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Abstract: For a retaining wall adjacent to rock or rigid structures, existing model test
results indicate that the slip soil in the limit state can be approximated as a trapezoidal slip
wedge. Based on the static equilibrium condition of the slip wedge, a calculation method
for active and passive earth pressures is proposed that considers the effect of backfill
width through extreme value analysis. As the backfill width increases, the trapezoidal slip
wedge transitions to a triangular slip wedge, introducing a critical width to distinguish
between finite and semi-infinite soil conditions. For cohesionless soils, the proposed
method converges to Coulomb theory at the critical width; when the backfill is clay, the
critical width exceeds the width of Coulomb’s triangular slip wedge due to the stabilizing
contribution of cohesion. Parameter analysis reveals that with increasing backfill width,
the active earth pressure of cohesionless soil follows a non-linear upward trend, whereas
the passive earth pressure decays exponentially. For clay, the active earth pressure initially
increases with backfill width and then decreases, whereas the passive earth pressure
first decays exponentially and then exhibits a slight increase. Variations in the friction
angle significantly affect both active and passive earth pressures, while cohesion mainly
influences active earth pressure, and wall-soil friction angle exerts a stronger impact on
passive earth pressure. The effectiveness of the proposed method is verified by comparison
with results from model tests and numerical simulations.

Keywords: retaining wall; earth pressure; finite soil; critical width; trapezoidal slip wedge

1. Introduction
The traditional Rankine theory is predicated on the assumption that all points of

the soil behind the wall are in the limit equilibrium state. Coulomb theory posits that a
triangular slip wedge forms when the soil behind the wall fails. With the advancement
of modern infrastructure, retaining structures are increasingly situated near pre-existing
structures or rock mass [1,2]. Under finite backfill conditions, the restricted backfill width
prevents full development of the slip surface, resulting in a significant divergence in earth
pressure from semi-infinite soil scenarios, as evidenced by prior studies [3,4]. Therefore, it
is imperative to develop earth pressure calculation methods that incorporate the impact of
backfill width.

To investigate the earth pressure behind the retaining structures under finite backfill
width conditions, Frydman and Keissar [5] and Take and Valsangkar [6] conducted model
tests. Their results were significantly different from the theoretical predictions of earth
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pressure in semi-infinite soil. Moreover, the arching effect phenomenon [7,8] also affects the
distribution of earth pressure. Yang and Tang [9] additionally examined the impact of the
retaining wall displacement pattern on earth pressure under finite backfill width conditions.
As demonstrated by Yang et al. [10] through slip surface analysis in active states, the com-
plete development of Coulomb’s theoretical triangular slip wedge is impeded by geometric
constraints imposed by finite backfill dimensions. Similarly, field measurements by Hu
et al. [11] demonstrated that the active earth pressure under limited backfill widths is less
than that predicted by Rankine theory, resulting in inherent conservatism in conventional
design approaches.

The advancement of computational mechanics has created novel research avenues for
investigating earth pressure mechanisms. For finite soils, Fan and Fang [12] demonstrated
that the active earth pressure behind the wall is significantly lower than that in the Coulomb
solution. Yang and Deng [13] conducted systematic DEM investigations elucidating the
coupled influence of backfill width and soil strength parameters on the active earth pressure.
Through statistical characterization of DEM simulations, Li et al. [14] classified the failure
mechanisms into three categories according to the backfill width behind the wall. In cases
where the backfill is cohesionless soil, Chen et al. [15,16] examined the variation pattern of
the passive earth pressure in translational and rotational modes around the wall bottom
through FELA analysis. Notably, their simulations revealed the progressive development
of quadrilateral slip wedges. Yang et al. [17] investigated the active earth pressure of clay in
the rotational mode around the wall top. Based on adaptive finite element analysis, Wang
et al. [18] investigated the failure mechanism of an inverted T-shaped retaining wall in
the active state. Chen et al. [19] found that the slip surface of the backfill originated from
the wall heel, and its development was influenced by the backfill width behind the wall.
Moreover, the slip surface curvature was found to correlate strongly with soil-structure
interface friction and soil strength.

When the rock slope is adjacent to the retaining wall and its inclined surface intersects
with the wall heel, Tang and Chen [20] treated the rock slope surface as the slip surface
and applied the wedge element method to determine the active earth pressure distribution.
For translational retaining walls with a finite backfill width, Chen et al. [21] developed
a theoretical framework to calculate the active earth pressure of cohesionless soil using
the limit equilibrium method. Both the geometric configuration and interfacial friction
properties of the finite soil significantly affect the active earth pressure behind the wall,
as demonstrated by Lin et al. [22]. Khosravi et al. [23] modeled the soil slip surface as a
bilinear plane and analyzed the active earth pressures of narrow backfills through force
balance analysis. In addition, the retaining wall foundation affects the earth pressure
under finite backfill conditions. Chen et al. [24] observed that the slip surface develops
simultaneously toward the rock surface and the ground ahead of the wall, leading to the
proposal of a slip-line computational model. To distinguish finite soils from semi-infinite
soils, Yang et al. [10] proposed a critical ratio of 0.5 between backfill width and wall height
under an active state, while Wang et al. [25] suggested a threshold ratio of three for passive
conditions, beyond which the effect of backfill width on earth pressure becomes negligible.
However, the classification based on experimental results or empirical data lacks sufficient
accuracy, and the influence of various parameters on the critical width is not considered.

The deformation mode of flexible retaining walls differs significantly from that of
rigid retaining walls. Hu et al. [26] developed a computational approach for active earth
pressure under drum deformation by refining the horizontal layer analysis method, but
this methodology was restricted to cohesionless soils. Li et al. [27] quantified the combined
influence of horizontal shear stresses and the soil arching on passive earth pressure using
the arched differential element method. For the rotation mode around the wall bottom,
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Wang et al. [28] investigated the effect of the backfill width on the active earth pressure
using the inclined thin-layer element method. Fu et al. [29] investigated active earth
pressure distributions in unsaturated soil walls using the thin-layer element method. Liu
and Kong [30,31] examined the coupled effects of intermediate principal stress, soil arching,
and unsaturated seepage on the active earth pressure under finite backfill width conditions.
For retaining walls that rotate about their base, Lai et al. [32] proposed a prediction model
for active earth pressure based on the arch differential element method, incorporating
backfill width effects. In the case of finite backfill width, the slip surface behind the wall
has a certain curvature. Huang et al. [33] characterized it as a cycloid through the wall heel.
The stress deflection caused by wall-soil friction is considered by the arc-shaped minor
principal stress trajectory [7], and the active earth pressure solution for cohesionless soil is
obtained by the horizontal differential element method. Li et al. [34] assumed that the slip
surface follows a log-spiral surface and proposed a semi-analytical method; nevertheless, its
computational complexity limits practical engineering applications. The limit equilibrium
method is widely employed in various earth pressure calculation scenarios [35,36], but it
neglects the effect of soil dilation [37] on the results. Hu et al. [38] extended this method to
cohesionless soils with finite width. The previous analysis reveals that existing studies are
less relevant for clay and there is a lack of research on passive earth pressure in finite soils.
Furthermore, the debate regarding the accurate definition of semi-infinite and finite soils
persists and warrants further in-depth discussion.

