GA-PSO Algorithm for Microseismic Source Location
Abstract
:1. Introduction
Category | Algorithm | Key Innovation | Strengths | Limitations | Application |
---|---|---|---|---|---|
Non-Heuristic | Geiger [1] | Iterative time residual minimization | Theoretical simplicity, high efficiency | Initial value and velocity model sensitivity | Seismic detection in mining |
APS [4] | Hypersphere search, adaptive threshold | Parameter-free, efficient local search | High-dimensional performance drop | Small/medium sensor networks | |
Heuristic (Single) | GA [15] | Crossover and mutation | Strong global search capability | Slow convergence speed | Function optimization |
PSO [16] | Velocity–position update mechanism | Simple to implement, fast convergence | Parameter sensitivity, low diversity | Real-time localization | |
Heuristic (Hybrid) | NM-PSO [18] | NM local refinement, PSO global search | Robustness to initial values | Sensitive to initial conditions | Small-scale networks |
PSO-ACO [19] | Pheromone-guided particle trajectories | Strong multimodal problem-solving | High computational complexity | Path and network optimization |
2. Materials and Methods
2.1. Construction of the Objective Function
2.2. Implementation of GA-PSO Algorithm
3. Experiments and Results
3.1. Simulation Validation of Microseismic Location Algorithms
3.1.1. Developing a Simulated Source Spatial Model
3.1.2. Analysis of the Simulation Results for Microseismic Source Location
3.1.3. Comprehensive Comparative Experiments of Microseismic Location Algorithms
3.2. Validation Through Engineering Case Studies
3.2.1. Engineering Experiment for Microseismic Source Location
3.2.2. Engineering Experiment Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geiger, L. Probability method for the determination of earthquake epicentres from the arrival time only. Bull. St. Louis Univ. 1912, 8, 60. [Google Scholar]
- Prugger, A.F.; Gendzwill, D. Microearthquake location: A nonlinear approach that makes use of a simplex stepping procedure. Bull. Seismol. Soc. Am. 1988, 78, 799–815. [Google Scholar] [CrossRef]
- Lin, F.; Li, S.; Xue, Y.; Xu, H. Microseismic source location methods based on different initial values. Chin. J. Rock Mech. Eng. 2010, 29, 996–1002. [Google Scholar]
- Omran, M.G.; Clerc, M. The adaptive population-based simplex method. In Proceedings of the 2015 Fifth International Conference on Digital Information Processing and Communications (ICDIPC), Sierre, Switzerland, 7–9 October 2015; pp. 93–97. [Google Scholar]
- Ma, C.; Jiang, Y.; Li, T. Gravitational search algorithm for microseismic source location in tunneling: Performance analysis and engineering case study. Rock Mech. Rock Eng. 2019, 52, 3999–4016. [Google Scholar] [CrossRef]
- Liu, B.; Mohandes, M.; Nuha, H.; Deriche, M.; Fekri, F. A distributed principal component analysis compression for smart seismic acquisition networks. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3020–3029. [Google Scholar] [CrossRef]
