Establishment of Fatty Acid Profile and Comparative Analysis of Volatile Substances in Regular and DHA-Biofortified Raw Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk Sample Collection
2.2. Determination of Fatty Acid Composition and Content
2.3. Determination of Volatile Substance Composition and Content
2.4. Statistical Analysis
3. Results and Discussion
3.1. Fatty Acid Profiles of Regular Raw Milk and DHA-Biofortified Raw Milk
3.2. Comparison of Volatile Organic Compounds in Regular Raw Milk and DHA-Biofortified Raw Milk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, Q.; Tang, S.; Zhou, C.; Han, X.; Tan, Z. Effects of free fatty acids with different chain lengths and degrees of saturability on the milk fat synthesis in primary cultured bovine mammary epithelial cells. J. Agric. Food Chem. 2019, 67, 8485–8492. [Google Scholar] [CrossRef]
- Molkentin, J. Occurrence and biochemical characteristics of natural bioactive substances in bovine milk lipids. Br. J. Nutr. 2000, 84 (Suppl. S1), 47–53. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.X.; Liu, J.; Zhang, Q.; Qing, X.; Dobson, G.; Li, X.; Qi, B. Characterization of three novel desaturases involved in the delta-6 desaturation pathways for polyunsaturated fatty acid biosynthesis from phytophthora infestans. Appl. Microbiol. Biotechnol. 2013, 97, 7689–7697. [Google Scholar] [CrossRef] [PubMed]
- Kuratko, C.N.; Barrett, E.C.; Nelson, E.B.; Norman, S., Jr. The relationship of docosahexaenoic acid (DHA) with learning and behaviour in healthy children: A review. Nutrients 2013, 5, 2777–2810. [Google Scholar] [CrossRef] [PubMed]
- Lemahieu, C.; Bruneel, C.; Ryckebosch, E.; Muylaert, K.; Buyse, J.; Foubert, I. Impact of different omega-3 polyunsaturated fatty acid (n-3 PUFA) sources (flaxseed, Isochrysis galbana, fish oil and DHA Gold) on n-3 LC-PUFA enrichment (efficiency) in the egg yolk. J. Funct. Foods 2015, 19, 821–827. [Google Scholar] [CrossRef]
- Sugasin, I.D.; Thoma, S.R.; Yalagalap, C.R.; Tai, L.M.; Subbaiah, P.V. Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but no tasfree acid, enriches brain DHA and improves memory in adult mice. Sci. Rep. 2017, 7, 11263. [Google Scholar]
- Naik, P.K. Bypass Fat in Dairy Ration-A Review. Anim. Nutr. Feed. Technol. 2013, 13, 147–163. [Google Scholar]
- Nguyen, H.T.H.; Gomesreis, M.; Wa, Y.; Alfante, R.; Chanyi, R.M.; Altermann, E.; Day, L. Differences in aroma metabolite profile, microstructure and rheological properties of fermented milkusingdifferentcultures. Foods 2023, 12, 1875. [Google Scholar] [CrossRef] [PubMed]
