOLO [8], which have functions
for human detection, face recognition, and skeleton reconstruction, to name a few. Using
these tools, fall risk assessment systems have been developed, such as the work of Blasco-
Garcia et al. [19] and Eichler et al. [20], where vision systems evaluate established tests for
calculating fall risk, such as the Tinetti tests and the Berg Balance Scale (BBS), allowing
patients to be classified into low, medium, and high risk categories, with an accuracy of
up to 97%. Similarly, Anitha and Priya [17] used a vision system to recognize people and
their poses using MobileNet to perform a binary classification between a fall and non-fall
state, with a maximum accuracy of 100%. Finally, environmental, or fusion systems tend to
use vibration sensors [21], microphones [22], and pressure plates [10]. These are used to
characterize the signals generated during the fall event; however, they do not have any type
of feedback that allows them to distinguish between the fall of a person or an object. This
makes them very practical systems to implement but with many risks of false alarms [10].

These intelligent systems can also be classified according to their performance. One is
falling detection, such as the works of Aziz et al. [13], Chen et al. [15], Mehmood et al. [16],
Ranakoti et al. [23], and Anitha and Priya [17], where a binary classification is used to
determine whether the patient or elderly person has fallen, and some even notify nurses,
physiotherapists, caretakers, or family members. However, while such systems typically
have accuracies of around 96% and avoid long waits for assistance [24,25], they have
the disadvantage of post-fall alarms [26,27]. This means that the patient or elderly per-
son is already at risk of having suffered some kind of trauma caused by the fall, which
may aggravate their already fragile state. To avoid this, other systems such as those
by Blasco-Garcia et al. [19], Eichler et al. [20], Khandoker et al. [28], Silva et al. [29], and
Drover et al. [30] have opted for a preventive approach that assesses fall risk and deter-
mines which patients require further assistance and continuous monitoring. However,
these are designed to assist in the assessment of tests such as the BSS, Tinetti, and Morse
Fall Scale, to name a few. The problem is that the assessment requires tests that are not
commonly performed in a clinic or hospital due to their time-consuming nature. Instead,
an approach such as that of Khandoker et al. [28] may be more useful, as it is an analysis
of fall risk based on parameters extracted from gait. In their case, a Vicon-based system
and wavelet transform post-processing are used to classify patients as low or high fall
risk without the need to perform specific tests, using the minimum foot clearance (MFC)
as a gait feature. This type of system offers the advantage of continuous, non-invasive,
and efficient assessment in terms of time management, but there is still room for improve-
ment when considering that only the MFC is assessed. This is a measurement that can be
difficult to obtain in an uncontrolled environment, as the visualization of the feet can be
easily obstructed. On the other hand, the gait has other indicators that could have a better
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performance and can be obtained more easily, such as stride length, cadence, speed, period
between steps, and knee movement ranges, among others.

This paper proposes a new methodology to establish a relationship between fall risk
and parameters extracted from gait, using Tinetti test scores as ground truth, to develop
a monitoring system that can continuously assess fall risk without interfering with the
activities of patients or professionals. This is expected to establish a relationship between
gait and fall risk that can be used by an intelligent fall risk assessment system in a clinic or
hospital to keep staff aware of the status of their patients. Therefore, the main contributions
of this work are an automated methodology to estimate the biomechanics of walking,
obtaining gait characteristics, and assessing fall risk; and a low-cost computer vision system
that includes an automated fall risk assessment methodology with performance indicators
of 99.1% accuracy, 94.4% precision, 96.9% recall, 99.4% specificity, and 95.5% F1-Score.

