Model-Based Optimization of the Field-Null Configuration for Robust Plasma Breakdown on the HL-3 Tokamak
Abstract
:1. Introduction
2. Modeling of the Poloidal Field Coil System on HL-3
2.1. Mathematical Model
2.1.1. Conductors Model
2.1.2. Power Supply Model
2.2. Tuning of the Model Parameters
3. Optimization of the Field-Null Configuration
3.1. The Iterative Optimizing Scheme
3.2. Typical Examples of Field-Null Optimization
4. Feedback Control System and Field-Null Implementation
4.1. Feedback Control System
4.1.1. Low-Pass Filtered PID Principle
4.1.2. Closed-Loop Control System in Simulink
4.2. Simulation Results
5. Discussion and Outlook
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wesson, J.; Campbell, D.J. Tokamaks; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- ITER EDA. MHD stability, operational limits and disruptions. Nucl. Fusion 1999, 39, 2251–2389. [Google Scholar] [CrossRef]
- Lloyd, B.; Jackson, G.; Taylor, T.; Lazarus, E.; Luce, T.; Prater, R. Low voltage ohmic and electron cyclotron heating assisted startup in DIII-D. Nucl. Fusion 1991, 31, 2031. [Google Scholar] [CrossRef]
- Albanese, R.; Maviglia, F.; Lomas, P.; Manzanares, A.; Mattei, M.; Neto, A.; Rimini, F.; de Vries, P. Experimental results with an optimized magnetic field configuration for JET breakdown. Nucl. Fusion 2012, 52, 123010. [Google Scholar] [CrossRef]
- Lazarus, E.; Hyatt, A.; Jackson, G.; Humphreys, D. Using a multipole expansion for startup in the DIII-D tokamak. Nucl. Fusion 1998, 38, 1083. [Google Scholar] [CrossRef]
- Leuer, J.A.; Xiao, B.J.; Humphreys, D.A.; Walker, M.L.; Hyatt, A.W.; Jackson, G.L.; Mueller, D.; Penaflor, B.G.; Piglowski, D.A.; Johnson, R.D.; et al. Tokamak startup modeling and design for EAST first plasma campaign. Fusion Sci. Technol. 2010, 57, 48–65. [Google Scholar] [CrossRef]
- di Grazia, L.E.; Mattei, M.; Pironti, A.; Villone, F. Magnetic Control Strategies for the Breakdown and Early Ramp-up in Large Tokamaks. In Proceedings of the 2022 IEEE Conference on Control Technology and Applications (CCTA), Trieste, Italy, 23–25 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 837–844. [Google Scholar]
- Drive IPEGEPHC; Diagnostics IPEG; Editors IPB. Chapter 8: Plasma operation and control. Nucl. Fusion 1999, 39, 2577–2625. [Google Scholar] [CrossRef]
- Ambrosino, R.; De Tommasi, G.; Mattei, M.; Pironti, A. Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak. In Proceedings of the 2015 IEEE Conference on Control Applications (CCA), Sydney, NSW, Australia, 21–23 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1284–1289. [Google Scholar]
- Nardon, E.; Heumann, H.; Artaud, J.; Bucalossi, J.; Douai, D.; Fedorczak, N.; Loarer, T.; Moreau, P.; Nouailletas, R.; Reux, C.; et al. Magnetic configuration and plasma startup in the WEST tokamak. In Proceedings of the 45th EPS Conference on Plasma Physics, Prague, Czech Republic, 2–6 July 2018. [Google Scholar]
- Pillsbury, R.D.; Schultz, J.H. Modelling of plasma startup in ITER. IEEE Trans. Magn. 1992, 28, 1462–1465. [Google Scholar] [CrossRef]
- Leuer, J.A.; Wesley, J.C. ITER plasma startup modeling. In Proceedings of the 15th IEEE/NPSS Symposium. Fusion Engineering, Hyannis, MA, USA, 11–15 October 1993; IEEE: Piscataway, NJ, USA, 1993; Volume 2, pp. 629–633. [Google Scholar]