Building upon prior research, this study hypothesizes the development of a trapezoidal
slip wedge during soil failure under finite soil conditions. Cohesion is uniformly distributed
along the slip surface. In the passive state, the earth pressure on both sides above the slip
surface inflection point is equal. The ratio of earth pressures on the left and right lateral
boundaries in the active state is called as. By utilizing the static equilibrium condition
of the slip wedge, a generalized formulation for the limit earth pressure in finite backfill
was derived. As the backfill width gradually increases, the trapezoidal wedge ultimately
transitions into a triangular wedge. Therefore, the width of the triangular slip wedge
defined in Coulomb theory is regarded as the critical width of the finite backfill. Once
the critical width is exceeded, the soil can be considered as semi-infinite. By comparing
the proposed method with experimental results, the rationality of the proposed approach
is demonstrated. A comprehensive parametric study further quantifies the sensitivity of
limiting earth pressure to cohesion, internal friction angle, and wall-soil interface friction.

2. Theoretical Analysis
2.1. Active Limit Earth Pressure

Retaining walls adjacent to rigid geological/structural boundaries retain a finite soil
with constrained lateral dimensions. In accordance with the results of previous experimen-
tal studies [32,37–39], this study assumes that upon the destruction of the soil behind the
wall, the slip surface manifests as a folded surface, with the slip soil forming a trapezoidal
wedge. The force analysis of the slip wedge in the active limit state is shown in Figure 1.

The reaction force (Ex1) exerted by the retaining wall forms an angle with the horizontal
direction equal to the wall-soil friction angle (δ). The reaction force exerted on the slip
wedge by the soil beneath the slip surface is denoted as R and forms an angle with respect
to the normal to the slip surface, which is the internal friction angle (φ). W represents the
weight of the slip wedge. For clay, the cohesion (c) is uniformly distributed along the slip
surface, generating a resultant force denoted as C that forms an angle with the horizontal
direction equal to the rupture angle θ, with an effective range of (50◦, 80◦) in the active state.
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Figure 1. Force analysis of the slip wedge in the active state: (a) cohesionless soil; (b) clay.

In cohesionless soil, there is no bonding between soil particles, the soil and rock (or
structure) remain in contact under the active state. Hu et al. [38] postulated that the earth
pressure on both sides above the slip surface inflection point was equal, i.e., the reaction
coefficient as = 1. This conclusion is supported by the model test results of Chen et al. [40],
and the force analysis for this case is presented in Figure 1a. When the backfill consists
of clay, partial separation occurs between the soil and rock (or structure) under the active
limit state due to cohesive bonds between soil particles. Consequently, this paper assumes
that the earth pressure on the rock (or structure) above the slip surface inflection point is
half of that on the left retaining wall, i.e., as = 0.5, with the corresponding stress analysis
presented in Figure 1b. To simplify the calculation, the earth pressure is assumed to be
triangularly distributed. The counterforce of the rock on the slip wedge is denoted as S.
The expressions of W, C, and S of the slip wedge are as follows:

S =
asEx1(H − L tan θ)2

H2 W = γ(HL − 1
2

L2 tan θ) C = cL/ cos θ (1)

From the comparison of Figure 1a,b, it can be seen that the force on the slip wedge
of cohesionless soil is a special case of the force on the clay slip wedge. Specifically, this
occurs when the cohesion c = 0 and the reaction coefficient as = 1. Therefore, according
to the static equilibrium conditions of the clay slip wedge in the horizontal and vertical
directions under the active state, Equation (2) can be obtained.

R sin(θ − φ) + S cos δ = C cos θ + Ex1 cos δ

R cos(θ − φ) + S sin δ + C sin θ + Ex1 sin δ = W
(2)

Solving both equations in Equation (2) simultaneously yields Equation (3).

Ex1 =
WH2 tan(θ − φ)− CH2 cos θ − CH2 sin θ tan(θ − φ)

H2 cos δ − as(H − L tan θ)2 cos δ + as(H − L tan θ)2 sin δ tan(θ − φ) + H2 sin δ tan(θ − φ)
(3)

From Equation (3), it can be seen that Ex1 is a univariate function of the rupture angle
(θ). By setting ψ = tanθ, Equation (3) can be simplified to Equation (4).

Ex1 =
A1ψ2 + B1ψ + C1

D1ψ3 + E1ψ2 + F1ψ + G1
(4)
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In which:

A1 = −( 1
2 γH2L2 + cH2L) B1 = γH3L + 1

2 γH2L2 tan φ

C1 = −(γH3L tan φ + cH2L) D1 = as(L2 sin δ − L2 cos δ tan φ)

E1 = as(2HL cos δ tan φ − 2HL sin δ − L2 cos δ − L2 sin δ tan φ)

F1 = (1 − as)H2 cos δ tan φ + 2as HL cos δ + (1 + as)H2 sin δ + 2as HL sin δ tan φ

G1 = (1 − as) cos δH2 − (1 + as)H2 sin δ tan φ

(5)

In the scenario where the soil behind the wall is in the active limit state, the resultant
active earth pressure force (Ea) on the retaining wall is the maximum of the function Ex1(θ).
By analyzing numerous plots of the function Ex1(θ) generated using Mathematica, it was
observed that the point of maximum point within the range of the rupture angle is also the
stationary point of the function. Therefore, to find the stationary point, the derivative of
Equation (4) is taken, resulting in Equation (6).

dEx1

dψ
=

(2A1ψ + B1)(D1ψ3 + E1ψ2 + F1ψ + G1)− (A1ψ2 + B1ψ + C1)(3D1ψ2 + 2E1ψ + F1)

(D1ψ3 + E1ψ2 + F1ψ + G1)
2 (6)

In Equations (4) and (6), parameters δ, φ, and x(tanθ) each possess distinct significance.
Within the range of rupture angle values, it can be demonstrated that the denominator of
the derivative of E1(θ) remains positive. To identify the stationary point, the derivative is
set to zero as expressed in Equation (7).