2. Materials and Methods
2.1. General Diagram

The general methodology shown in Figure 1 was followed in the development of
this work. It starts with the selection of the population, which focuses on the evaluation
of people over 60 years of age who meet the inclusion and exclusion criteria. For each
participant, an identification form is generated with basic information such as age, height,
weight, and other data. This information is complemented by the application of the Tinetti
tests to assess their fall risk, the result of which is taken as ground truth and used as a
reference. Next, a gait assessment is performed using a computer vision system, which
consists of a digital camera that monitors walking on a treadmill at a comfortable speed.
This is analyzed to estimate the biomechanics of the lower extremities, from which the gait
main features are extracted, such as stride length, cadence, period, and range of motion
(ROM), to name a few. Then, the extracted features are used to train and validate an
artificial neural network (ANN) that seeks a correlation between the features and the Tinetti
score; as a result, the final system can predict the Tinetti score of new cases via gait analysis.
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2.2. Population

The population included 96 participants with a mean age of 68.6 years and a standard
deviation of 10.1, of whom 70 were women and 26 were men. Subjects were selected
only if they were over 60 years of age and did not have any of the following exclusion
criteria: vertigo, lower limb prosthesis, acute lower limb injury, and use of assistive de-
vices such as canes, walkers, crutches, and wheelchairs. Participants were recruited via
informational flyers.
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2.3. Preliminary Evaluation
2.3.1. Identification Record

Participants were assisted by physiotherapists from the University Physiotherapy Care
System Clinic to register ID cards and obtain basic information about the participants, such
as age, sex, weight, and height. It was also checked that no one had any exclusion criteria.

2.3.2. Tinetti Test

The Tinetti Balance Scale was applied to the participants, which is a commonly used
tool to assess balance and gait and to identify fall risk in older adults [31]. It consists of
28 items, with a subscale of 12 items for gait and 16 items for balance. These two scores
are added together to determine the fall risk in older adults, with higher scores indicating
better performance. The scores are then grouped to determine the level of fall risk: ≥25 no
risk, 19–24 fall risk, and <19 high fall risk. The Tinetti Balance scale is a valid and reliable
tool for assessing mobility (r = 0.74–0.93), with high interobserver reliability (0.95) [32].
Some of the items evaluated consist of an 8 m walk, standing up and sitting in a chair,
standing and imbalance while standing, and 360◦ turns.

2.4. Gait Assessment
2.4.1. Computer Vision System

The vision system consists of an IDS UI-3130CP-M-GL R2 monochrome camera (IDS
Imaging, Obersulm, Germany), with industrial-grade robustness, and is configured to
record at 20 frames per second (FPS). It incorporates a 3.5 mm lens with radial distortion
of less than 1 px. The camera is mounted on a tripod at 1.7 m to obtain a vertical FOV of
1.4 m, visualizing both lower extremities [33]. The system is complemented by artificial
illumination from infrared reflectors with a wavelength of 850 nm to provide uniform
illumination of the workspace without causing discomfort to the participants.

2.4.2. Workspace

To perform gait evaluation with the vision system, a controlled work environment
is set up, as shown in the diagram in Figure 2, which shows an enclosed room with an
electric treadmill used by the subjects. The area is isolated from the rest of the clinic by dark
curtains that prevent the entry of ambient light; instead, infrared reflectors are placed to
maintain a controlled and constant illumination [33]. Controlling the working environment
simplifies the preprocessing required for image analysis, as there is no need to isolate
objects or people unrelated to the tests. In the same way, it is possible to visualize any
movement of the lower extremities. The reflectors are placed at 1.7 m from the treadmill, as
well as the vision system camera and the PC used to coordinate video acquisition. The final
layout of the workspace is designed to ensure that the subjects are not at risk of falling and
that it is easy to enter and exit the test area.
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2.4.3. Gait Assessment Protocol

A biomechanical gait study was performed using computer vision to identify its
kinematic parameters. The methodology to acquire this information requires that the
participants get on a treadmill and that it would advance at an incremental speed until
it reached a speed like their usual gait, referred to as the comfort speed, which would be
maintained for up to 3 min when possible. They were informed in advance of this process
so that they could feel confident that it did not pose any risk to their health or safety. During
preparation for the gait tests, reflective markers were placed at various locations on the
right limb; however, these were used for a derivative project with which only the video
database was shared.