- Wang, L.-C.; Chang, X.; Wang, Y.-B. Locating micro-seismic events based on interferometric traveltime inversion. Chin. J. Geophys. 2016, 59, 3037–3045. [Google Scholar]
- Hu, Y.; Wu, R.-S.; Huang, X.; Long, Y.; Xu, Y.; Han, L.-G. Phase-amplitude-based polarized direct envelope inversion in the time-frequency domain. Geophysics 2022, 87, R245–R260. [Google Scholar] [CrossRef]
- Ma, K.; Sun, X.; Zhang, Z.; Hu, J.; Wang, Z. Intelligent location of microseismic events based on a fully convolutional neural network (FCNN). Rock Mech. Rock Eng. 2022, 55, 4801–4817. [Google Scholar] [CrossRef]
- Huang, L.; Li, X.; Liu, D. Microseismic location method using Ω penalty function based ant colony optimization. In Proceedings of the 2016 12th International Computer Engineering Conference (ICENCO), Cairo, Egypt, 28–29 December 2016; pp. 208–212. [Google Scholar]
- Xiao, Y.; Liu, W.-J.; Wang, H.-N.; Hou, M.-J.; Dong, S.-S.; Zhang, Z.-Z. Research on a nonlinear hybrid optimal PSO microseismic positioning method. Appl. Geophys. 2024, 21, 1–13. [Google Scholar] [CrossRef]
- Yao, J.; Luo, X.; Li, F.; Li, J.; Dou, J.; Luo, H. Research on hybrid strategy Particle Swarm Optimization algorithm and its applications. Sci. Rep. 2024, 14, 24928. [Google Scholar] [CrossRef]
- Yang, X.-S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl.-Based Syst. 2019, 165, 169–196. [Google Scholar] [CrossRef]
- Novianty, A.; Meilano, I.; Machbub, C.; Widiyantoro, S.; Susilo, S. Rapid estimation of earthquake magnitude and source parameters using genetic algorithms. Appl. Sci. 2021, 11, 11852. [Google Scholar] [CrossRef]
- Pace, F.; Santilano, A.; Godio, A. A review of geophysical modeling based on particle swarm optimization. Surv. Geophys. 2021, 42, 505–549. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cui, N.; Cheng, J. Microeismic source localization method based on hybrid algorithm of MOPSO-SA. Coal Sci. Technol. 2020, 48, 126–132. [Google Scholar]
- Liao, Z.; Feng, T.; Yu, W.; Cui, D.; Wu, G. Microseismic source location method and application based on NM-PSO algorithm. Appl. Sci. 2022, 12, 8796. [Google Scholar] [CrossRef]
- Srivastava, A.; Sinha, D. PSO-ACO-based bi-phase lightweight intrusion detection system combined with GA optimized ensemble classifiers. Clust. Comput. 2024, 27, 14835–14890. [Google Scholar] [CrossRef]
- Guo, E.; Gao, Y.; Hu, C.; Zhang, J. A hybrid PSO-DE intelligent algorithm for solving constrained optimization problems based on feasibility rules. Mathematics 2023, 11, 522. [Google Scholar] [CrossRef]
- Li, Y.; Sui, Q.; Wang, J.; Wang, Z.; Jia, L.; Wang, H.; Shen, S.; Du, B. Localization of microseismic source based on genetic-simplex hybrid algorithm. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 4002–4007. [Google Scholar]
- Liu, X.; Qu, H.; Meng, L.; Huang, C.; Chen, Q.; Wang, Q. A sliding mode control of the bearingless permanent magnet slice motor for the blood pump based on the GAPSO. Sci. Rep. 2023, 13, 18929. [Google Scholar] [CrossRef]
- Sheikholeslami, A.; Atlasbaf, Z. Novel phase distributions for large electronically beam-scanning reflectarrays. Sci. Rep. 2021, 11, 21877. [Google Scholar] [CrossRef]