−A1D1ψ4 − 2B1D1ψ3 + (A1F1 − B1E1 − 3C1D1)ψ
2 + 2(A1G1 − C1E1)ψ + B1G1 − C1F1 = 0 (7)

The above equation constitutes a quartic equation with four general solutions. How-
ever, given the explicit physical significance of the rupture angle θ which must satisfy
the condition θ > 0, the specific analytical expression for the rupture angle is ultimately
determined as depicted in Equation (8).

θa = arctan

− b1

4a1
+

1
2

√
b1

2

4a1
2 − 2c1

3a1
+ ∆1 −

1
2

√√√√√√ b1
2

2a1
2 − 4c1

3a1
− ∆1 +

− b1
3

a1
3 +

4b1c1
a1

2 − 8d1
a1

4
√

b1
2

4b1
2 − 2c1

3a1
+ ∆1

 (8)

The coefficients are presented in Equation (9).

a1 = −A1D1b1 = −2B1D1c1 = A1F1 − B1E1 − 3C1D1

d1 = 2A1G1 − 2C1E1e1 = B1G1 − C1F1λ1 = c1
2 − 3b1d1 + 12a1e1

η1 = 2c1
3 − 9b1c1d1 + 27a1d1

2 + 27b1
2e1 − 72a1c1e1

∆1 =
3√2λ1

3a1
3
√

η1+
√

−4λ1
3+η1

2
+

3
√

η2+
√

−4λ1
3+η1

2

3 3√2a1

(9)

Based on the variation range of the soil parameters behind the wall, it was determined
that Equation (7) typically has two imaginary and two real solutions. Among these so-
lutions, Equation (6) exhibits opposite signs on either side of the real stagnation point,
with the stationary point value exceeding zero. This stationary point coincides with the
rupture angle corresponding to the maximum value of the function Ex1(θ) computed using
MATLAB, thereby confirming it as the maximum value point. By substituting θa into
Equation (3), the active limit earth pressure resultant force (Ea) acting on the retaining wall
can be obtained under the condition of finite backfill width.
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La =
2HA2

−B2−
√

B2
2−4A2C2

A2 = −cH(cos δ − sin δ tan φ)− (cH tan φ + 1
2 rH2 − cH tan φ)(cos δ tan φ + sin δ)

B2 = ( 1
2 rH2 tan φ + cH)(2 cos δ tan φ + 2 sin δ)

C2 = ( 1
2 rH2 tan φ + cH)(cos δ − sin δ tan φ)

(10)

In this paper, the slip surface of finite soil develops as a folded surface. With increasing
backfill width (L) behind the wall, the rupture angle (θ) gradually decreases, while the
height at the inflection point (Ltanθ) of the slip surface steadily increases until it coincides
with the ground surface, expressed as H = Ltanθa. This expression serves as an implicit
expression of the critical width. For engineering practicality, the width of the triangular
slip wedge assumed in Coulomb theory is considered the critical width (La) applicable to
the proposed methodology.

Notably, at the critical width, the results derived from this paper are greater than the
predictions of Coulomb theory when backfill consists of clay. When the backfill consists
of cohesionless soil, the critical width obtained through the proposed method matches
precisely with the width of the Coulomb triangular slip wedge and degrades to Coulomb
theory at the critical width.

2.2. Passive Limit Earth Pressure

There are slight differences in the forces acting on the slip wedge between the passive
and active states. In the passive state, where the wedge undergoes rightward movement,
the rock (or structure) maintains intimate contact and interacts with the slip wedge. Conse-
quently, the earth pressures at the same depth above the slip surface inflection point are
postulated to be equal on both sides of the wedge. For computational simplification, the
earth pressure is considered to follow a triangular distribution. Furthermore, the cohesion
(c) is uniformly distributed on the slip surface. The corresponding mechanical model of the
slip wedge under these conditions is shown in Figure 2.
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Figure 2. Force analysis of the clay slip wedge in the passive state.

In the schematic, Ex2 represents the resultant force on the retaining wall. Both Ex2 and
the counterforce S form an angle δ (wall-soil friction angle) with the horizontal plane. The
soil beneath the slip surface also exerts a counterforce (R) on the slip wedge, where the
angle between R and the normal to the slip surface equals the internal friction angle (φ).
The resultant force of cohesion (C) along the slip surface forms an angle θ (rupture angle)
with the horizontal plane. In this case, the rupture angle θ is constrained within the range
(10◦, 40◦). The expressions for the self-weight (W), the resultant force of cohesion (C), and
the counterforce (S) acting on the slip wedge are given in Equation (11).
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W = γ(HL − 1
2

L2 tan θ) C = cL/ cos θ S = Ex2
(H − L tan θ)2

H2 (11)

According to the static equilibrium conditions in both horizontal and vertical directions
for the slip wedge under the passive state, Equation (12) is derived.

R sin(θ + φ) + S cos δ + C cos θ = Ex2 cos δ

R cos(θ + φ) = S sin δ + C sin θ + W + Ex2 sin δ
(12)

The expression relating Ex2 with respect to the rupture angle θ can be derived from
Equations (11) and (12), as illustrated in Equation (13).

Ex2 =
H2cL tan θ tan(θ + φ) + H2W tan(θ + φ) + H2S cos δ + H2cL

H2 cos δ − (H − L tan θ)2 cos δ − (H − L tan θ)2 sin δ tan(θ + φ)− H2 sin δ tan(θ + φ)
(13)

Equation (13) explicitly demonstrates that Ex2 is a unary function of the rupture angle
θ. By introducing the substitution ψ = tanθ, it simplifies this to Equation (14).