Each test was supervised by a physiotherapist who could interrupt it at any time if he
felt that the volunteer needed assistance due to fatigue, discomfort, or dizziness, among
other things. After the gait analysis, the participants were assisted in getting down from the
treadmill. This procedure was applied to each participant and took approximately 10 min,
taking into consideration the participant’s explanation and preparation time.

To carry out the tests, the project was submitted to the Ethics Council of the Au-
tonomous University of Queretaro, which granted an approval status under the folio
number FOPER-2021-FEN02370. The procedure complies with NOM-012-SSA3 2012, which
establishes the guidelines regarding the ethical aspect and the physical well-being and
integrity that must be guaranteed in all research involving human participants. In addition,
the guidelines established in the General Health Law Regulations on Health Research, the
Declaration of Helsinki, and the Good Clinical Practices issued by the National Bioethics
Commission are followed.

2.5. Biomechanics Estimation

For video analysis, YOLOv8 is used, which is a high-speed, high-precision DL-based
model used in computer vision [8,34]. It supports tasks such as detection, segmentation,
pose estimation, tracking, and classification. These can be trained using custom databases
to recognize specific objects, such as people, and to track key points. These are points of
interest in an object that needs to be detected and, in the case of video, tracked. To develop
the system, a set of 100 images extracted from videos of volunteers walking in the test
area is used. The images are then loaded into CVAT (https://www.cvat.ai, accessed on 11
December 2023), which is an online tool to label images used in AI training [35]. There is a
toolbox that allows the selection of key points, which, in this case, are placed to indicate
the different segments of the left and right lower extremities. An example of this process is
shown in Figure 3, where all the key points are visible. It is important to note that it was
later decided not to use the reflective markers shown in the figure, as they were limited to
monitoring only one limb. In addition to the high risk of not being able to detect all the
markers, it requires very robust pre-processing and proper light conditioning to accurately
segment the markers in each frame.

Once all the images have been labeled, CVAT generates a database containing informa-
tion about the boxes and points placed, such as their position and dimension. These points
are then exported to Python, where they are used to train a DL model. For the development
of the algorithm, the use of the open-source library Keras in Python was chosen, which is
designed for the training and implementation of DL models [36,37]. These models can be
used both for the development of neural networks for the analysis of statistical databases
and for the training of models for the analysis of images, which perform tasks of detection
of objects, people, faces, and body orientation, to name a few. Therefore, using Keras and
the database obtained from CVAT, the training of personalized models is performed, where
the information and images are divided for training and validation. The resulting model
is then used for the analysis of gait test videos, where each frame is taken to perform the
identification of each lower limb section via key points. This results in an estimate of the
subject’s pose within the frame, as shown in Figure 4, which, when monitored over time,
generates signals representing the biomechanics of walking.

https://www.cvat.ai
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2.6. Gait Feature Extraction
2.6.1. List of Features

Stride: Corresponds to the distance between two consecutive supports of the same foot,
measured in centimeters [38].
Velocity: It is a simple, objective, and global measure of neuromuscular function and
physical performance of the lower extremities, corresponding to the distance covered in a
unit of time (m/s) [39].
Period: The time between the moment of toe-off and the first contact of the same foot,
measured in seconds (s) [40].
Cadence: Number of steps taken in a given time by a person walking at spontaneous speed
(steps per minute) [41].
ROM: The maximum angle described between two body segments with respect to a
reference plane measured at the joints, i.e., the number of degrees through which a joint
can move [41].
Knee angle during heel strike: The angle of knee extension during heel strike, when the
heel contacts the ground.
Knee angle during toe-off: The angle of knee flexion during the toe-off phase, when the
foot loses contact with the ground.

2.6.2. Feature Calculation

To extract the indicators, the signals obtained from the vision system are used, where
the movement of the hip, knee, and ankle of both legs are monitored in relation to time.
First, the displacement of the ankle is checked to determine the exact moment when the
events of toe-off and heel strike occur since these coincide with the change in the direction
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of the foot displacement, generating peaks and valleys in the signal, taking a shape like a
sinusoidal signal.