- Wojtowski, J.A.; Majcher, M.; Dankow, R.; Pikul, J.; Mikołajczak, P.; Molińska-Glura, M.; Foksowicz-Flaczyk, J.; Gryszczyńska, A.; Łowicki, Z.; Zajączek, K.; et al. Effect of herbal feed additiveson goat milk volatile flavor compounds. Foods 2023, 12, 2963. [Google Scholar] [CrossRef] [PubMed]
- Yurko-Mauro, K.; Kralovec, J.; Bailey-Hall, E.; Smeberg, V.; Stark, J.G.; Salem, N. Similar eicosapentaenoic acid and docosahexaenoic acid plasmalevels achieved with fish oil or krill oil in a randomized double-blind four-week bioavailability study. Lipids Health Dis 2015, 14, 99. [Google Scholar] [CrossRef]
- Van Wijk, N.; Balvers, M.; Cansev, M.; Maher, T.J.; Sijben, J.W.C.; Broersen, L.M. Dietary crude lecithin increases systemic availability of dietary docosahexaenoic acid with combined intake in rats. Lipids 2016, 51, 833–846. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Kim, N.K.; Yang, C.Y.; Moon, K.W.; Kim, J.M. Determination of the authenticity of dairy products on the basis of fatty acids and triacylglycerols content using GC Analysis. Korean J. Food Sci. Ofanimal Resour. 2014, 34, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Amores, G.; Virto, M. Total and free fatty acids analysis in milk and dairy fat. Separations 2019, 6, 14. [Google Scholar] [CrossRef]
- Liu, X.-M.; Zhang, Y.; Zhou, Y.; Li, G.-H.; Zeng, B.-Q.; Zhang, J.-W.; Feng, X.-S. Progress in pretreatment and analysis of fatty acids in foods: An update since 2012. Sep. Purif. Rev. 2019, 50, 203–222. [Google Scholar] [CrossRef]
- Waktola, H.D.; Zeng, A.X.; Chin, S.-T.; Marriott, P.J. Advanced gas chromatography and mass spectrometry technologies for fatty acids and triacylglycerols analysis. TrAC Trends Anal. Chem. 2020, 129, 115957. [Google Scholar] [CrossRef]
- Han, X.Y.; Zhang, Y.L.; Niu, L.X.; Luo, J.R. Fatty acid composition of fengdan’peony seed oils from different growing regions. Food Sci. 2014, 35, 181–184. [Google Scholar]
- Alothman, M.; Hogan, S.A.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; O’donovan, M.; Tobin, J.; Fenelon, M.A.; O’callaghan, T.F. The “grass-fed” milk story:understanding the impact of pasture feeding on the composition and quality of bovine milk. Foods 2019, 8, 350. [Google Scholar] [CrossRef] [PubMed]
- Vanbergue, E.; Delaby, L.; Peyraud, J.L.; Colette, S.; Gallard, Y.; Hurtaud, C. Effacts of breed, feeding system and lactation stage on milk fat characteristics and spontaneous lipolysis in dairy cows. J. Dairy Sci. 2017, 100, 4623–4636. [Google Scholar] [CrossRef]
- GB 5009.168-2016; Determination of Fatty Acids in Food. The General Administration of Quality Supervision and Administration. China Standards Press: Beijing, China, 2016.
