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Abstract: Despite the construction of several curved prestressed concrete girder bridges with
corrugated steel webs (CSWs) around the world; their shear behavior has seldom been investigated.
Accordingly, this paper substitutes the lack of available information on the global elastic shear
buckling of a plane curved corrugated steel web (PCCSW) in a curved girder. This is based on the
equilibrium equations and geometric equations in the elastic theory of classical shells, combined with
the constitutive relation of orthotropic shells. Currently, the global elastic shear buckling process
of the PCCSW in a curved girder is studied, for the first time in literature, with an equivalent
orthotropic open circular cylindrical shell (OOCCS) model. The governing differential equation
of global elastic shear buckling of the PCCSW, as well as its buckling strength, is derived by
considering the orthotropic characteristics of a corrugated steel web, the rational trigonometric
displacement modes, Galerkin’s method and variational principles. Additionally, the accuracy of the
proposed theoretical formula is verified by comparison with finite element (FE) results. Moreover,
the expressions of the inner or outer folded angle and radius of curvature are given by the cosine
theorem of the trigonometric function and inverse trigonometric function. Subsequently, parametric
analysis of the shear buckling behavior of the PCCSW is carried out by considering the cases where
the radius of curvature is constant or variable. This parametric analysis highlights the effects of web
dimensions, height-to-thickness ratio, aspect ratios of longitudinal and inclined panels, corrugation
height, curvature radius and folded angles on the elastic shear buckling strength. As a result, this
study provides a theoretical reference for the design and application of composite curved girders
with CSWs.

Keywords: curved girder; curvature radius; corrugated steel web; global shear buckling; Galerkin’s
method; variational principle

1. Introduction

The prestressed concrete girder bridge with corrugated steel webs (CSWs) is a novel type of
composite structure. It is made with a folded steel web and concrete flanges. Accordingly, it combines
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the advantages of the mechanical properties of both concrete and steel and significantly increases
the structural strength-to-weight ratio. Compared with traditional concrete webs, CSWs can solve
the problem of web cracking and improve, to some extent, the span capacity. This novel structure,
indeed, has many other advantages, such as low manufacturing cost, high prestressing efficiency and
convenience for assembly construction. As a novel composite thin-walled structure, bridge girders
with CSWs date back to the 1980s when the first bridge was constructed in France. They were widely
applied in Japan soon afterward [1], such as the Shirasawa Bridge and Shintogawa Bridge shown in
Figure 1 with a certain horizontal curvature. Since 2005, prestressed concrete girders with CSWs have
been vigorously promoted in China, e.g., the Yuwotou curved girder bridge of Guangzhou Province
and No. 3 East River curved bridge located in Sichuan Province. With the maturing of design theory
of bridge girders with CSWs and improvement of the level of manufacture and construction, this
new type of bridge is becoming increasingly competitive in medium and large bridge construction.
Thus, CSWs can widely be used for highways, viaducts, and ramp girder bridges, adding a beautiful
curvilinear appearance.
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process of beams with CSWs. Thus, many scholars have studied their buckling behavior, including 
local and global buckling, of prismatic girders with CSWs [2–12]. The global elastic shear buckling 
stress formulas of corrugated webs were given by Easley [13] and Galambos [14] considering 
different buckling factors, and later, the formulas were applied to prismatic or non-prismatic girders 
with CSWs [15]. Based on a series of experiments, Hamilton (1993) [2], and Sayed-Ahmed (2005) [3] 
held the view that shear forces were mainly carried by CSWs and that structural failure was caused 
by shear buckling of the steel web. Johnson (1997) found that stress in the CSW is generated only by 
the vertical shear forces, while the shrinkage, creep, prestressing and temperature of the upper and 
lower concrete flanges have little effect on the web [4]. Hassanein et al. (2014, 2015, 2016) performed 
a theoretical study, primarily on the shear buckling behavior of tapered bridge girders with CSWs, 
and then obtained a strength design formula for these webs [15–17]. Subsequently, Hassanein et al. 
(2017) numerically presented the nonlinear shear buckling response combined with the advantages 
of both high-strength steel and bridge girder with CSWs [18]. Leblouba et al. (2017) experimentally 
and numerically studied the shear behavior of trapezoidal corrugated webs from the pre-buckling 
stage until ultimate failure [19]. Based on experimental and theoretical analysis, Zhou et al. (2016) 
first studied the shear stress distribution and shear deformation in non-prismatic beams with CSWs 
[20–22]. On the other hand, Basher et al. [23] studied the nonlinear shear strength of curved 
composite plate girders with CSWs. The girders were assumed straight, in the first step of their 
design model, and the shear strengths of the girders were taken as the sum of the web buckling load, 
the web post buckling strength and the flanges contribution, besides that of the concrete slab. Then, 
this strength was extended to the curved girders with CSWs by applying a modification factor that 
considers the bending of the curved girders. From the authors’ view point, obtaining the buckling 
load of the curved CSW would better be presented based on theoretical derivations than just 