To calculate peaks and valleys, the peakutils library is used to determine the magnitude
of the peaks (Pi) and valleys (Vi), as well as the exact time at which they occurred: tP and
tV, respectively. From these, the average stride length and period (T) are calculated using
the following equations:

stride =
1
n∑n

i=1|Pi −Vi| (1)

T =
1
n∑n

i=1|tPi − tVi| (2)

From this, the average cadence and speed (v) can be calculated using the following
equations:

cadence =
60
T

(3)

v =
stride

T
(4)

To determine the range of motion (ROM), it is necessary to calculate the angular
displacement that occurs in the knee. For this the hip, knee, and ankle are considered as
reference points, referring to each point by means of the indexes placed in Figure 3:

θright = tan−1
(

y6 − y4

x6 − x4

)
− tan−1

(
y2 − y4

x2 − x4

)
(5)

θle f t = tan−1
(

y5 − y3

x5 − x3

)
− tan−1

(
y1 − y3

x1 − x3

)
(6)

Using the angular displacement of the knee, the ROM can be calculated by calculating
the average amplitude of the peaks P for the maximum and the valleys V for the minimum,
resulting in the following equations:

θmax =
1
n∑n

i=1|Pi| (7)

θmin =
1
n∑n

i=1|Vi| (8)

Finally, the knee angle during toe-off and heel strike is determined by superimposing
the angular knee displacement and ankle displacement signals on the x-axis, as shown in
Figure 5.
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The peaks and valleys of the ankle correspond to the beginning and end of the stride,
so the times tP correspond to the heel strike and tV to the toe-off. Therefore, the amplitude
of the angular displacement can be determined at the same times.

θhs =
1
n∑n

i=1|θtP,i| (9)

θto =
1
n∑n

i=1|θtV,i| (10)

2.7. Network Training and Validation

Artificial neural networks (ANNs) are based on a design inspired by the connections
that naturally occur between neurons in the human brain [42]. The idea is to create
machines that can perform tasks that cannot be carried out with traditional algorithms
because they depend on an undefined and uncertain number of factors. By simulating
human brain processing, complex information such as images, sounds, and large databases
can be analyzed for patterns and irregularities [43]. This can be used for classification and
regression tasks, where the patterns found are correlated with a desired output. In this
way, the network “learns” what output to provide according to the input it receives [13].
ANNs consist of simple elements called perceptrons that simulate the processing activity of
a neuron. Like neurons, perceptrons form a layered network, with an input layer, an output
layer, and the layers between them called hidden layers. The latter can have several layers,
and in each layer, the number of perceptrons can vary, either increasing or decreasing. On
the other hand, the input layer must have several perceptrons equal to the input data, while
the output layer can vary depending on the task to be performed [44].

In all layers, the perceptrons have one or more inputs x, which can be external or come
from other perceptrons. These inputs are weighted with a weight w, to determine which
inputs should be more important for the calculation of the output y, which is given by the
following equation:

y = ∑d
j=1 wjxj + w0 (11)

where d is the number of perceptron inputs, and w0 is the weight given to the bias xj, which
always has a value of 1. This establishes a relationship between the input and the output
of each perceptron, which is adjusted so that the network provides a desired output for
a given input. Therefore, an iterative training process is applied, starting from random
values of w and determining the error between the obtained output and the desired one,
and adjusting the parameters depending on the difference to minimize the error in each
iteration. The result is a trained network capable of inferring an output corresponding to
the desired result for any new input.

3. Results
3.1. Tinetti Scale

A total of 96 participants were evaluated, of whom 71 older adults scored 25 points or
more on the Tinetti scale and were considered not at risk of falling. While 15 participants
scored between 19 and 24 points, i.e., at risk of falling, and 10 were excluded because they
could not maintain a stable gait on the treadmill. Table 1 shows the frequencies of the scores
obtained on the Tinetti scale.
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Table 1. Frequencies of the Tinetti Scale scores.