- Zhang, X.; Li, M.; Cheng, Z.; Ma, L.; Zhao, L.; Li, J. A comparison of electronic nose and gas chromatography–mass spectrometry on discrimination and prediction of ochratoxin A content in Aspergillus carbonarius cultured grape-based medium. Food Chem. 2019, 297, 124850. [Google Scholar] [CrossRef] [PubMed]
- Moate, P.J.; Williams, S.R.; Hannah, M.C.; Eckard, R.; Auldist, M.; Ribaux, B.; Jacobs, J.; Wales, W. Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production and methane emissions in dairy cows. J. Dairy Sci. 2013, 96, 3177–3188. [Google Scholar] [CrossRef] [PubMed]
- Strandvik, B. The omega-6/omega-3 ratio is of importance! Prostaglandins Leukot Essent Fat. Acids 2011, 85, 405–406. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Omega-6/Omega-3 Essential Fatty Acid Ratio and Chronic Diseases. Food Rev. Int. 2004, 20, 77–90. [Google Scholar] [CrossRef]
- Contraini, G.; Povolo, M.; Leardi, R.; Toppino, P.M. Influence of heat treatment on the volatile compounds of milk. J. Agric. Food Chem. 1997, 45, 3171–3177. [Google Scholar] [CrossRef]
- Moio, L.; Dekimpe, J.; Etievant, P.; Addeo, F. Neutral volatile compounds in the raw milks from different species. J. Dairy Res. 1993, 60, 199–213. [Google Scholar] [CrossRef]
- Manzocchi, E.; Martin, B.; Bord, C.; Verdier-Metz, I.; Bouchon, M.; De Marchi, M.; Constant, I.; Giller, K.; Kreuzer, M.; Bérard, J.; et al. Feeding cows withhay, silage or fresh herbage on pasture orindoors affects sensory properties and chemical composition of milk and cheese. J. Dairy Sci. 2021, 104, 5285–5302. [Google Scholar] [CrossRef] [PubMed]
- Al-Attabi, Z.; D’arcy, B.R.; Deeth, H.C. Volatile sulphur compounds in UHT milk. Crit. Rev. Food Sci. Nutr. 2008, 46, 28–47. [Google Scholar] [CrossRef]
- Clarke, H.J.; Griffin, C.; Rai, D.K.; O’Callaghan, T.F.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Dietary compounds influencing the sensorial, volatile and phytochemical properties of bovine milk. Molecules 2019, 25, 26. [Google Scholar] [CrossRef]
16–100 d | 101–200 d | 201–305 d | ||||
---|---|---|---|---|---|---|
Lactation Stage | Native Raw Milk | DHA-Biofortified Raw Milk | Native Raw Milk | DHA-Biofortified Raw Milk | Native Raw Milk | DHA-Biofortified Raw Milk |
C4:0 | 0.72 ± 0.06 | 0.739 ± 0.024 | 0.843 ± 0.069 a | 0.74 ± 0.064 b | 0.855 ± 0.081 | 0.775 ± 0.156 |
C6:0 | 0.225 ± 0.013 | 0.236 ± 0.01 | 0.243 ± 0.01 A | 0.264 ± 0.011 B | 0.236 ± 0.019 | 0.24 ± 0.027 |
C8:0 | 0.139 ± 0.008 A | 0.151 ± 0.005 B | 0.148 ± 0.007 | 0.178 ± 0.007 | 0.146 ± 0.011 | 0.162 ± 0.02 |