CSWs CSWs 

Figure 1. Shintogawa Bridge in Japan (completed in 2013): (a) Top view; (b) Side view. CSWs:
corrugated steel webs. CSWs: corrugated steel webs.

As a type of a thin-walled structure, shear buckling is the controlling factor in the design process
of beams with CSWs. Thus, many scholars have studied their buckling behavior, including local
and global buckling, of prismatic girders with CSWs [2–12]. The global elastic shear buckling stress
formulas of corrugated webs were given by Easley [13] and Galambos [14] considering different
buckling factors, and later, the formulas were applied to prismatic or non-prismatic girders with
CSWs [15]. Based on a series of experiments, Hamilton (1993) [2], and Sayed-Ahmed (2005) [3] held
the view that shear forces were mainly carried by CSWs and that structural failure was caused by
shear buckling of the steel web. Johnson (1997) found that stress in the CSW is generated only by
the vertical shear forces, while the shrinkage, creep, prestressing and temperature of the upper and
lower concrete flanges have little effect on the web [4]. Hassanein et al. (2014, 2015, 2016) performed
a theoretical study, primarily on the shear buckling behavior of tapered bridge girders with CSWs,
and then obtained a strength design formula for these webs [15–17]. Subsequently, Hassanein et al.
(2017) numerically presented the nonlinear shear buckling response combined with the advantages
of both high-strength steel and bridge girder with CSWs [18]. Leblouba et al. (2017) experimentally
and numerically studied the shear behavior of trapezoidal corrugated webs from the pre-buckling
stage until ultimate failure [19]. Based on experimental and theoretical analysis, Zhou et al. (2016) first
studied the shear stress distribution and shear deformation in non-prismatic beams with CSWs [20–22].
On the other hand, Basher et al. [23] studied the nonlinear shear strength of curved composite plate
girders with CSWs. The girders were assumed straight, in the first step of their design model, and
the shear strengths of the girders were taken as the sum of the web buckling load, the web post
buckling strength and the flanges contribution, besides that of the concrete slab. Then, this strength
was extended to the curved girders with CSWs by applying a modification factor that considers the
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bending of the curved girders. From the authors’ view point, obtaining the buckling load of the curved
CSW would better be presented based on theoretical derivations than just applying a modification
factor to the straight web configuration. Note that some new research fields were extended in recent
years, for instance, Bedon investigated the buckling behavior of timber log-walls and other composite
structures through theoretical analysis and finite element simulation [24,25].

From the aforementioned research, it could be drawn that these studies involving only the shear
buckling of straight girders with CSWs have made some progress and are constantly improving, but
few studies have focused on the shear behavior of curved girders with CSWs. However, the mechanical
behavior of curved girders with CSWs is quite different from that of straight girders due to the effect
of the initial curvature or curvature radius and corrugation dimensions or folded angles. In addition,
the bearing capacity of the structure is controlled by shear failure, and the bridge is in an elastic stage
during construction and operation. Therefore, it is of great significance to determine the global elastic
shear buckling strength of the plane curved corrugated steel web (PCCSW) with respect to both theory
and engineering practice, instead of just applying a modification factor for the buckling values of
straight webs. Moreover, in this study, the authors conducted preliminary theoretical and numerical
studies on the global elastic shear buckling of PCCSWs in bridge girders. The results indicated that the
global elastic shear buckling is more prominent in curved girders. Accordingly, this paper gives the
complete data under overall elastic shear buckling conditions of CSWs in curved girders.