Ex2 = A3ψ2+B3ψ+C3
D3ψ3+E3ψ2+F3ψ+G3

A3 = H2cL − 1
2 γH2L2B3 = γH3L − 1

2 γH2L2 tan φ

C3 = γH3L tan φ + H2cLD3 = L2(cos δ tan φ − sin δ)

E3 = 2HL(sin δ − cos δ tan φ)− L2(sin δ tan φ + cos δ)

F3 = 2HL(cos δ + sin δ tan φ)− 2H2 sin δG3 = −2H2 sin δ tan φ

(14)

For a given soil, parameters A5 through G5 are constant in the function. The passive
limit earth pressure resultant force (Ep) corresponds to the minimum value of Ex2(θ) within
the defined parameter range. The minimum value should also be the stationary point of
Ex2(θ). Thus, taking the derivative of Equation (14) yields Equation (15).

dEx2

dψ
=

(2A3ψ + B3)(D3ψ3 + E3ψ2 + F3ψ + G3)− (A3ψ2 + B3ψ + C3)(3D3ψ2 + 2E3ψ + F3)

[D3ψ3 + E3ψ2 + F3ψ + G3]
2 (15)

The passive limit earth pressure behind the retaining wall definitely exists and its
corresponding rupture angle is the stationary point of Ex2(θ) within the range of θ. Fur-
thermore, the denominator in Equation (15) is consistently greater than or equal to 0. By
setting the derivative equal to zero and rearranging, Equation (16) is derived.

−A3D3ψ4 − 2B3D3ψ3 + (A3F3 − B3E3 − 3C3D3)ψ
2 + (2A3G3 − 2C3E3)ψ + (B3G3 − C3F3) = 0 (16)

Equation (16) constitutes a unary quartic equation with four general solutions. Based
on the range of soil parameters, these solutions typically include two imaginary roots
and two real roots. Within the valid range of the rupture angle, the stationary point is
presented in Equation (17). This stationary point is rigorously validated to be consistent
with the rupture angle corresponding to the minimum value obtained by solving for Ex2(θ)

in MATLAB.

θp = arctan

− b2

4a2
− 1

2

√
b2

2

4a22 − 2c2

3a2
+ ∆ +

1
2

√√√√√√ b2
2

2a22 − 4c2

3a2
− ∆ −

− b2
3

a2
3 +

4b2c2
a2

2 − 8d2
a2

4
√

b2
2

4a2
2 − 2c2

3a2
+ ∆

 (17)
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In which:

a2 = −A3D3 b2 = −2B3D3 c2 = A3F3 − B3E3 − 3C3D3

d2 = 2A3G3 − 2C3E3 e2 = B3G3 − C3F3 λ2 = c2
2 − 3b2d2 + 12a2e2

η2 = 2c2
3 − 9b2c2d2 + 27a2d2 + 27b2

2e2 − 72a2c2e2

∆2 =
3√2λ2

3a2
3
√

η2+
√

−4λ2
3+η2

2
+

3
√

η2+
√

−4λ2
3+η2

2

3 3√2a2

(18)

By substituting θp into Equation (13), the passive limit earth pressure resultant force
on the retaining wall under finite soil conditions can be determined.

As the backfill width behind the retaining wall (L) increases, the height of the inflection
points on the slip surface (Ltanθ) increases synchronously until it aligns with the ground
surface. At this point, the slip wedge transforms into a triangular wedge, with its width
corresponding to the critical width. The specific expression is H = Ltanθp, but this represents
an implicit expression of the critical width. For ease of application, this study adopts the
width of the triangular wedge in Coulomb theory as the critical width (Lp).

Lp = 2HA4

−B4+
√

B4
2−4A4C4

A4 = 4cH(cos δ − sin δ tan φ) + 2γH2(cos δ tan φ + sin δ)

B4 = 4(γH2 tan φ + 2cH)(cos δ tan φ + sin δ)

C4 = −2(cos δ − sin δ tan φ)(γH2 tan φ + 2cH)

(19)

In the case where the backfill behind the wall comprises cohesionless soil (c = 0), the
force on the slip wedge in the passive state is depicted in Figure 3. Similarly, this scenario
can be considered a special case of the force on the clay slip wedge.
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It should be noted that when the backfill width behind the wall equals the critical
width, the results obtained using the proposed method are consistent with the Coulomb
result for cohesionless soil. However, for clay, the results obtained in this paper are slightly
greater than the Coulomb results at the critical width.

2.3. Earth Pressure Distribution

According to the study of Zhang et al. [41], the change in soil stress behind the retaining
wall is closely related to the wall displacement and soil depth. The expression for the earth
pressure resultant force behind the wall is shown in Equation (20).

Ea(p) = FΣx =
∫ h

0
σxdz =

1
2

K0γh2 +
1

1 − µ2

∫ h

0
Etεxdz (20)



Appl. Sci. 2025, 15, 1750 9 of 24

Et =

[
1 −

R f (1 − sin φ)(σ1 − σ3)

2c cos φ + 2σ3 sin φ

]2

KPa(
σ3

Pa
)

n
(21)

In this context, Et represents the tangent modulus in the Duncan model; R f represents
the failure ratio; K denotes the modulus parameter; Pa signifies the atmospheric pressure; n
is the dimensionless index; µ is the Poisson’s ratio and K0 is the coefficient of earth pressure
at rest. The limit earth pressure resultant force is derived from Equations (3) and (13) and
then inserted into Equation (20) to ascertain the limit strain εxmax.

The displacement mode significantly impacts the displacement distribution of the
retaining wall. In the translational mode, the soil deformation behind the wall is inde-
pendent of the burial depth (z), represented by εx = εxmax. In the rotation mode around
the wall bottom, the maximum soil deformation occurs at the wall top. The deformation
gradually decreases with increasing depth (z) and approaches zero at the wall bottom.
This distribution function is described as εx = zεxmax/H. In the rotation mode around the
wall top, the maximum soil deformation occurs at the wall bottom, while no deformation
is observed at the top. The distribution function is expressed as εx = (1−H/z)εxmax. By
substituting these distribution functions of εx into Equation (22), the distribution function
of earth pressure on the retaining wall in the limit state can be obtained.