C10:0 | 0.335 ± 0.018 | 0.367 ± 0.026 | 0.345 ± 0.019 | 0.454 ± 0.015 | 0.342 ± 0.023 a | 0.405 ± 0.054 b |
C11:0 | 0.042 ± 0.002 a | 0.035 ± 0.005 b | 0.042 ± 0.004 | 0.049 ± 0.003 | 0.044 ± 0.003 | 0.048 ± 0.002 |
C12:0 | 0.39 ± 0.02 | 0.419 ± 0.039 | 0.4 ± 0.023 A | 0.53 ± 0.018 B | 0.4 ± 0.026 a | 0.477 ± 0.064 b |
C13:0 | 0.028 ± 0.001 A | 0.023 ± 0.003 B | 0.027 ± 0.002 | 0.03 ± 0.002 | 0.028 ± 0.001 | 0.029 ± 0.001 |
C14:0 | 1.143 ± 0.062 | 1.134 ± 0.071 | 1.217 ± 0.05 A | 1.343 ± 0.04 B | 1.193 ± 0.07 | 1.237 ± 0.138 |
C14:1 | 0.093 ± 0.005 A | 0.074 ± 0.008 B | 0.101 ± 0.004 a | 0.094 ± 0.004 b | 0.104 ± 0.006 | 0.1 ± 0.007 |
C15:0 | 0.15 ± 0.008 A | 0.118 ± 0.009 B | 0.14 ± 0.013 | 0.14 ± 0.007 | 0.146 ± 0.008 a | 0.132 ± 0.003 b |
C15:1 | - | - | - | - | - | - |
C16:0 | 3.869 ± 0.198 A | 3.38 ± 0.11 B | 4.182 ± 0.166 A | 3.761 ± 0.142 B | 4.11 ± 0.226 a | 3.378 ± 0.517 b |
C16:1 | 0.191 ± 0.01 | 0.179 ± 0.021 | 0.211 ± 0.006 A | 0.175 ± 0.013 B | 0.212 ± 0.018 a | 0.184 ± 0.016 b |
C17:0 | 0.069 ± 0.003 | 0.075 ± 0.005 | 0.07 ± 0.004 A | 0.079 ± 0.004 B | 0.072 ± 0.006 | 0.075 ± 0.002 |
C17:1 | - | - | - | - | - | - |
C18:0 | 1.08 ± 0.075 | 1.158 ± 0.083 | 1.275 ± 0.032 | 1.239 ± 0.05 | 1.26 ± 0.121 | 1.132 ± 0.125 |
C18:1T | 0.223 ± 0.023 | 0.247 ± 0.08 | 0.214 ± 0.01 | 0.199 ± 0.043 | 0.22 ± 0.019 A | 0.173 ± 0.012 B |
C18:1 | 2.085 ± 0.116 | 2.107 ± 0.249 | 2.497 ± 0.064 A | 2.117 ± 0.117 B | 2.502 ± 0.267 a | 2.03 ± 0.214 b |
C18:2TT | - | - | - | - | - | - |
C18:2 | 0.312 ± 0.019 | 0.311 ± 0.011 | 0.379 ± 0.01 | 0.388 ± 0.022 | 0.367 ± 0.018 | 0.353 ± 0.038 |
C20:0 | 0.013 ± 0.001 | 0.015 ± 0.001 | 0.016 ± 0.001 | 0.018 ± 0.001 | 0.016 ± 0.002 | 0.017 ± 0.002 |
C18:3 | 0.007 ± 0.001 | 0.004 ± 0.001 | 0.008 ± 0.001 A | 0.004 ± 0.001 B | 0.008 ± 0.001 A | 0.004 ± 0.001 B |
C20:1 | 0.004 ± 0.001 | 0.005 ± 0.001 | 0.004 ± 0.001 | 0.004 ± 0.001 | 0.004 ± 0.001 | 0.01 ± 0.007 |
C18:3 | 0.034 ± 0.002 | 0.032 ± 0.007 | 0.038 ± 0.008 | 0.045 ± 0.003 | 0.04 ± 0.002 | 0.04 ± 0.005 |
C21:0 | 0.025 ± 0.006 | 0.019 ± 0.001 | 0.03 ± 0.001 | 0.023 ± 0.002 | 0.031 ± 0.002 A | 0.024 ± 0.002 B |
C20:2 | 0.003 ± 0.001 | 0.005 ± 0.001 | 0.003 ± 0.001 | 0.005 ± 0.001 | 0.003 ± 0.001 | 0.005 ± 0.001 |
C22:0 | 0.007 ± 0.001 | 0.009 ± 0.001 | 0.008 ± 0.001 | 0.012 ± 0.001 | 0.007 ± 0.001 A | 0.013 ± 0.001 B |
C20:3 | 0.016 ± 0.001 A | 0.009 ± 0.001 B | 0.021 ± 0.001 A | 0.01 ± 0.001 B | 0.021 ± 0.002 A | 0.011 ± 0.001B |
C22:1 | - | - | - | - | - | - |
C20:3 | - | 0.003 ± 0.001 | - | 0.004 ± 0.001 | - | 0.004 ± 0.001 |
C20:4 | 0.004 ± 0.001 | 0.005 ± 0.001 | 0.004 ± 0.001 | 0.006 ± 0.001 | 0.005 ± 0.001 | 0.006 ± 0.001 |