- Korn, G.A.; Koln, T.M. Mathematicel Handbook for Scientists and Engineers; New York McGraw-Hill Book Company: New York, NY, USA, 1968. [Google Scholar]
- Leuer, J.A.; Eidietis, N.W.; Ferron, J.R.; Humphreys, D.A.; Hyatt, A.W.; Jackson, G.L.; Johnson, R.D.; Penaflor, B.G.; Piglowski, D.A.; Walker, M.L.; et al. Plasma startup design of fully superconducting tokamaks EAST and KSTAR with implications for ITER. IEEE Trans. Plasma Sci. 2010, 38, 333–340. [Google Scholar] [CrossRef]
- Chen, L.X.; Shen, B.; Chen, D.L.; Luo, Z.P.; Zhang, Z.C.; Chen, Y.; Wang, Y.; Qian, J.P. Upgrade of the magnetic diagnostic system for restart of HT-6M operation. Chin. Phys. B 2022, 31, 125203. [Google Scholar] [CrossRef]
- Di Grazia, L.E.; Mattei, M. A numerical tool to optimize voltage waveforms for plasma breakdown and early ramp-up in the presence of constraints. Fusion Eng. Des. 2022, 176, 113027. [Google Scholar] [CrossRef]
- di Grazia, L.E.; Felici, F.; Mattei, M.; Merle, A.; Molina, P.; Galperti, C.; Coda, S.; Duval, B.; Maier, A.; Mele, A.; et al. Automated shot-to-shot optimization of the plasma startup scenario in the TCV tokamak. Nucl. Fusion 2024, 64, 096032. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, B.S.; Cai, L.J.; Li, G.S.; Zou, H.; Qiu, Y. Investigation of field-null for HL-2M tokamak startup. In Proceedings of the 2013 IEEE 25th Symposium on Fusion Engineering (SOFE), San Francisco, CA, USA, 10–14 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–4. [Google Scholar]
- Li, J.X.; Song, X.M.; Zhang, J.H.; Zheng, G.Y.; Pan, W.; Xue, L.; Wang, S.; Li, B.; Song, X.; Mao, R.; et al. Plasma startup design for initial discharges in HL-2M. Fusion Eng. Des. 2020, 150, 111366. [Google Scholar] [CrossRef]
- Xue, L.; Garcia, J.; Zheng, G.; Hoang, G.; Artaud, J.; Duan, X.; Li, J.; Giruzzi, G.; Zou, X.; Pan, W.; et al. Integrated plasma scenario analysis for the HL-2M tokamak. Nucl. Fusion 2019, 60, 016016. [Google Scholar] [CrossRef]
- Duan, X.R.; Xu, M.; Zhong, W.L.; Ji, X.Q.; Chen, W.; Shi, Z.B.; Liu, X.L.; Lu, B.; Li, B.; Wang, Y.Q. Recent advance progress of HL-3 experiments. Nucl. Fusion 2024, 64, 112021. [Google Scholar] [CrossRef]
- Song, X.; Song, X.M.; Li, B.; Zhou, J.; Nardon, E.; Heumann, H.; Faugeras, B.; Li, J.X.; Wang, S.; Liang, S.Y.; et al. Plasma initiation and preliminary magnetic control in the HL-2M tokamak. Nucl. Fusion 2021, 61, 086010. [Google Scholar] [CrossRef]
- Li, Q. The component development status of HL-2M tokamak. Fusion Eng. Des. 2015, 96, 338–342. [Google Scholar] [CrossRef]
- Humphreys, D.; Ferron, J.; Bakhtiari, M.; Blair, J.; In, Y.; Jackson, G.; Jhang, H.; Johnson, R.; Kim, J.; LaHaye, R.; et al. Development of ITER-relevant plasma control solutions at DIII-D. Nucl. Fusion 2007, 47, 943. [Google Scholar] [CrossRef]
- De Tommasi, G. Plasma magnetic control in tokamak devices. J. Fusion Energy 2019, 38, 406–436. [Google Scholar] [CrossRef]
- Castaldo, A.; Mele, A.; Albanese, R.; Ambrosino, R.; De Tommasi, G.; Luo, Z.; Pironti, A.; Xiao, B.; Yuan, Q. Simulation suite for plasma magnetic control at EAST tokamak. Fusion Eng. Des. 2018, 133, 19–31. [Google Scholar] [CrossRef]