σx =
µ

1 − µ
σz +

Etεx

1 − µ2 (22)

3. Experimental Verification
3.1. Model Test

To investigate the influence of the backfill width on the active earth pressure, Hu
et al. [26] conducted a model test under rotation mode around the wall bottom (RB mode).
The retaining wall had a vertical back face with a retained soil height of 0.5m. The backfill
consists of cohesionless soil with an internal friction angle of 36.5◦ and a unit weight of
15 kN/m3. Additionally, the wall-soil friction angle is 24.3◦ and Poisson’s ratio is taken as
0.23. The backfill widths were set to 0.1 m, 0.15 m, 0.2 m, 0.25 m, and 0.35 m. In the Duncan
model, the failure ratio (R f ) is set to 0.75, the modulus parameter (K) is set to 410, and the
dimensionless index (n) is set to 0.58. The comparison between the proposed method and
experimental results is depicted in Figure 4a.
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Figure 4. (a) Distribution of active earth pressure; (b) Comparison of earth pressure resultant force.
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In this mode, the wall displacement gradually decreases with increasing burial depth.
The soil modulus is closely correlated with the confining pressure. Since the confining
pressure at the wall top is zero, its modulus also becomes zero, resulting in a negligible
influence of wall displacement on earth pressure in this region. As the burial depth
increases, the soil modulus progressively increases, while the soil at the wall bottom remains
undeformed. Consequently, the earth pressure at the bottom maintains a constant value.

With the gradual increase of backfill width (L) behind the wall, the earth pressure
also increases. When L > 0.2 m, the impact on the earth pressure decreases rapidly. At
L = 0.25 m, the backfill width exerts almost no effect on the earth pressure, approaching
the critical width (La = 0.29 m) calculated by Equation (10). When L = La, the results from
this study align with the Coulomb results. By integrating the model test results along the
soil depth, the earth pressure resultant force behind the wall can be determined. This result
is subsequently compared with those from Equations (3) and (8), as shown in Figure 4b.
The Pearson correlation coefficient between the two is 0.993, and the trends are generally
consistent; however, the results of this paper are slightly lower than the experimental
results. The errors of the two gradually decrease as the backfill width decreases, ranging
from a maximum of 18.45% to a minimum of 8.29%, indicating good numerical consistency.

Ying et al. [42] conducted model tests to investigate the influence of the backfill width
on the passive earth pressure under translational mode. In this experiment, the retained soil
height was 0.525 m with a vertical wall back face. The backfill consisted of cohesionless soil
with an internal friction angle of 35◦, a unit weight of 14.6 kN/m3, a wall-soil friction angle
of 16.57◦, and Poisson’s ratio was 0.24. The backfill widths were set to 0.56 m, 0.7 m, 1.05 m,
1.4 m, and 1.75 m. In the Duncan model, the failure ratio (R f ) was set to 0.78, the modulus
parameter (K) was set to 390, and the dimensionless index (n) was set to 0.58. Comparative
results between the two approaches under the limit state are shown in Figure 5a.
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Figure 5. (a) Distribution of passive earth pressure; (b) Comparison of earth pressure resultant force.

In translational mode, the soil deformation is independent of the burial depth. The
earth pressure at the top of the wall remains unchanged, as the confining pressure is zero,
resulting in a tangent modulus of zero. As the burial depth increases, the confining pressure
and the tangential modulus of the soil increase progressively, leading to a non-linear rise in
earth pressure. In the actual project, the stiffness of the retaining wall is considerably greater
than that of the fill behind it. When the retaining wall displaces, the earth pressure behind
it generates a stress concentration, leading to the development of the soil arching effect [43].
Moreover, as the width of the soil behind the wall decreases, the earth pressure in the
passive limit state increases, further intensifying the stress concentration and consequently
increasing the area of failure of the backfill. The limit equilibrium method did not account
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for the effect of soil dilation on the results, resulting in a significant error between the
two, which will be addressed in future research. As the backfill width increases, the earth
pressure decreases, and the stress concentration diminishes. Therefore, when H/L > 1, the
results presented in this paper rapidly converge toward experimental values. The Pearson
correlation coefficient between the two datasets is 0.975, with maximum and minimum
errors of 41.1% and 7.9%, respectively. The fundamentally consistent variation trends
validate the applicability of the proposed method.

The previous discussion is a comparative analysis in the case of cohesionless soil
behind the wall. Conducting model tests for clay proves challenging due to the inherent
characteristics of the material, resulting in a scarcity of existing experimental studies. This
paper utilizes discrete element numerical simulations for the analysis. Firstly, based on
numerical biaxial tests, the contact model parameters, corresponding to the macroscopic
mechanical properties of the soil, were calibrated through iterative trial and error. Sub-
sequently, the corresponding retaining wall model was constructed using the layered
rainfall method, and the effect of backfill width on the earth pressure behind the wall was
investigated in both the active and passive states.

3.2. DEM Numerical Experiment
3.2.1. Parameter Selection

In this study, the discrete element software employed is PFC2D. Based on the charac-
teristics of the stress-strain curve of the soil, it is fitted by the Adhesive Rolling Resistance
Linear Model (ARRL) [44,45]. The macroscopic parameters of the tested soil samples, with
the fitting target being undisturbed clay located 2 m below the ground surface of the Phase
I foundation pit of the Doumen Reservoir, are detailed in Table 1.

Table 1. Physical and mechanical parameters of the soil samples.

Proportion
Gs(g/cm3) Density (g/cm3) Void Ratio c/kPa φ/◦

2.7 1.78 0.808 14 24.6

Numerical biaxial tests are employed to calibrate the indoor triaxial test results. The
test specimen dimensions are 5 cm in width and 10 cm in height. The particle sizes were
selected based on the research of Ding et al. [46]. The test is conducted under confining
pressures of 100 kPa, 150 kPa, and 200 kPa. The generated model is shown in Figure 6a.
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After determining the approximate range of the contact model parameters, the mi-
croscopic parameters were iteratively adjusted using the dichotomy method to refine the
numerical results and bring them closer to the indoor test results. The comparison between
the two is illustrated in Figure 6b.

The microscopic parameters corresponding to the aforementioned stress-strain curves
are listed in Table 2. The contact model between the wall and the soil was characterized
by the Linear Model. The modulus of the Linear Model was specified as ten times the
modulus of the soil, and the friction coefficient was defined as one-third of the parameter
value of the soil contact model.

Table 2. Microscopic parameters.