Score Frequency Percentage

19 2 2.3%

20 2 2.3%

21 2 2.3%

23 3 3.5%

24 6 7.0%

25 10 11.6%

26 18 20.9%

27 22 25.6%

28 20 23.3%

29 1 1.2%

On the other hand, Table 2 describes the mean results of the gait analysis. Cadence is
reported in steps per minute, period in seconds, stride in centimeters, speed in meters per
second, and maximum ROM, minimum ROM, knee angle at heel strike, and knee angle at
toe-off measured in degrees of motion.

Table 2. Results of gait analysis according to fall risk.

Main Features Group Mean Standard Deviation

Cadence (steps per minute)
No risk 97.01 24.00

At risk 99.81 41.20

Period (s)
No risk 1.29 0.30

At risk 1.44 0.70

Stride (cm)
No risk 71.29 24.30

At risk 64.53 43.10

Velocity (m/s)
No risk 58.54 20.60

At risk 57.09 55.50

Max ROM (◦)
No risk 48.86 9.80

At risk 45.99 12.70

Min ROM (◦)
No risk 3.95 3.50

At risk 4.47 3.10

Knee angle during heel strike (◦)
No risk 14.38 10.70

At risk 13.90 8.10

Knee angle during toe-off (◦)
No risk 24.52 8.40

At risk 22.85 10.90

3.2. Fall Risk Assessment System

Based on the results of Section 3.1, information is collected from the 86 subjects who
met the exclusion criteria and had their Tinetti test results. To add to the database, the
videos are divided into 5 s windows, segmenting the signals as shown in Figure 6. In this
way, samples with 5 to 9 steps are available, which is sufficient for calculating the indicators
proposed in Section 2.6.
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The resulting database consists of 1129 samples, discarding cases where acquisition
errors were present. The information collected from each subject consists of age, gender,
and the calculation of the eight gait indicators for both legs, as defined in Section 2.6.1.
These are complemented by the Tinetti score, which is used as a reference for the desired
output of the system.

To classify the cases, an ANN is implemented using ReLU as the activation function
for the hidden layers, softmax for the output layer, and categorical cross-entropy as the loss
function. For training and validation, a 5-fold cross-validation method is used to divide
the data between training and validation at 80% (904 samples) and 20% (225 samples),
respectively. The performance of the resulting algorithm is evaluated in terms of accuracy,
precision, recall, specificity, and F1-Score using the following equations:

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

Speci f icity =
TN

FP + TN
(15)

F1− Score =
2(Precision)(Recall)

Precision + Recall
(16)

where TP is the true positives that occur when the output corresponds to the correct class,
FP is the false positives that occur when a case is mistakenly placed in another class, TN is
the true negatives that are cases that are assigned to the class but do not belong, and FN is
cases that belong to the class but their output does not correspond to the correct class.

To define the structure of the algorithm, a trial-and-error process was used to determine
the number of hidden layers and the perceptrons present in each, using ReLU as the
activation function. Table 3 shows a synthesized representation of the proposed structures,
along with their performance during validation.
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Table 3. Performance test for ANN structures.

Parameters Performance

No. of
Inputs

Hidden Layers

No. of
Outputs

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Specificity
(%)

First Second Third Fourth

No. of
Perceptrons

No. of
Perceptrons

No. of
Perceptrons

No. of
Percep-
trons

Test 1 18 50 --- --- --- 11 97.3 79.8 90.6 83.8 98.4

Test 2 18 50 32 --- --- 11 98.5 90.2 92.9 90.3 99.0

Test 3 18 50 32 21 --- 11 98.5 94.8 92.1 93.0 99.1

Test 4 18 100 70 40 --- 11 99.1 94.4 96.9 95.5 99.4

Test 5 18 100 75 50 25 11 98.8 95.1 97.8 96.2 99.3

The structure of test 4 is considered since it is the least complex structure and has a
good performance. From this, an ablation test is applied to determine which activation
function presents a better performance, these are presented in Table 4.

Table 4. Ablation test for the activation function selection.