2. Basic Equations

The mechanical properties of engineering structures including novel bridge girders with CSWs
are closely related to mechanics, especially the elastic response of bridges. For thin-walled shells
used in engineering, the force distribution diagram of an orthotropic open cylindrical shell element is
illustrated in Figure 2; the diagram shows a thin-walled structure considering the membrane effect.
From the classical elasticity theory, the equilibrium equation, geometric equation and constitutive
relation of an orthotropic open circular cylindrical shell (OOCCS) can be obtained:

Appl. Sci. 2018, 8, x FOR PEER REVIEW  3 of 24 

applying a modification factor to the straight web configuration. Note that some new research fields 
were extended in recent years, for instance, Bedon investigated the buckling behavior of timber 
log-walls and other composite structures through theoretical analysis and finite element simulation 
[24,25]. 

From the aforementioned research, it could be drawn that these studies involving only the 
shear buckling of straight girders with CSWs have made some progress and are constantly 
improving, but few studies have focused on the shear behavior of curved girders with CSWs. 
However, the mechanical behavior of curved girders with CSWs is quite different from that of 
straight girders due to the effect of the initial curvature or curvature radius and corrugation 
dimensions or folded angles. In addition, the bearing capacity of the structure is controlled by shear 
failure, and the bridge is in an elastic stage during construction and operation. Therefore, it is of great 
significance to determine the global elastic shear buckling strength of the plane curved corrugated steel 
web (PCCSW) with respect to both theory and engineering practice, instead of just applying a 
modification factor for the buckling values of straight webs. Moreover, in this study, the authors 
conducted preliminary theoretical and numerical studies on the global elastic shear buckling of PCCSWs 
in bridge girders. The results indicated that the global elastic shear buckling is more prominent in curved 
girders. Accordingly, this paper gives the complete data under overall elastic shear buckling conditions 
of CSWs in curved girders. 

2. Basic Equations 

The mechanical properties of engineering structures including novel bridge girders with CSWs 
are closely related to mechanics, especially the elastic response of bridges. For thin-walled shells 
used in engineering, the force distribution diagram of an orthotropic open cylindrical shell element 
is illustrated in Figure 2; the diagram shows a thin-walled structure considering the membrane 
effect. From the classical elasticity theory, the equilibrium equation, geometric equation and 
constitutive relation of an orthotropic open circular cylindrical shell (OOCCS) can be obtained: 

 
Figure 2. Force distribution diagram of an orthotropic open cylindrical shell element. OOCCS: 
orthotropic open circular cylindrical shell. 

Equilibrium differential equations: 

∂∂
∂ ∂

yxx
NN + =

x y
0  (1) 

∂ ∂
∂ ∂

xy yN N
+ =

x y
0  (2) 

∂∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂∂ ∂

yx
x y xy yx

QQ w w w w+ + N ( + ) + N + N + N =
x y R x y x yx y

2 2 2 2

2 2

1 0  (3) 

y
N

yx
N y

Q

,y y y
N N dy+

,yx yx y
N N dy+

,y y y
Q Q dy+

x
N

x
Q

xy
N

,x x x
N N dx+

,xy xy x
N N dx+

,x x x
Q Q dx+

x
M

xy
M

y
Myx

M

,x x x
M M dx+

,xy xy x
M M dx+

,y y y
M M dy+

,yx yx y
M M dy+

Figure 2. Force distribution diagram of an orthotropic open cylindrical shell element. OOCCS:
orthotropic open circular cylindrical shell.