Particle
Density
(kg/m3)

Grain Size
(mm)

Effective
Modulus
E*(MPa)

Stiffness
Ratio

k*

Friction
Coefficient

µ

Rolling
Friction

Coefficient
µr

Maximum
Attractive
Force (N)

Attraction
Range
(mm)

2650 0.71~0.18 35 3.6 0.21 0.8 10 0.35

3.2.2. Active Limit Earth Pressure

To investigate the effect of the backfill width (L) on the active limit earth pressure, the
soil height (H) behind the model wall is taken to be 6 m. According to Equation (10), the
maximum width (La) satisfying the finite soil conditions is 3.92 m. Therefore, the backfill
width is varied as follows: 0.5 m, 1 m, 1.5 m, 2 m, 2.5 m, 3 m, and 3.5 m for this study.
Particles are generated using the stratified rainfall method. The particle radius needs to be
increased to simplify computations due to the relatively large model size compared to the
particle radius. Previous studies [46,47] have demonstrated that the influence of particle
size becomes negligible when the ratio of the shortest side of the model to the maximum
particle radius (Rmax) exceeds 100. Consequently, in this study, the particle size increased
by a factor of 5 to 15, depending on the backfill width behind the wall. The convergence of
the calculation results is evaluated based on the ratio of the average unbalanced force to
the average contact force (referred to as the ratio-average). The models generated for each
width are illustrated in Figure 7.
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Figure 7. Numerical model under the active state.

The left wall of the model was displaced at a rate of 1 mm/s while the right wall
remained stationary. The numerically calculated time steps ranged between 10−5 and
10−6 s. The earth pressure behind the wall was determined using measurement circles with
a radius of 0.1 m and center spacing of 0.2 m. The measured results were then compared
with the results from the Jaky formula [48], as shown in Figure 8a. The distribution of the
static earth pressure under various backfill widths shows good agreement with the Jaky
formula, confirming the rationality of the initial state simulation. Data were recorded at
0.5 mm intervals until the wall displacement reached 10 mm, after which recording intervals
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were extended to 1 mm. The active limit earth pressure in this paper was determined as
the average of five data points, two preceding the minimum value and two subsequent to
it. The relationship between the earth pressure resultant force and the wall displacement
for each backfill width is shown in Figure 8b.
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Figure 8. (a) Static earth pressure with different backfill widths; (b) Relationship between the active
earth pressure resultant force and displacement.

As shown in Figure 8b, as the wall displacement increases, the smaller the backfill
width (L) behind the wall, and the faster the earth pressure on the retaining wall decreases.
When L > 2 m, the rate of decrease in earth pressure diminishes rapidly. Furthermore, the
wall displacement required to reach the limit state varies with backfill width, exhibiting a
proportional relationship between these two parameters. The influence of backfill width
on earth pressure becomes significantly reduced when the width exceeds one-third of the
wall height.

To validate the method proposed in this paper, the DEM results are compared with the
results of this paper, as illustrated in Figure 9a. The Pearson correlation coefficient between
the two sets of results was 0.993, showing a consistent trend. The error between the two
datasets decreases non-linearly as backfill width increases, ranging from a maximum of
36.2% to a minimum of 6.8%. When the backfill width behind the wall (L) is zero, the
resultant active earth pressure force (Ea) is also zero. As L increases, Ea follows a pattern
of initially increasing and then decreasing, gradually approaching the Coulomb theory
considering cohesion. When L = La (critical width), the triangular slip wedge assumed in
Coulomb theory represents a special case of the trapezoidal slip wedge. The trapezoidal
slip wedge assumed in this article fails prior to the triangular slip wedge. In this case, the
Coulomb result is not the maximum value of the function E1(θ) due to the influence of
cohesion. The depth-dependent distributions of active earth pressure under various width
conditions are shown in Figure 9b. As the soil modulus exhibits a nonlinear increasing
trend with burial depth, under identical soil deformation conditions, the burial depth
shows proportional increases in earth pressure. The consistent variation trends between
both components demonstrate the validity of the proposed methodology.

During wall displacement, pre-existing interparticle contacts may be disrupted. The
formation of new contacts occurs when sufficient relative displacement develops between
particles. Regions exhibiting concentrated new contacts can be considered as the location
of the slip surface. The slip surface distribution and rupture angle obtained in this study
under various backfill widths are shown in Figure 10.
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Figure 9. (a) Relationship between the width of the soil behind the wall and Ea; (b) Distribution of
earth pressure at various widths.
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As depicted in Figure 10, the rupture angle (θ) decreases with increasing backfill width
(L) behind the wall, while the height of the slip surface inflection point progressively rises.
When L/H < 1/4 and the slip wedge attain sufficient height, multiple internal failure
surfaces develop within the slip wedge, resulting in a more complex distribution pattern.
The lowermost slip surface shows fundamental consistency with the results of Lai et al. [32].

3.2.3. Passive Limit Earth Pressure

In the passive state, the numerical model maintains a wall height of 6 m. As determined
by Equation (19), the maximum width (Lp) of the finite soil is 11.76 m. Consequently, the
backfill widths (L) were configured as 3 m, 3.75 m, 4.5 m, 6 m, 7.5 m, 9 m, and 10.5 m. The
numerical models generated for each width are presented in Figure 11.

The static earth pressure distributions under different widths are shown in Figure 12a,
which demonstrates good agreement with the Jack formula, confirming the validity of
the initial simulation. The variation pattern of earth pressure resultant force with wall
displacement is illustrated in Figure 12b. The passive earth pressure resultant force (Ep)
was calculated as the average of the maximum values and its four adjacent data points.
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Figure 11. Numerical model under the passive state.
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Figure 12. (a) Static earth pressure with different backfill widths; (b) Relationship between the passive
earth pressure resultant force and displacement.

In Figure 12b, it is evident that in the passive state, the rate of increase in earth
pressure behind the wall is inversely proportional to the backfill width (L). The resultant
force of the passive limit earth pressure gradually decreases with increasing backfill width.
Furthermore, the wall displacement required to reach the limit state exhibits a direct
proportion to the backfill width. As L increases from 3.5 m to 10.5 m, the wall displacement
needed for the soil behind the wall to reach the limit state progressively increases from 5%
to 8.5% of the wall height.