Parameters Performance

No. of
Inputs

Hidden Layers
Activation
Function

No. of
Outputs

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Specificity
(%)

Test 1 18 Sigmoid 11 85.1 42.7 58.1 45.6 90.6

Test 2 18 ReLU 11 99.1 94.4 96.9 96.5 99.4

Test 3 18 Tanh 11 98.4 93.3 93.9 93.4 99.0

Test 4 18 Selu 11 98.6 94.8 96.1 95.5 99.2

Test 5 18 Linear 11 89.2 57.1 65.5 55.2 93.5

For the final model, ReLU was chosen, which showed a performance superior to the
rest, in addition to a consistent performance when using cross-validation. Figure 7 shows a
diagram of the algorithm structure with ReLU as the hidden layer activation function and
softmax as the output layer.
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The training and validation of the ANN were carried out with 500 iterations, obtaining
the precision and loss graphs shown in Figure 8, where both settle around iteration 300
with an error in the steady state.
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the same input information is used, but the desired output is labeled as 0 for fall risk cases 
and 1 for no risk cases. These cases are defined based on what was established in Section 
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The final ANN model was cross-validated, resulting in a confusion matrix shown in
Figure 9. From this, the performance is determined, obtaining a precision of 94.4%, a recall
of 96.9%, an accuracy of 99.1%, a specificity of 99.4%, and an F1-Score of 95.5%, all of which
were the average obtained between the different classes.
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Given the promising results of the trained network, it was decided to use the same
structure to train a network that could classify each case as at risk or not at risk. For this, the
same input information is used, but the desired output is labeled as 0 for fall risk cases and
1 for no risk cases. These cases are defined based on what was established in Section 2.3,
where a score from 19 to 23 is at risk of falling, while a score above 24 is not at risk of
falling. Figure 10 shows the result of the network trained by implementing cross-validation,
obtaining an accuracy of 99.1%, a precision of 95.6%, a recall of 99.5%, an F1-Score of 97.4%,
and a specificity of 99.5%.
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4. Discussion

In the present work, a system based on ML and computer vision was obtained that can
estimate the risk of falling in elderly people, estimating a score based on the Tinetti tests to
determine quantitatively if people are at risk of falling. The results were excellent compared
to other studies that have tried to assess the risk of falling due to the new methodology
used, based on gait analysis. The purpose of the system is to help people over the age
of 60 receive help promptly, in addition to speeding up evaluation times and providing
quantifiable data. By not limiting itself to the use of observational analysis, which depends
on the skills and experience of the observer [45], and the time of application of some fall
risk assessment methods, such as the Tinetti scale, which can take up to 15 min [46], reason
why it may be missed in a routine consultation.

It is also necessary to highlight that most of the studies found on AI focus on fall
detection [47]. There are few works focused on the prediction of falls or fall risk assessment,
in addition to being carried out in the hospital using databases with medical records [48].
On the contrary, this research allows the prediction of fall risk in older adults based on the
evaluation of their gait, which favors early assistance to the patient to ensure the prevention
of falls. As shown in Table 5, a good performance was obtained, equal to and, in some
cases, better than that obtained in previously published studies.

Table 5. Performance comparison between the proposed system and existing research.

Work Source Used
Sensor

System
Type

Performed
Test

Implemented
Algorithm

Precision
(%)

Recall
(%)

Specificity
(%)

Accuracy
(%)

F1-Score
(%)

Drover et al.
(2017) [30]

Accelerometer
in the

lower leg

Fall Risk
Assess-
ment

Periodic
Fall-

occurrence
Survey

Random
Forest

Classifier
--- 82.00 82.00 73.40 ---

Silva et al.
(2017) [29]

3-axial
accelerom-
eter and

3-axis
gyroscope

Fall Risk
Assess-
ment

Sit-to-
stand Test
and Stage
Balance

Test
“modified”

Naïve Bayes
Classifier 74.58 71.19 --- 84.82 ---

Ranakoti et al.
(2019) [23]

3-axial
Accelerom-

eter

Fall
Detection

Fall
Simulation

Support
Vector

Machine
78.20 77.70 78.30 78.04 77.9

Chen et al.
(2019) [15]