Equilibrium differential equations:

∂Nx

∂x
+

∂Nyx

∂y
= 0 (1)

∂Nxy

∂x
+

∂Ny

∂y
= 0 (2)

∂Qx

∂x
+

∂Qy

∂y
+ Nx(

1
R
+

∂2w
∂x2 ) + Ny

∂2w
∂y2 + Nxy

∂2w
∂x∂y

+ Nyx
∂2w
∂x∂y

= 0 (3)
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∂Mx

∂x
+

∂Myx

∂y
−Qx = 0 (4)

∂Mxy

∂x
+

∂My

∂y
−Qy = 0 (5)

Deformation geometric equations:

εx =
∂u
∂x
− 1

R
w +

1
2
(

∂w
∂x

)
2
, εy =

∂v
∂y

+
1
2
(

∂w
∂y

)
2
, γxy =

∂u
∂y

+
∂v
∂x

+
∂w
∂x

∂w
∂y

(6)

Orthotropic constitutive equations:

εx =
σx

Ex
− νy

σy

Ey
, εy =

σy

Ey
− νx

σx

Ex
, γxy =

2(1 + ν)

E
τxy (7)

where xyz denotes the cylindrical coordinate system, and the x-, y- and z-axes are the circumferential,
vertical and radial directions, respectively. σx, σy and τxy are the normal and shear stresses, respectively.
εx and εy are the normal strains in the x-direction and y-direction, respectively, and γxy is the shear
strains. u, v and w are the circumferential, vertical and radial displacements, respectively. R is the
radius of curvature. Ex and Ey are the Young’s moduli in the x-direction and y-direction, respectively,
and νx and νy are the Poisson’s ratios in the x- and y-direction, respectively. Qx and Qy are the radial
shear forces per unit length in the x-direction and y-direction, respectively. Mx and My are the bending
moments per unit length in the x- and y-direction, respectively. Nx and Ny are the normal forces per
unit length in the x-direction and y-direction and are defined as Nx = tσx and Ny = tσy, respectively.
Mxy and Myx are the twisting moments per unit length that satisfy the reciprocal theorem of torsion
moment, that is, Mxy = Myx. Nxy and Nyx are the membrane shear forces in the x-y plane per unit
length that meet the shear stress reciprocal principle, namely, Nxy = Nyx = tτxy = tτyx, where t is
the plate thickness. w = w(x, y) is a function depending on x and y. The relationships between the
elastic constants of orthotropic materials are νx/νy = Ex/Ey, E =

√
ExEy and ν =

√
νxνy. In addition,

u = −z ∂w
∂x and v = −z ∂w

∂y .

3. Derivation of the Governing Equations

Based on the above basic equations of classical elastic shell theory and orthotropic shell theory,
the corresponding deformation compatibility equation of equivalent anisotropic shells is derived from
the geometric equations given above in Equation (6):

∂2εx

∂y2 +
∂2εy

∂x2 −
∂2γxy

∂x∂y
= (

∂2w
∂x∂y

)
2

− ∂2w
∂x2

∂2w
∂y2 −

1
R

∂2w
∂y2 (8)

The internal force of the shell can be obtained by the integration of the stress in the cross section
expressed as the relation with displacement. Equation (9) is the displacement expression of the bending
(Mx and My) or torsional moment:

Mx = −Dx(
∂2w
∂x2 + νy

∂2w
∂y2 ), My = −Dy(

∂2w
∂y2 + νx

∂2w
∂x2 ), Mxy = − Et3

12(1 + ν)

∂2w
∂x∂y

(9)

where Dx and Dy are the equivalent flexural stiffness in the x- and y-direction per unit length,

respectively. Dx = Ext3

12(1−νxνy)
, and Dy =

Eyt3

12(1−νxνy)
. This equation indicates that the equivalent

shell is different from the isotropic shell in the physical mechanism, and the differences in the elastic
modulus and Poisson’s ratio are reflected in the two perpendicular directions (i.e., the tangential
and vertical directions) from the physical angle, which can further reflect the flexural rigidity in
two directions.
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Substituting Equation (9) into Equations (4) and (5), the following equations concerning
displacement expressions of shear forces can be obtained:

Qx = − ∂

∂x
(Dx

∂2w
∂x2 +

Dxy

2
∂2w
∂y2 ), Qy = − ∂

∂y
(

Dxy

2
∂2w
∂x2 + Dy

∂2w
∂y2 ) (10)

where Dxy is the equivalent torsional stiffness in the x-y plane per unit length; Dxy = 2νyDx +
Et3

6(1+ν)
.

