Investigation on Micro-Vibration Test and Image Stabilization of a High-Precision Space Optical Payload
Abstract
:1. Introduction
2. Micro-Vibration Test Scheme
3. Micro-Vibration Test Principle
3.1. The Quasi-Zero Stiffness Characteristics Analysis
3.2. The Image Point Offset Extraction and LOS Jitter Calculation of the HPSOP
3.2.1. Image Point Offset Extraction
3.2.2. LOS Jitter Calculation
4. Micro-Vibration Suppression and Image Stabilization Principle
4.1. The First-Order Vibration Suppression
4.2. The Second-Order Vibration Suppression
5. Experiments and Discussion
5.1. Micro-Vibration Test and Coupling Analysis
5.2. Micro-Vibration Suppression and Image Stabilization Analysis
5.3. Error Analysis and Calibration
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, L.; Li, Y.; Li, W.; Zheng, R.; Yanpeng, W.; Xiaoyan, W. Recent advances in precision measurement & pointing control of spacecraft. Chin. J. Aeronaut. 2021, 34, 191–209. [Google Scholar]
- Jahid, A.; Alsharif, M.H.; Hall, T.J. A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction. J. Netw. Comput. Appl. 2022, 200, 103311. [Google Scholar] [CrossRef]
- Jiao, X.; Zhang, J.; Li, W.; Wang, Y.; Ma, W.; Zhao, Y. Advances in spacecraft micro-vibration suppression methods. Prog. Aerosp. Sci. 2023, 138, 100898. [Google Scholar] [CrossRef]
- Noda, H.; Senshu, H.; Otsubo, T.; Takeuchi, H.; Courde, C.; Kunimori, H.; Moore, C.; Schreiber, U.; Ogawa, N.; Saiki, T.; et al. Demonstration of deep-space synchronous two-way laser ranging with a laser transponder aboard Hayabusa2. Adv. Space Res. 2023, 71, 4196–4209. [Google Scholar] [CrossRef]
- Gong, X.; Li, L.; Yu, Y.; Wang, L.; Zhang, L.; Wang, M.; Wu, Y. Error analysis and calibration of micro-vibration test platform developed for advanced pointing instrument. Mech. Syst. Signal Process. 2022, 173, 109055. [Google Scholar] [CrossRef]
- Ruan, Y.; Tang, T.; Peng, Z. High-frequency line-of-sight jitter rejection via an extended Youla-Kucera parameterization controller in segmented diffractive telescope—Theory and experiment. Mech. Syst. Signal Process. 2023, 200, 110538. [Google Scholar] [CrossRef]
- Wu, Y.; Wen, L.; Tang, T. Line-of-sight stabilization enhancement with hybrid sensing in a piezoelectric mirror-based cubic stewart platform. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 2843–2853. [Google Scholar] [CrossRef]
- Wu, Y.j.; Sun, X.; Fan, J.j.; Cui, S.c.; Huang, W. Micro-vibration test and analysis of refrigeration for visible and infrared integrated space camera. In Proceedings of the AOPC 2020: Telescopes, Space Optics, and Instrumentation, Beijing, China, 30 November–2 December 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11570, pp. 216–223. [Google Scholar]
- Lin, L.; Li, Y.; Li, W.; Miaomiao, W.; Xiaoxue, G.; Jie, S.; Yanpeng, W.; Zheng, R. Image motion and experimental study of a 0.1″ space pointing measuring instrument for micro-vibration conditions. Chin. J. Aeronaut. 2023, 36, 191–200. [Google Scholar]
- De Weck, O.L.; Miller, D.W.; Mallory, G.J.; Mosier, G.E. Integrated modeling and dynamics simulation for the Next Generation Space Telescope (NGST). In Proceedings of the UV, Optical, and IR Space Telescopes and Instruments, Munich, Germany, 29–31 March 2000; SPIE: Bellingham, WA, USA, 2000; Volume 4013, pp. 920–934. [Google Scholar]
- Minghui, L.; Hui, C.; Chuang, L.; Xiaojian, H.; Dong, W.; Jiang, Y. Micro-vibration test of high resolution spacecraft. J. Phys. Conf. Ser. 2021, 1877, 012021. [Google Scholar]
- Joshi, S.S.; Neat, G.W. Lessons learned from multiple fidelity modeling of ground interferometer testbeds. Astron. Interferom. 1998, 3350, 128–138. [Google Scholar]