- Zhang, K.; Xiao, B.J.; Wang, H.Z.; Shu, S.B. Application of low pass filtering PID control algorithm in PCS. Jisuanji Gongcheng Comput. Eng. 2007, 33, 249–251. [Google Scholar]
- Johnson, M.A.; Moradi, M.H. PID Control; Springer-Verlag London Limited: London, UK, 2005. [Google Scholar]
- Li, W.; Wang, Y.; Ren, Q.; Yao, L.; Chen, Y.; Wang, Y.; Xuan, W. Design and implementation of digital control system based on PAC architecture for large-capacity pulse power supply. IEEE Trans. Plasma Sci. 2019, 47, 5339–5344. [Google Scholar] [CrossRef]
- Vega, J.; Murari, A.; Dormido-Canto, S.; Rattá, G.A.; Gelfusa, M. Disruption prediction with artificial intelligence techniques in tokamak plasmas. Nat. Phys. 2022, 18, 741–750. [Google Scholar] [CrossRef]
- Yang, Z.; Zhong, W.; Xia, F.; Gao, Z.; Zhu, X.x.; Li, J.; Hu, L.; Xu, Z.; Li, D.; Zheng, G.; et al. Implementing deep learning-based disruption prediction in a drifting data environment of new tokamak: HL-3. Nucl. Fusion 2025, 65, 026030. [Google Scholar] [CrossRef]
- Degrave, J.; Felici, F.; Buchli, J.; Neunert, M.; Tracey, B.; Carpanese, F.; Ewalds, T.; Hafner, R.; Abdolmaleki, A.; Casas, D.d.L.; et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 2022, 602, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Kim, S.; Jalalvand, A.; Conlin, R.; Rothstein, A.; Abbate, J.; Erickson, K.; Wai, J.; Shousha, R.; Kolemen, E. Avoiding fusion plasma tearing instability with deep reinforcement learning. Nature 2024, 626, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Morabito, F.; Versaci, M.; Pautasso, G.; Tichmann, C.; Team, A.U. Fuzzy-neural approaches to the prediction of disruptions in ASDEX upgrade. Nucl. Fusion 2001, 41, 1715. [Google Scholar] [CrossRef]
- Versaci, M.; Angiulli, G.; La Foresta, F.; Laganà, F.; Palumbo, A. Intuitionistic fuzzy divergence for evaluating the mechanical stress state of steel plates subject to bi-axial loads. Integr. Comput. Aided Eng. 2024, 31, 363–379. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.; Yang, B.; Chen, Y.; Xu, X.; Zhu, X.; Yang, J.; Sun, J.; Liu, P.; Li, B.; Ji, X. Model-Based Optimization of the Field-Null Configuration for Robust Plasma Breakdown on the HL-3 Tokamak. Appl. Sci. 2025, 15, 2175. https://doi.org/10.3390/app15042175
He M, Yang B, Chen Y, Xu X, Zhu X, Yang J, Sun J, Liu P, Li B, Ji X. Model-Based Optimization of the Field-Null Configuration for Robust Plasma Breakdown on the HL-3 Tokamak. Applied Sciences. 2025; 15(4):2175. https://doi.org/10.3390/app15042175
Chicago/Turabian StyleHe, Muwen, Bin Yang, Yihang Chen, Xinliang Xu, Xiaobo Zhu, Jiaqi Yang, Jiang Sun, Panle Liu, Bo Li, and Xiaoquan Ji. 2025. "Model-Based Optimization of the Field-Null Configuration for Robust Plasma Breakdown on the HL-3 Tokamak" Applied Sciences 15, no. 4: 2175. https://doi.org/10.3390/app15042175
APA StyleHe, M., Yang, B., Chen, Y., Xu, X., Zhu, X., Yang, J., Sun, J., Liu, P., Li, B., & Ji, X. (2025). Model-Based Optimization of the Field-Null Configuration for Robust Plasma Breakdown on the HL-3 Tokamak. Applied Sciences, 15(4), 2175. https://doi.org/10.3390/app15042175