The passive limit earth pressure resultant force (Ep) under various backfill widths
are shown in Figure 13a. As the backfill width (L) behind the wall decreases, Ep demon-
strates an exponential growth trend. When L/H > 1, the effect of backfill width on the
earth pressure decreases sharply. At this point, the results from this study show close
agreement with the Coulomb results while being marginally higher than the experimental
measurements. The Pearson correlation coefficient between the two sets of results is 0.986,
indicating a broadly consistent trend. The errors are positively correlated with the backfill
width, ranging from a maximum of 18.4% to a minimum of 1.3%. The distribution of the
earth pressure is shown in Figure 13b, and the variation trend of the results in this paper is
in good agreement with the experimental results. Likewise, owing to the nonlinear increase
in the soil modulus with burial depth, the increment of the earth pressure is proportional
to the burial depth.
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Figure 13. (a) Relationship between the width of the soil behind the wall and Ep; (b) Distribution of
earth pressure at various widths.

The slip surface under the passive state for various widths is depicted in Figure 14a.
As the backfill width increases, the angle between the slip surface and the horizontal plane
decreases linearly, and the slip surface inflection point gradually approaches the ground
surface. A comparison of the earth pressure resultant forces on both sides of the slip wedge
above the slip surface inflection point is shown in Figure 14b. The magnitudes of both
forces are essentially identical, which validates the rationality of the assumptions proposed
in this paper.
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Figure 14. (a) Distribution of new contacts under different backfill widths; (b) Comparison of resultant
forces on both sides above the inflection point.

4. Parametric Analysis
The influence of various parameters on the limit earth pressure and the slip surface

under different backfill widths was systematically analyzed. The initial calculation parame-
ters are as follows: the retaining wall height (H) is 6 m, the unit weight (γ) is 17.8 kN/m3,
the cohesion (c) is 0 kPa, the internal friction angle (φ) is 25◦, and the wall-soil friction angle
is δ = φ/3.
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4.1. Effect of Various Parameters on the Active Limit State

The impact of cohesion (c) on the active limit earth pressure resultant force (Ea) behind
the wall is illustrated in Figure 15a. When the backfill consists of cohesionless soil, Ea

increases nonlinearly with growing backfill width L, but the rate of increase gradually
decreases. Ea reaches its maximum value at L = 4.19 m, where the corresponding width
represents the critical width La. At the critical width, both Ea and θ obtained by the
proposed method in this paper show complete consistency with Coulomb’s results.
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Figure 15. (a) Effect of cohesion c on Ea; (b) Comparison of Ex1(θ) formed by triangular and
trapezoidal wedges.

For clay, the relationship between backfill width (L) and resultant active earth pressure
force (Ea) transitions from being initially proportional to subsequently inversely propor-
tional. As cohesion (c) increases, the critical width (La) progressively decreases. At L = La,
the results presented in this paper slightly exceed Coulomb’s theoretical predictions, with
the discrepancy gradually increasing with higher cohesion values. This phenomenon
arises because Coulomb’s triangular wedge assumption constitutes a special case of the
trapezoidal wedge assumption introduced in this study. Specifically, the slip surface in
Coulomb’s theory does not correspond to the maximum value of Ex1(θ). The intersection
point of the Ex1(θ) functions resulting from these two assumptions is the maximum value
of the triangular wedge assumption (Coulomb theory), as depicted in Figure 15b.

The impact on the slip surface is shown in Figure 16. As the backfill width (L) in-
creases, the rupture angle (θ) derived from the method presented in this study continuously
decreases and gradually approaches the Coulomb rupture angle. Simultaneously, the slip
surface inflection point gradually approaches the ground surface. For the same backfill
width, the influence of increasing cohesion on the slip surface gradually decreases. As
shown in Figure 16, cohesionless soil and clay exhibit marked differences in the varia-
tion range of rupture angles with respect to backfill width, which is attributed to the
inconsistency in the values of the reaction coefficient as.

The influence of the internal friction angle (φ) on the active earth pressure resultant
force (Ea) is depicted in Figure 17a. When the backfill width is constant, Ea decreases
inversely with increasing φ, and the effect of φ on Ea gradually decreases. The leftward
shift of the peak in the Ea-L curve indicates an inverse proportionality between the critical
width La and φ. Since c = 0 kPa, the results in this paper at the critical width are consistent
with the Coulomb earth pressure. As φ increases, the rupture angle θ exhibits a linear
increase, while variations in backfill width do not alter the magnitude of the change in the
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rupture angle. Conversely, the rupture angle θ decreases linearly with increasing backfill
width, asymptotically approaching the Coulomb rupture angle. The height at the slip
surface inflection point demonstrates a nonlinear increase with higher φ. Notably, when
L = La, the rupture angle in this study coincides with the Coulomb rupture angle, and
the slip surface inflection point coincides with the ground surface. Comparative analyses
under varying backfill widths are depicted in Figure 17b.
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Figure 16. Effect of cohesion c on the slip surface.
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Figure 17. (a) Effect of cohesion φ on Ea; (b) Effect of the friction angle φ on the slip surface.

The impact of the wall-soil friction angle (δ) on the active earth pressure resultant force
(Ea) and the slip surface is illustrated in Figure 18a,b. Ea is inversely proportional to δ, and
its influence diminishes rapidly as δ increases. The critical width La increases linearly with
δ. When the L = La, the results of this paper are consistent with the Coulomb earth pressure.
For aspect ratios L/H < 1/3, the rupture angle θ is directly proportional to the wall-soil
friction angle δ, with a greater influence observed as the backfill width decreases. When
L/H > 1/3, the rupture angle θ is inversely proportional to δ, and the larger the backfill
width is, and its influence becomes more significant as the backfill width increases.
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Figure 18. (a) Effect of wall-soil friction angle δ on Ea; (b) Effect of wall-soil friction angle δ on the
slip surface.

4.2. Effect of Various Parameters on the Passive Limit State

The influence of cohesion (c) on the passive earth pressure resultant force (Ep) is
depicted in Figure 19a. Ep increases with the rise in cohesion, while the critical width (Lp)
decreases slightly as cohesion increases. When L/H > 4/3, the effect of backfill width L on
Ep decreases significantly. For cohesionless soil (c = 0 kPa), the results of this study align
with Coulomb theory when L = Lp. For clay, the results in this study are marginally less
than the Coulomb results when L = Lp. This discrepancy occurs because the slip surface
determined in this study is more critical than that predicted by the Coulomb theory. The
Coulomb solution represents a special case in this study rather than the minimum value
of the function Ex2(θ). The intersection points of the Ex2(θ) functions derived from both
assumptions correspond to the Coulomb solution, as shown in Figure 19b.
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Figure 19. (a) Effect of cohesion c on Ep; (b) Comparison of Ex1(θ) formed by triangular and
trapezoidal wedges.