- Chen, S.B.; Xuan, M.; Zhang, L.; Gu, S.; Gong, X.X.; Sun, H.Y. Simulating and testing microvibrations on an optical satellite using acceleration sensor-based jitter measurements. Sensors 2019, 19, 1797. [Google Scholar] [CrossRef]
- Steier, F.; Runte, T.; Monsky, A.; Klock, T.; Laduree, G. Managing the microvibration impact on satellite performances. Acta Astronaut. 2019, 162, 461–468. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.S.; Wei, L.; Hu, Z.Q. Study on microvibration effect of an optical satellite based on the imaging absence method. Opt. Eng. 2021, 60, 013107. [Google Scholar] [CrossRef]
- Chen, S.; Xuan, M.; Xin, J.; Liu, Y.; Gu, S.; Li, J.; Zhang, L. Design and experiment of dual micro-vibration isolation system for optical satellite flywheel. Int. J. Mech. Sci. 2020, 179, 105592. [Google Scholar] [CrossRef]
- Wu, D.; Xie, T.; Lu, M.; Li, G.; Lai, L.; Yang, Y.; Wang, H. Modeling and experimental study on the micro-vibration transmission of a control moment gyro. IEEE Access 2019, 7, 80633–80643. [Google Scholar] [CrossRef]
- Otsuka, K.; Kanao, K.; Tsunematsu, S.; Narasaki, K.; Hiratsuka, Y.; Yamasaki, N.; Mitsuda, K.; Nakagawa, T.; Shinozaki, K.; Sato, Y. Improvement of micro-vibration of a two-stage Stirling cryocooler. Cryogenics 2020, 111, 103133. [Google Scholar] [CrossRef]
- Addari, D.; Aglietti, G.; Remedia, M. Experimental and numerical investigation of coupled microvibration dynamics for satellite reaction wheels. J. Sound Vib. 2017, 386, 225–241. [Google Scholar] [CrossRef]
- Takei, Y.; Yasuda, S.; Ishimura, K.; Iwata, N.; Okamoto, A.; Sato, Y.; Ogawa, M.; Sawada, M.; Kawano, T.; Obara, S.; et al. Vibration isolation system for cryocoolers of soft x-ray spectrometer on-board ASTRO-H (Hitomi). J. Astron. Telesc. Instrum. Syst. 2018, 4, 011216. [Google Scholar] [CrossRef]
- Alkomy, H.; Shan, J. Modeling and validation of reaction wheel micro-vibrations considering imbalances and bearing disturbances. J. Sound Vib. 2021, 492, 115766. [Google Scholar] [CrossRef]
- Remedia, M.; Aglietti, G.; Richardson, G. A stochastic methodology for predictions of the environment created by multiple microvibration sources. J. Sound Vib. 2015, 344, 138–157. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, Y.; Sheng, X.; Li, P.; Cui, Z. Microvibration transfer and suppression of satellite under multi-source coupling disturbances based on energy flow analysis. Adv. Space Res. 2023, 71, 3222–3233. [Google Scholar] [CrossRef]
- Shi, H.; Abubakar, M.; Bai, X.; Luo, Z. Vibration isolation methods in spacecraft: A review of current techniques. Adv. Space Res. 2024, 73, 3993–4023. [Google Scholar] [CrossRef]
- Liu, C.; Jing, X.; Daley, S.; Li, F. Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 2015, 56, 55–80. [Google Scholar] [CrossRef]
- Jing, L.; Weipeng, L.; Zhang, X.; Huang, H. Design optimization of a hexapod vibration isolation system for electro-optical payload. Chin. J. Aeronaut. 2024, 37, 330–342. [Google Scholar]
- Qin, C.; Xu, Z.; Xia, M.; He, S.; Zhang, J. Design and optimization of the micro-vibration isolation system for large space telescope. J. Sound Vib. 2020, 482, 115461. [Google Scholar] [CrossRef]
- Tang, J.; Yang, Y.; Li, Y.; Cao, D. A 6-DOF micro-vibration isolation platform based on the quasi-zero-stiffness isolator. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 6019–6035. [Google Scholar] [CrossRef]
- Safarabadi, M.; Haghshenas, H.; Kelardeh, H. Design of micro-vibration isolation system for a remote-sensing satellite payload using viscoelastic Materials. Eng. Solid Mech. 2020, 8, 69–76. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, Z.; Zeng, L.; Li, X. Key technologies in active microvibration isolation systems: Modeling, sensing, actuation, and control algorithms. Measurement 2023, 222, 113658. [Google Scholar] [CrossRef]