C23:0 | 0.021 ± 0.001 | 0.017 ± 0.003 | 0.024 ± 0.001 A | 0.017 ± 0.001 B | 0.024 ± 0.003 A | 0.015 ± 0.001 B |
C22:2 | 0.003 ± 0.001 | 0.003 ± 0.001 | 0.003 ± 0.001 | 0.003 ± 0.001 | 0.003 ± 0.001 | 0.003 ± 0.001 |
C24:0 | 0.005 ± 0.001 | 0.005 ± 0.001 | 0.006 ± 0.001 | 0.007 ± 0.001 | 0.006 ± 0.001 | 0.008 ± 0.001 |
C20:5 | 0.004 ± 0.001 A | 0.011 ± 0.001 B | 0.004 ± 0.001 A | 0.017 ± 0.002 B | 0.004 ± 0.001 A | 0.013 ± 0.003 B |
C24:1 | - | - | - | - | - | - |
C22:6 | 0.084 ± 0.009 | 0.106 ± 0.005 | 0.092 ± 0.008 | |||
FA | 11.24 ± 0.001 A | 10.97 ± 0.010 B | 12.503 ± 0.001 A | 12.061 ± 0.021 B | 12.409 ± 0.001 A | 11.195 ± 0.023 B |
SFA | 8.261 ± 0.003 A | 7.9 ± 0.008 B | 9.088 ± 0.001 A | 8.888 ± 0.018 B | 8.84 ± 0.001 A | 8.167 ± 0.021 B |
UFA | 2.979 ± 0.001 | 3.07 ± 0.001 | 3.415 ± 0.006 A | 3.173 ± 0.005 B | 3.569 ± 0.007 A | 3.028 ± 0.031 B |
MUFA | 2.596 ± 0.002 | 2.612 ± 0.004 | 3.027 ± 0.007 A | 2.585 ± 0.001 B | 3.042 ± 0.018 A | 2.497 ± 0.034 B |
PUFA | 0.383 ± 0.001 b | 0.458 ± 0.010 a | 0.388 ± 0.014 B | 0.588 ± 0.003 A | 0.527 ± 0.001 | 0.531 ± 0.006 |
N-6 | 0.011 ± 0.001 | 0.009 ± 0.001 | 0.012 ± 0.001 | 0.010 ± 0.001 | 0.013 ± 0.001 | 0.010 ± 0.001 |
N-3 | 0.038 ± 0.002 B | 0.127 ± 0.019 A | 0.042 ± 0.007 B | 0.168 ± 0.015 A | 0.044 ± 0.011 B | 0.145 ± 0.007 A |
16–100 d | 101–200 d | 201–305 d | ||||
---|---|---|---|---|---|---|
Lactation Stage | Native Raw Milk | DHA-Biofortified Raw Milk | Native Raw Milk | DHA-Biofortified Raw Milk | Native Raw Milk | DHA-Biofortified Raw Milk |
SFA | 73.5 | 72.01 | 72.69 | 73.69 | 71.24 | 72.95 |
UFA | 26.5 | 27.99 | 27.31 | 26.31 | 28.76 | 27.05 |
MUFA | 23.1 | 23.81 | 24.21 | 21.43 | 24.51 | 22.3 |
PUFA | 3.4 | 4.18 | 3.1 | 4.88 | 4.25 | 4.75 |
n6:n3 | 28.95 | 7.09 | 28.57 | 5.95 | 29.55 | 6.9 |
Regular Raw Milk | DHA-Biofortified Raw Milk | |||||
---|---|---|---|---|---|---|
16–100d | 101–200d | 201–305d | 16–100d | 101–200d | 201–305d | |
hexanal | 1.07 ± 0.08 a | 0.35 ± 0.08 c | 0.32 ± 0.01 c | 0.51 ± 0.03 b | 0.19 ± 0.07 d | 0.16 ± 0.04 d |
acetone | 18.99 ± 1.37 c | 26.34 ± 2.51 b | 16.05 ± 1.33 d | 22.22 ± 1.87b c | 46.08 ± 4.19 a | 17.37 ± 1.89 c,d |
2-butanone | 6.48 ± 0.28 b | 9.1 ± 0.79 a | 5.87 ± 0.08 c | 5.49 ± 0.35 c | 6.66 ± 0.88 b | 5.48 ± 1.29 c |
1-octene-3-alcohol | 0.27 ± 0.02 c | 0.36 ± 0.07 b | 0.23 ± 0.03 c | 0.46 ± 0.09 a | 0.53 ± 0.03 a | 0.29 ± 0.09 c |
methyl heptanoate | 0.16 ± 0.01 c | 0.17 ± 0.02 c | 0.18 ± 0.01 c | 0.38 ± 0.06 a | 0.41 ± 0.06 a | 0.23 ± 0.03 b |
methyl caproate | 4.97 ± 1.11 d | 7.49 ± 0.2 c,d | 7.16 ± 1.28 c,d | 12.7 ± 1.15 b | 21.69 ± 0.93 a | 15.92 ± 1.98 b |