Let φ be an Airy stress function, satisfying Equations (1) and (2); then, we can obtain

σx =
∂2φ

∂y2 , σy =
∂2φ

∂x2 , τxy = − ∂2φ

∂x∂y
(11)

Substituting the shear force expression of Equation (10) into Equation (3), the following equation
can be obtained:

Dx
∂4w
∂x4 + Dxy

∂4w
∂x2∂y2 + Dy

∂4w
∂y4 = tσx(

1
R
+

∂2w
∂x2 ) + tσy

∂2w
∂y2 + 2tτxy

∂2w
∂x∂y

(12)

Applying the strain expression in Equation (7) to Equation (8), the following equation can be
obtained:

1
Ex

∂2σx

∂y2 +
1

Ey

∂2σy

∂x2 −
2
E

∂2τxy

∂x∂y
− ν

E
(

∂2σy

∂y2 + 2
∂2τxy

∂x∂y
+

∂2σx

∂x2 ) = (
∂2w
∂x∂y

)
2

− ∂2w
∂x2

∂2w
∂y2 −

1
R

∂2w
∂y2 (13)

Using Equation (11), Equations (12) and (13) become

Dx
∂4w
∂x4 + Dxy

∂4w
∂x2∂y2 + Dy

∂4w
∂y4 = tL(w, σ) +

t
R

∂2φ

∂y2 (14)

1
Ex

∂4φ

∂y4 +
1

Ey

∂4φ

∂x4 +
2
E

∂4φ

∂x2∂y2 = S(w, w)− 1
R

∂2w
∂y2 (15)

where L(w, σ) is a nonlinear term, and S(w, w) is a higher order term.

L(w, σ) = σx
∂2w
∂x2 + σy

∂2w
∂y2 + 2τxy

∂2w
∂x∂y

, S(w, w) = (
∂2w
∂x∂y

)
2

− ∂2w
∂x2

∂2w
∂y2 (16)

Due to the external forces per unit thickness of the shell boundary causing the principal
compressive stresses px, py and pxy, the following equations can be obtained:

px = −σx, py = −σy, pxy = −τxy (17)

4. Formulation of the Problem

Currently, the plane curved CSW of composite curved girder bridges is considered as an
orthotropic open circular cylindrical shell, and equivalent orthogonal open cylindrical shell can be
regarded as a continuous, homogeneous, orthotropic and perfectly elastic body, as shown in Figure 3.
Applying Equation (17) to the nonlinear term in Equation (14) and only considering the pure shear
state results in Pxy = tpxy = −tτxy. Then neglecting the higher order term in Equation (15), the global
elastic shear buckling control differential equation of a PCCSW can be written as follows:

Dx
∂4w
∂x4 + Dxy

∂4w
∂x2∂y2 + Dy

∂4w
∂y4 + 2Pxy

∂2w
∂x∂y

− t
R

∂2φ

∂y2 = 0 (18)

1
Ex

∂4φ

∂y4 +
1

Ey

∂4φ

∂x4 +
2
E

∂4φ

∂x2∂y2 +
1
R

∂2w
∂y2 = 0 (19)
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Figure 3. Plane curved CSW and its equivalent model: (a) Plane curved corrugated steel web;
(b) Equivalent orthotropic shell. PCCSW: plane curved corrugated steel web.

The governing differential Equations (18) and (19) can be reduced to an isotropic cylindrical shell
equation, that is, a Donnell equation [26], which shows the rationality of the governing differential
equations. In addition, the equivalent stiffness of the CSW used in the design guideline for composite
bridges in Japan can be expressed as follows [27]:

Dx = Est3

12(1−νs2)

Dy = s
l

Es(t3+thr
2)

6

Dxy = s
l

Est3

6(1+νs)

(20)

Here, Es and νs are the elastic modulus and Poisson’s ratio of steel, respectively, hr is the
corrugation depth of the CSW, s is the total folded panel segment length of single periodic corrugation,
and l is the projection length of s in relation to the longitudinal curved axis.