- Xu, A.; Xu, Z.; Zhang, H.; He, S.; Wang, L. Novel coarse and fine stage parallel vibration isolation pointing platform for space optics payload. Mech. Syst. Signal Process. 2024, 213, 111359. [Google Scholar] [CrossRef]
- Yun, H.; Liu, L.; Li, Q.; Yang, H. Investigation on two-stage vibration suppression and precision pointing for space optical payloads. Aerosp. Sci. Technol. 2020, 96, 105543. [Google Scholar] [CrossRef]
- Antonello, R.; Branz, F.; Sansone, F.; Cenedese, A.; Francesconi, A. High-precision dual-stage pointing mechanism for miniature satellite laser communication terminals. IEEE Trans. Ind. Electron. 2020, 68, 776–785. [Google Scholar] [CrossRef]
- Ruijing, L.; Guang, J.; Jinsheng, G.; Yewen, L.I.; Zongxuan, L.I. Analysis and Test of Line-of-sight Error of Large-aperture Long Focal Length Optical Imaging System under Reaction wheel Disturbance. J. Mech. Eng. 2020, 56, 151. [Google Scholar] [CrossRef]
- Lu, Z.Q.; Shao, D.; Ding, H.; Chen, L.Q. Power Flow in a Two-Stage Nonlinear Vibration Isolation System with High-Static-Low-Dynamic Stiffness. Shock Vib. 2018, 2018, 1697639. [Google Scholar] [CrossRef]
- Xie, Z.; Yang, K.; Liu, Y.; Xu, T.; Chen, B.; Ma, X.; Ruan, Y.; Ma, H.; Du, J.; Bian, J.; et al. 1.5-m flat imaging system aligned and phased in real time. Photonics Res. 2023, 11, 1339–1353. [Google Scholar] [CrossRef]
Parameters | Value | Unit |
---|---|---|
L | 0.8 | m |
k | 15,800 | N/m |
c | 280 | Ns/m |
100 | kg |
LOS Jitter Around the X-Axis (Hz, μrad) | LOS Jitter Around the Y-Axis (Hz, μrad) | ||
---|---|---|---|
Linear Superposition | Collaborative Test | Linear Superposition | Collaborative Test |
(8.74, 0.267) | (8.74, 0.038) | (5.18, 0.164) | (5.18, 0.088) |
(16.53, 0.133) | (16.53, 0.038) | (6.30, 0.177) | (6.30, 0.079) |
(16.85, 0.060) | (16.85, 0.045) | (8.05, 0.194) | (8.05, 0.057) |
(75.54, 0.026) | (75.54, 0.012) | (16.53, 0.171) | (16.53, 0.032) |
(21.61, 0.234) | (21.61, 0.115) | ||
(75, 0.058) | (75, 0.011) |
Type | JRMS Around the X-Axis (µrad) | JRMS Around the Y-Axis (µrad) |
---|---|---|
No vibration suppression | 1.253 | 0.625 |
First-order vibration suppression | 1.312 | 0.631 |
Two-stage vibration suppression | 0.276 | 0.331 |
Scheme | JRMS Around the X-Axis (µrad) | JRMS Around the Y-Axis (µrad) |
---|---|---|
FSM + VILs | 0.276 | 0.331 |
dual FSMs [36] | 0.513 | 0.653 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Guo, J.; Qin, T.; Wang, J.; Peng, J.; Wu, Y.; Jing, Z.; Zhang, H.; Hou, J.; Qi, B. Investigation on Micro-Vibration Test and Image Stabilization of a High-Precision Space Optical Payload. Appl. Sci. 2025, 15, 1596. https://doi.org/10.3390/app15031596
Li Z, Guo J, Qin T, Wang J, Peng J, Wu Y, Jing Z, Zhang H, Hou J, Qi B. Investigation on Micro-Vibration Test and Image Stabilization of a High-Precision Space Optical Payload. Applied Sciences. 2025; 15(3):1596. https://doi.org/10.3390/app15031596
Chicago/Turabian StyleLi, Zhenchuang, Junli Guo, Tao Qin, Jin Wang, Jinjin Peng, Yun Wu, Zijian Jing, Hongming Zhang, Jinge Hou, and Bo Qi. 2025. "Investigation on Micro-Vibration Test and Image Stabilization of a High-Precision Space Optical Payload" Applied Sciences 15, no. 3: 1596. https://doi.org/10.3390/app15031596
APA StyleLi, Z., Guo, J., Qin, T., Wang, J., Peng, J., Wu, Y., Jing, Z., Zhang, H., Hou, J., & Qi, B. (2025). Investigation on Micro-Vibration Test and Image Stabilization of a High-Precision Space Optical Payload. Applied Sciences, 15(3), 1596. https://doi.org/10.3390/app15031596