methyl butyrate | 8.17 ± 0.31 c | 5.49 ± 1.02 d | 9.14 ± 0.75 c | 11.58 ± 0.38 b | 15.01 ± 3.05 a | 9.88 ± 1.59 c |
methyl caprylate | 2.86 ± 0.58 e | 4.54 ± 0.95 c,d | 3.75 ± 0.04 d,e | 9.62 ± 0.9 b | 15.13 ± 1.21 a | 5.67 ± 0.35 c |
methyl caprate; methyl decanoate | 1.41 ± 0.27 c | 1.48 ± 0.24 c | 1.53 ± 0.28 c | 2.46 ± 0.48 b | 3.52 ± 0.13 a | 2.67 ± 0.24 b |
thanolactone | 0.04 ± 0.02 c | 0.15 ± 0.02 b | 0.16 ± 0.02 b | 0.38 ± 0.13 a | 0.37 ± 0.08 a | 0.17 ± 0.08 b |
pentate | 0.4 ± 0.13 d | 0.52 ± 0.05 c | 0.56 ± 0.04 c | 1.2 ± 0.13 a | 0.88 ± 0.05 b | 0.55 ± 0.05 c |
hexanoic acid | 25.41 ± 1.9 d | 38.73 ± 1.7 c | 42.62 ± 5.62 c | 159.34 ± 18.45 a | 148.59 ± 34.18 a | 97.75 ± 2.64 b |
enanthic acid | 0.78 ± 0.15 c | 1.19 ± 0.05 b | 1.16 ± 0.04 b | 2.55 ± 0.41 a | 2.24 ± 0.31 a | 1.13 ± 0.13 b |
octoic acid | 25.65 ± 1.07 c | 29.34 ± 2.37 c | 29.7 ± 1.49 c | 99.65 ± 4.37 a | 89.44 ± 8.55 a | 52.76 ± 5.77 b |
pelargonic acid | 0.26 ± 0.1 d | 0.65 ± 0.03 c | 1.32 ± 0.09 b | 1.83 ± 0.07 a | 1.74 ± 0.21 a | 1.03 ± 0.4 b |
capric acid | 5.25 ± 0.26 e | 15.83 ± 0.57 d | 15.37 ± 3.41 d | 45.42 ± 2.24 b | 76.24 ± 2.37 a | 26.7 ± 2 c |
lauric acid | 1.15 ± 0.16 c | 1.27 ± 0.12 c | 1.44 ± 0.19 c | 3.07 ± 0.8 b,c | 3.51 ± 0.39 a | 3.27 ± 0.63 a |
dimethyl sulfoxide | 0.29 ± 0.03 a | 0.23 ± 0.03 a | 0.07 ± 0.02 c | 0.15 ± 0.03 b | 0.07 ± 0.02 c | 0.04 ± 0.02 d |
dimethyl sulfone | 2.55 ± 0.05 b | 2.71 ± 0.05 b | 1.73 ± 0.09 c | 2.64 ± 0.06 b | 3.69 ± 0.43 a | 1.95 ± 0.05 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.; Ba, G.; Zou, J.; Chen, C.; He, J.; Wang, P.; Zhu, Y. Establishment of Fatty Acid Profile and Comparative Analysis of Volatile Substances in Regular and DHA-Biofortified Raw Milk. Appl. Sci. 2025, 15, 1749. https://doi.org/10.3390/app15041749
Jin S, Ba G, Zou J, Chen C, He J, Wang P, Zhu Y. Establishment of Fatty Acid Profile and Comparative Analysis of Volatile Substances in Regular and DHA-Biofortified Raw Milk. Applied Sciences. 2025; 15(4):1749. https://doi.org/10.3390/app15041749
Chicago/Turabian StyleJin, Shaohong, Genna Ba, Jianmin Zou, Chong Chen, Jian He, Pengjie Wang, and Yinhua Zhu. 2025. "Establishment of Fatty Acid Profile and Comparative Analysis of Volatile Substances in Regular and DHA-Biofortified Raw Milk" Applied Sciences 15, no. 4: 1749. https://doi.org/10.3390/app15041749
APA StyleJin, S., Ba, G., Zou, J., Chen, C., He, J., Wang, P., & Zhu, Y. (2025). Establishment of Fatty Acid Profile and Comparative Analysis of Volatile Substances in Regular and DHA-Biofortified Raw Milk. Applied Sciences, 15(4), 1749. https://doi.org/10.3390/app15041749