5. Solution of the Governing Differential Equations

Equations (18) and (19) can be combined into an eight-order differential equation with
different bending stiffnesses and elastic moduli with regard to curvature radius. The mathematical
software MAPLE (Maple V, Waterloo Maple Inc., Waterloo, Ontario Prov., Canada and 2012) [28]
is used in subsequent calculations, which can accurately be used to perform differential and
integration operations.

5.1. Displacement Model and the Galerkin Method

Note that if the arc length of the equivalent elastic shell is greater than the height, the buckling
value remains stable. This is because the buckling value is independent of the length, especially
the long narrow shells [16,29]. According to the deflection surface function of a long narrow shell,
considering the distance between the intersegmental lines on both sides of the global shear buckling
semiwave surface λ, the slope of intersegmental line β, and shell height H, the deflection surface
equation and the stress function expression of a simply supported boundary shell are as follows:

w = Asin
π

λ
(x− βy)sin

πy
H

(21)

φ = Bsin
π

λ
(x− βy)sin

πy
H

(22)

On the basis of the mathematical model formed by differential Equations (18) and (19) and
displacement Equations (21) and (22), the Galerkin method is used based on the principle of virtual
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displacement, namely, the work done by the generalized force (Equations (18) and (19)) on the
generalized virtual displacement (Equations (21) and (22)), respectively, is zero.

∫ λ
0

∫ H
0

[
(Dx

∂4w
∂x4 + Dxy

∂4w
∂x2∂y2 + Dy

∂4w
∂y4 ) + 2Pxy

∂2w
∂x∂y −

B
A

t
R

∂2φ

∂y2

]
sin π

λ (x− βy)sin πy
H δAdxdy = 0 (23)

∫ λ

0

∫ H

0

(
1

Ex

∂4φ

∂y4 +
1

Ey

∂4φ

∂x4 +
2
E

∂4φ

∂x2∂y2 +
A
B

1
R

∂2w
∂y2

)
sin

π

λ
(x− βy)sin

πy
H

δBdxdy = 0 (24)

where δ is a variational operator. Due to variation, δA and δB are arbitrary and they not equal to zero.
Thus: ∫ λ

0

∫ H
0 sin π

λ (x− βy)sin πy
H

[
(Dx

∂4w
∂x4 + Dxy

∂4w
∂x2∂y2 + Dy

∂4w
∂y4 ) + 2Pxy

∂2w
∂x∂y −

B
A

t
R

∂2φ

∂y2

]
dxdy = 0 (25)

∫ λ

0

∫ H

0
sin

π

λ
(x− βy)sin

πy
H

(
1

Ex

∂4φ

∂y4 +
1

Ey

∂4φ

∂x4 +
2
E

∂4φ

∂x2∂y2 +
A
B

1
R

∂2w
∂y2

)
dxdy = 0 (26)

According to the orthogonality principle of a trigonometric function, in terms of Equations (21)
and (22) and their derivatives, Equation (26) can be expressed as

π2B
Ex

(β4 + 6
β2λ2

H2 +
λ4

H4 ) +
π2B
Ey

+
2π2B

E
(β2 +

λ2

H2 )−
A
B

A
R
(β2λ2 +

λ4

H2 ) = 0 (27)

Here, α = λ2

H2 , A0 =
(

A
B

)2
; then,

A0 =

[
π2

Ex
(β4 + 6β2α + α2) +

π2

Ey
+

2π2

E
(β2 + α)

]
R

H2(β2α + α2)
(28)

In terms of the orthogonality principle of a trigonometric function, substituting Equations (21)
and (22) and their derivatives into Equation (25), the following equation can similarly be given:

Pxy =
π2

2
[

Dx

λ2β
+ Dxy(

β

λ2 +
1

H2β
) + Dy(

β3

λ2 + 6
β

H2 +
λ2

H4β
)] +

t
2RA0

(β +
λ2

H2β
) (29)