- Singh, G.; Chaturvedi, A.K. Hybrid modified particle swarm optimization with genetic algorithm (GA) based workflow scheduling in cloud-fog environment for multi-objective optimization. Clust. Comput. 2024, 27, 1947–1964. [Google Scholar] [CrossRef]
- Amirteimoori, A.; Kia, R. Concurrent scheduling of jobs and AGVs in a flexible job shop system: A parallel hybrid PSO-GA meta-heuristic. Flex. Serv. Manuf. J. 2023, 35, 727–753. [Google Scholar] [CrossRef]
- Roy, C.; Das, D.K. A hybrid genetic algorithm (GA)–particle swarm optimization (PSO) algorithm for demand side management in smart grid considering wind power for cost optimization. Sādhanā 2021, 46, 101. [Google Scholar] [CrossRef]
- Bharti, J.P.; Samui, P. Predicting slope failure with intelligent hybrid modeling of ANFIS with GA and PSO. Multiscale Multidiscip. Model. Exp. Des. 2024, 7, 4539–4555. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, C.; Shang, X. Double event joint location method considering P-wave arrival time system errors. Soil Dyn. Earthq. Eng. 2021, 149, 106890. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Xu, L.; Song, B.; Cao, M. An improved particle swarm optimization algorithm with adaptive weighted delay velocity. Syst. Sci. Control Eng. 2021, 9, 188–197. [Google Scholar] [CrossRef]
- Elbes, M.; Alzubi, S.; Kanan, T.; Al-Fuqaha, A.; Hawashin, B. A survey on particle swarm optimization with emphasis on engineering and network applications. Evol. Intell. 2019, 12, 113–129. [Google Scholar] [CrossRef]
- Sinha, A.; Jana, P.K. Improved affinity propagation clustering algorithms: A PSO-based approach. Knowl. Inf. Syst. 2024, 67, 1681–1711. [Google Scholar] [CrossRef]
- Jain, M.; Saihjpal, V.; Singh, N.; Singh, S.B. An overview of variants and advancements of PSO algorithm. Appl. Sci. 2022, 12, 8392. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, X.; Luo, Y. Simultaneously optimizing inertia weight and acceleration coefficients via introducing new functions into PSO algorithm. J. Phys. Conf. Ser. 2021, 1754, 012195. [Google Scholar] [CrossRef]
- Kao, Y.-T.; Zahara, E. A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl. Soft Comput. 2008, 8, 849–857. [Google Scholar] [CrossRef]
- Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A comprehensive survey. IEEE Access 2022, 10, 10031–10061. [Google Scholar] [CrossRef]
- MA, J.; LIU, C.; DING, L. Research on mining earthquake source localization method based on improved cuckoo search algorithm. Prog. Geophys. 2024, 39, 1070–1080. [Google Scholar]
Sensor Number | X/m | Y/m | Z/m |
---|---|---|---|
1 | 0 | 0 | 0 |
2 | 500 | 0 | 0 |
3 | 500 | 500 | 0 |
4 | 0 | 500 | 0 |
5 | 0 | 268 | 0 |
6 | 0 | 0 | −500 |
7 | 500 | 64 | −500 |
8 | 500 | 500 | −500 |
9 | 0 | 500 | −500 |
10 | 391 | 145 | −247 |
Location of Microseismic Source | X/m | Y/m | Z/m |
---|---|---|---|
A | 55 | 192 | −287 |
B | 417 | 251 | −96 |
C | 285 | 72 | −394 |
D | 146 | 298 | −163 |
E | 88 | 384 | −406 |
F | 383 | 165 | −230 |
Sensor Number | P-Wave Initial Arrival time/ms | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | F | |