Wrist
Accelerom-

eter

Fall
Detection

Fall
Simulation

Ensemble
Stacked Au-
toEncoders

--- 96.09 98.92 --- ---

Mehmood
et al. (2019)

[16]

Waist
Accelerom-

eter

Fall
Detection

Fall
Simulation

Mahalanobis
Distance-

Based
Threshold

--- --- --- 96.0 ---

Anitha and
Priya (2022)

[17]
Camera Fall

Detection
Fall

Simulation
Stack

AutoEncoder 99.97 100.00 99.88 99.92 99.97

Eichler et al.
(2022) [20]

Depth
Camera

Fall Risk
Assess-
ment

Berg
Balance

Scale

Support
Vector

Machine
75.16 72.45 86.77 75.16 73.59

Proposed
system Camera

Fall Risk
Assess-
ment

Tinneti
Gait and
Balance

Test

Artificial
Neuronal
Network

94.40 96.90 99.40 99.10 95.50

Fall detection systems are those that can identify the moment the event occurs, while
fall risk assessment systems assign a score to patients as a means of prevention. These
require different methodologies that have a clear impact on their performance, with fall
detection systems having accuracies close to 100%. On the other hand, fall risk assessment
systems have reported accuracies between 70 and 85%. However, the proposed system also
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belongs to the group of fall risk assessment systems, but it stands out with a precision of
94.4% and an accuracy of 99.1%. Thanks to the fact that its methodology is closer to fall
detection systems since it uses indicators extracted from walking and does not require the
patient to perform any type of exercise or unusual task. This makes its application faster,
more accurate, and imperceptible.

In addition, only 13% of the studies conducted to date have a population over 50 years
of age [47], so there could be significant differences in the use of their information on
older adults. This factor was considered of great importance at the time of gathering the
population of participants, having a group made up only of adults over 60 years old, which
allows the system to focus on working with people who are within this population group.

The promising results of the proposed system allow for future plans, such as adapting
the system for continuous use in the clinic, where patients can be assessed outside the test
environment, i.e., while moving between areas of the clinic. This will allow staff to monitor
the fall risk of each patient passing through the assessment area, allowing intervention to
be anticipated for those at high risk of falling. However, for this, it is necessary to work
with some limitations since the study had a population with a Tinetti score between 19
and 28 points, so there are no cases with a high risk of falling. Therefore, it is necessary
to expand the current database by seeking the participation of people over 60 years of
age with scores below 19, allowing the software to consider all ranges of the Tinetti scale.
It is also suggested that the video recording method be modified to avoid the use of the
treadmill so that direct assessment on a firm floor is possible since few older adults are
accustomed to using treadmills. In addition, the software was designed to work in a test
area, so several considerations must be made when placing the system in a common area.
There may be unforeseen events such as obstructions, poor lighting consistency, clothing
inappropriate for limb detection, and the presence of multiple people in the area, among
many other situations that cannot be anticipated or avoided.

5. Conclusions

An intelligent system was designed and developed using a novel methodology to
assess the risk of falling in people over 60 years of age based on gait analysis. For this
purpose, a database was created consisting of kinetic and spatiotemporal indicators ex-
tracted from the pose estimation using YOLOv8 and signal analysis. Complemented with
the application of Tinetti tests to quantify the fall risk with a score that is established as
ground truth. The result is a network trained to estimate the Tinetti score and another to
classify them as at risk or not, quantifying the fall risk of a person over 60 with a functional
scale from 19 to 28 points. The network was optimized by performing extensive tests
with different network configurations, increasing, and decreasing the number of layers
and neurons, as well as the activation function. Cross-validation was used to determine
the performance of the network, which achieved an accuracy of 99.1%, a recall of 96.9%,
a precision of 94.4%, a specificity of 99.4%, and an F1-Score of 95.5%. These results are
superior to other fall risk assessment systems that rely solely on gait monitoring. This opens
the door for future research to test the system’s flexibility in uncontrolled environments,
such as common areas like hallways, living rooms, and gardens, among others. To date, the
methodology is presented as a novel, being one of the first to use gait analysis to predict
fall risk in the elderly.
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