As the backfill width behind the wall approaches the critical width (Lp), the dis-
crepancy between the results obtained by the proposed method and those derived from
Coulomb theory under passive state is significantly smaller than the discrepancy observed
under active conditions. This discrepancy arises from the fact that the cohesion resultant
force (C) under the passive state has a significantly smaller magnitude compared to the
self-weight (W) and the counterforce (R), rendering the variation in C less influential on
Ep. For the specific case studied here (c = 15 kPa, L = 11.74 m), a comparison of resultant
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force under passive conditions is illustrated in Figure 20a. Cohesion (c) also affects the
distribution of the slip surface, as shown in Figure 20b. For a constant backfill width
(L), both the rupture angle (θ) and the height of the slip surface inflection point (Ltanθ)
exhibit an inverse relationship with cohesion c. The effect of c on these parameters will
be intensified as L increases. The rupture angle θ decreases linearly with increasing L. At
the critical width, the difference between the rupture angle predicted by this study and
Coulomb theory grows with increasing cohesion.
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Figure 20. (a) Relationship between the resultant forces and the failure angle; (b) Effect of cohesion c
on the slip surface.

The effect of the friction angle (φ) on the passive earth pressure resultant force (Ep)
is shown in Figure 21a. For a constant backfill width (L), Ep increases nonlinearly with
increasing φ. The smaller the backfill width (L), the more pronounced the effect of φ on
Ep. The critical width (Lp) is directly proportional to φ. As backfill width (L) decreases, Ep

grows exponentially. As the backfill consists of cohesionless soil, the results of this study at
the critical width are consistent with Coulomb’s solution. The rupture angle (θ) decreases
linearly with increasing φ, and this trend remains unaffected by variations in backfill width.
A linear relationship also exists between backfill width and rupture angle. As the backfill
width increases, the passive rupture angle obtained in this paper gradually decreases until
it reaches the Coulomb rupture angle, as illustrated in Figure 21a.
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Figure 21. (a) Effect of the friction angle φ on Ep; (b) Effect of the friction angle φ on the slip surface.
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The impact of the wall-soil friction angle (δ) on the passive earth pressure resultant
force (Ep) is depicted in Figure 22a. For a smooth wall back (δ = 0), variations in backfill
width behind the wall have no effect on Ep. As δ increases, the relationship between Ep and
the backfill width transitions progressively from a horizontal line to an L-type curve. The
effect of δ on Ep diminishes gradually as the backfill width increases. The critical width (Lp)
increases gradually with rising wall-soil friction angle δ. At the critical width, the results
obtained in this study coincide with Coulomb passive earth pressure.
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Figure 22. (a) Effect of the wall-soil friction angle δ on Ep; (b) Effect of wall-soil friction angle δ on the
slip surface.

The effect of the wall-soil friction angle (δ) on the slip surface is shown in Figure 22b.
The rupture angle (θ) shows a linear relationship with the backfill width (L) behind the
wall. When δ = 0, the rupture angle in this study remains constant and equals the Coulomb
rupture angle. With increasing δ, θ decreases more rapidly as L increases. For cases where
the ratio of L/H is less than 9/10, θ shows directly proportional to δ, while it becomes
inversely proportional to δ when L/H exceeds 9/10. At L = Lp, the slip surface inflection
point aligns with the ground surface, causing the trapezoidal slip wedge assumed in this
study to transform into a triangular wedge.

5. Conclusions
When the backfill width behind the wall is finite, this paper posits the formation of

a trapezoidal slip wedge at the limit state. According to the static equilibrium condition
of the slip wedge, a calculation method for the earth pressure considering the backfill
width is proposed. The effects of the cohesion, internal friction angle and wall-soil friction
angle on the earth pressure were systematically investigated. The principal findings can be
summarized as follows:

(1) Under the active limit state, the earth pressure resultant force behind the wall exhibits
a parabolic relationship with the backfill width. For cohesionless soil, the earth
pressure continuously increases until it reaches the Coulomb active earth pressure,
while clay experiences an initial increase followed by a decrease in earth pressure.

(2) For cohesionless soils with a smooth wall back, the passive earth pressure resultant
force obtained by the proposed method fully coincides with the Coulomb’s solution
within the critical width range, and the corresponding rupture angles equal to the
Coulomb value. As the wall-soil friction angle increases, the influence of backfill width
on the passive earth pressure becomes increasingly pronounced, while exhibiting
distinct exponential decay characteristics with increasing backfill dimensions.
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(3) Upon reaching the critical width, the approach presented in this paper can be simpli-
fied to the Coulomb theory for cohesionless soil. For clay, the results obtained in this
paper are higher than those predicted by the Coulomb theory under an active state
while being slightly lower under a passive state.

(4) For a given backfill width, the cohesion c is inversely proportional to the resultant
active limit earth pressure force Ea and directly proportional to the resultant passive
limit earth pressure force Ep. As the internal friction angle φ increases, Ea decreases
nonlinearly, while Ep experiences a significant growth. Furthermore, variations in the
wall-soil friction angle δ have a relatively minor influence on Ea, whereas Ep grows
exponentially with increasing δ.
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Abbreviations

Ex The resultant earth pressure on the retaining wall
R Reaction forces on the slip wedge by the soil below the slip surface
W The weight of the slip wedge
S The reaction force exerted on the slip wedge by the soil below the slip surface
C The resultant cohesive force on the slip surface
H The height of the retaining wall
L The width of backfill behind the wall
aS The reaction coefficient
θ The rupture angle
δ The wall-soil friction angle
c The cohesive force
φ The internal friction angle
γ The unit weight of soil
ψ Intermediate variable (Tangent value of rupture angle θ)
An~Gn Intermediate variable, n = 1~4. (Related to γ, c, φ, δ, H, L, as)
an~en Intermediate variable, n = 1~2. (Related to An~Gn)
λn, ηn Intermediate variable, n = 1~2. (Related to an~en)
∆n The solution of the quartic equation of one variable, n = 1~2. (Related to an, λn, ηn)
Et The tangent modulus in the Duncan model
R f The failure ratio
K The modulus parameter
Pa The atmospheric pressure
n The dimensionless index
µ The Poisson’s ratio
σx The stress in x direction
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σ3 The minor principal stress
εx The strain in x direction
εxmax The limit strain in x direction
K0 The coefficient of earth pressure at rest
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