1 | 136.052 | 193.031 | 191.274 | 143.858 | 220.123 | 185.311 |
2 | 219.166 | 109.439 | 176.880 | 190.895 | 270.151 | 119.179 |
3 | 238.359 | 108.745 | 241.322 | 170.803 | 229.551 | 164.539 |
4 | 165.202 | 192.639 | 252.062 | 115.878 | 167.828 | 217.277 |
5 | 117.488 | 166.632 | 204.003 | 85.943 | 167.828 | 178.394 |
6 | 113.615 | 246.124 | 121.588 | 184.030 | 157.593 | 193.309 |
7 | 198.321 | 176.207 | 93.324 | 210.851 | 206.255 | 121.055 |
8 | 226.303 | 187.461 | 190.878 | 205.781 | 170.513 | 173.496 |
9 | 147.274 | 245.816 | 204.288 | 163.094 | 67.435 | 224.137 |
10 | 132.927 | 72.496 | 76.024 | 117.049 | 162.407 | 10.677 |
Arithmetic | Event A | |||||
---|---|---|---|---|---|---|
X/m | Y/m | Z/m | Optimal Function Value | Search Time/s | ||
PSO | Convergence value | 54.7102 | 192.0557 | −287.1071 | 5.097 × 10−3 | 0.33 |
Real value | 55 | 192 | −287 | |||
Errors | −0.2898 | 0.0557 | −0.1071 | |||
GA | Convergence value | 55.4110 | 191.7454 | −286.8794 | 0.1310 | 1.18 |
Real value | 55 | 192 | −287 | |||
Errors | 0.4110 | −0.2546 | 0.1206 | |||
PSO-ACO | Convergence value | 54.9964 | 192.0141 | −286.9920 | ||
Real value | 55 | 192 | −287 | 3.613 × 10−3 | 0.74 | |
Errors | −0.0036 | 0.0141 | 0.0080 | |||
NM-PSO | Convergence value | 54.9923 | 191.9981 | −287.0038 | ||
Real value | 55 | 192 | −287 | 1.445 × 10−3 | 0.33 | |
Errors | −0.0077 | −0.0019 | −0.0038 | |||
GA-PSO | Convergence value | 54.9987 | 191.9995 | −286.9993 | 3.387 × 10−4 | 0.17 |
Real value | 55 | 192 | −287 | |||
Errors | −0.0013 | 0.0005 | 0.0007 | |||
Arithmetic | EventB | |||||
X/m | Y/m | Z/m | Optimal Function Value | Search Time/s | ||
PSO | Convergence value | 417.4418 | 251.1682 | −96.3564 | 5.219 × 10−3 | 0.43 |
Real value | 417 | 251 | −96 | |||
Errors | 0.4418 | 0.1682 | −0.3564 | |||
GA | Convergence value | 417.5229 | 251.0520 | −95.6258 | 0.1474 | 0.89 |
Real value | 417 | 251 | −96 | |||
Errors | 0.5229 | 0.0520 | 0.3742 | |||
PSO-ACO | Convergence value | 416.9981 | 251.0134 | −95.9990 | 3.553 × 10−3 | 0.72 |
Real value | 417 | 251 | −96 | |||
Errors | −0.0019 | 0.0134 | 0.0010 | |||
NM-PSO | Convergence value | 417.0008 | 250.9989 | −95.9981 | ||
Real value | 417 | 251 | −96 | 4.283 × 10−4 | 0.33 | |
Errors | 0.0008 | −0.0011 | 0.0019 | |||
GA-PSO | Convergence value | 416.9988 | 251.0001 | −95.9994 | 2.637 × 10−4 | 0.16 |
Real value | 417 | 251 | −96 | |||
Errors | −0.0012 | 0.0001 | 0.0006 |
Wave Velocity Fluctuate | Sensors | P-Wave Initial Arrival time/ms | |||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | ||
±1% | 1 | 136.785 | 191.625 | 192.526 | 143.640 | 222.173 | 186.285 |
2 | 220.346 | 108.641 | 178.038 | 190.606 | 272.667 | 119.806 | |
3 | 239.643 | 107.952 | 242.902 | 170.545 | 231.689 | 165.403 | |
4 | 166.091 | 191.235 | 253.713 | 115.703 | 169.391 | 218.419 | |
5 | 118.120 | 165.418 | 205.338 | 85.813 | 169.391 | 179.332 | |
6 | 114.226 | 244.331 | 122.384 | 183.752 | 159.060 | 194.325 | |
7 | 199.389 | 174.923 | 93.935 | 210.532 | 208.176 | 121.691 | |
8 | 227.522 | 186.095 | 192.128 | 205.469 | 172.101 | 174.408 | |
9 | 148.067 | 244.025 | 205.625 | 162.848 | 68.063 | 225.315 | |
10 | 133.642 | 71.968 | 76.522 | 116.872 | 163.919 | 10.733 | |
±3% | 1 | 138.601 | 192.003 | 195.194 | 144.552 | 223.367 | 187.829 |
2 | 223.272 | 108.856 | 180.505 | 191.817 | 274.132 | 120.799 | |
3 | 242.825 | 108.166 | 246.267 | 171.628 | 232.933 | 166.774 | |
4 | 168.297 | 191.613 | 257.228 | 116.438 | 170.301 | 220.230 | |
5 | 119.689 | 165.745 | 208.183 | 86.358 | 170.301 | 180.818 | |
6 | 115.743 | 244.813 | 124.080 | 184.919 | 159.915 | 195.935 | |
7 | 202.036 | 175.268 | 95.237 | 211.869 | 209.294 | 122.700 | |
8 | 230.543 | 186.462 | 194.789 | 206.774 | 173.026 | 175.854 | |
9 | 150.033 | 244.507 | 208.474 | 163.882 | 68.429 | 227.183 | |
10 | 135.417 | 72.110 | 77.582 | 117.614 | 164.800 | 10.822 | |
±5% | 1 | 141.099 | 198.754 | 199.204 | 149.874 | 230.676 | 189.065 |
2 | 227.295 | 112.683 | 184.213 | 198.879 | 283.102 | 121.593 | |
3 | 247.200 | 111.969 | 251.327 | 177.946 | 240.556 | 167.871 | |
4 | 171.329 | 198.350 | 262.512 | 120.724 | 175.874 | 221.678 | |
5 | 121.846 | 171.572 | 212.460 | 89.537 | 175.874 | 182.008 | |
6 | 117.829 | 253.420 | 126.629 | 191.727 | 165.148 | 197.224 | |
7 | 205.677 | 181.430 | 97.193 | 219.669 | 216.143 | 123.507 | |
8 | 234.697 | 193.018 | 198.791 | 214.387 | 178.688 | 177.010 | |
9 | 152.737 | 253.104 | 212.757 | 169.915 | 70.668 | 228.677 | |
10 | 137.857 | 74.645 | 79.176 | 121.944 | 170.193 | 10.894 |
Sensor Number | X/m | Y/m | Z/m | P-Wave Arrival/ms |
---|---|---|---|---|
1 | 8716 | 6614 | 522 | 34.9 |
2 | 8737 | 6609 | 565 | 36.6 |
3 | 8666 | 6600 | 520 | 39.3 |
4 | 8668 | 6599 | 565 | 41.1 |
5 | 8641 | 6515 | 520 | 42.3 |
6 | 8691 | 6684 | 520 | 44.5 |
7 | 8721 | 6449 | 520 | 47.8 |
8 | 8702 | 6604 | 647 | 50.0 |
X/m | Y/m | Z/m | X-Axis Error | Y-Axis Error | Z-Axis Error | Absolute Error | |
---|---|---|---|---|---|---|---|
Actual source location | 8732.70 | 6570.60 | 511.30 | ||||
PSO | 8720.56 | 6545.42 | 533.49 | 11.33 | 25.34 | −22.16 | 35.52 |
GA | 8719.87 | 6523.03 | 513.30 | 12.83 | 47.57 | −2.00 | 49.31 |
PSO-ACO | 8782.52 | 6555.73 | 500.02 | −49.82 | 14.87 | 11.28 | 53.20 |
NM-PSO | 8721.29 | 6544.60 | 532.51 | 11.41 | 26.00 | −21.21 | 35.44 |
GA-PSO | 8733.93 | 6550.59 | 510.12 | −1.23 | 20.01 | 1.18 | 20.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Zeng, F.; Fu, L.; Zheng, F. GA-PSO Algorithm for Microseismic Source Location. Appl. Sci. 2025, 15, 1841. https://doi.org/10.3390/app15041841
Han Y, Zeng F, Fu L, Zheng F. GA-PSO Algorithm for Microseismic Source Location. Applied Sciences. 2025; 15(4):1841. https://doi.org/10.3390/app15041841
Chicago/Turabian StyleHan, Yaning, Fanyu Zeng, Liangbin Fu, and Fan Zheng. 2025. "GA-PSO Algorithm for Microseismic Source Location" Applied Sciences 15, no. 4: 1841. https://doi.org/10.3390/app15041841
APA StyleHan, Y., Zeng, F., Fu, L., & Zheng, F. (2025). GA-PSO Algorithm for Microseismic Source Location. Applied Sciences, 15(4), 1841. https://doi.org/10.3390/app15041841