5.2. Functional Extremum Value

Since the length of the PCCSWs used in composite curved bridge girders is greater than the height,
the height of the global elastic shear buckling semiwave surface is filled with the entire height range of
the PCCSW. A variation of the internodal line slope or of the internode distance along the length of the
PCCSW is made to obtain the global elastic shear buckling value of the maximum semiwave of the
PCCSW. Because it involves the solution of the extremum value, the first-order partial derivatives of
Pxy with respect to β and λ can be obtained:

∂Pxy

∂β
= 0 (30)

∂Pxy

∂λ
= 0 (31)

By Equation (31), the following equations can be obtained:

α =

√
Dx + Dxyβ2 + Dyβ4

Dy + γ
(32)

γ =
tH2

RA0π2 (33)
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Here, γ can be viewed as the curvature parameter; by Equation (30), the following equation can
be obtained:

α[π2RA2(Dxy − 6β2Dy)− tB2H2β2] = π2RA2(−D + Dxyβ2 + 3Dyβ4 − Dyα2)− tB2H2α2 (34)

By Equations (32)–(34), the following equation can be obtained:

β =

 2Dx
Dy+γ +

Dx Dy

(Dy+γ)2 +
Dx
Dy

40Dy
Dy+γ + 6− 2Dy2

(Dy+γ)2


1
4

(35)

Substitution of Equations (32) and (35) into Equation (28) and then into Equation (33) allows the
following equation to be obtained:

γ =
5Dx H4

2π4R2t2 (36)

Similarly, by applying Equations (32) and (35) to Equation (28) and then to Equation (29), the
following equation of the global elastic shear buckling force unit length of the PCCSW can be obtained:

Pxy = (35.03 + 43.83
γ

Dy
+ 8.16

γ2

Dy2 )
Dx

1
4 Dy

3
4

H2 (37)

Taking R from Equation (36) to infinity, Equation (37) is transformed into the global elastic shear
buckling formula for the CSW used in composite straight girders, which agrees well with the Easley
formula [13]. Simultaneously, the accuracy of the algorithm is verified.

6. Numerical Study and Comparison

In this paper, finite element (FE) models of PCCSW are developed using the general application
software ANSYS (ANSYS 12.1, ANSYS Inc., Canonsburg, PA, USA and 2012) [30] for the numerical
investigation and parametric analysis. In this study, the elastic buckling modes are extracted from the
static general models. The results of the theoretical and numerical analysis are then compared.

6.1. Element Type and Material Properties

The quadrilateral finite-membrane-strain shell element (Shell63) with both bending and
membrane capabilities was used for modeling the three dimensional model PCCSW without flanges
and stiffeners. This general purpose three dimensional reduced integration element with a 4-node
elastic thin shell element is an appropriate element for most applications, and it is specified by its
thickness. Each node of the element has six degrees of freedom, namely, translational displacements
along the x, y and z directions and rotational displacement around each axis. For complex buckling
behavior, it provides accurate and reliable solutions. Material properties adopt the elastic stress-strain
relationship of steel, as shown in Table 1, and at the same time, the material characteristics of the
equivalent orthotropic shell are given.

Table 1. Material constants needed in numerical simulation of Shinkai Bridge [31] as an example.
PCCSW: plane curved corrugated steel web; OOCCS: orthotropic open circular cylindrical shell.

PCCSW OOCCS

Es = 2.1× 105 MPa Ey = 2.33× 105 MPa, Ex = 420 MPa
νs = 0.3 νy = 0.3, νx = 5.4× 10−4
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6.2. Geometry and Mesh

The typical finite element mesh of a PCCSW is shown in Figure 4, which is generated by using
lines and areas. Finite element mesh sizes of 80 mm × 80 mm are used for each longitudinal panel
and inclined panel of the PCCSW. In the mesh partition stage, the number of elements belong to
each panel segment of the PCCSW is more reasonable in the finite element simulation. Additionally,
mapped meshing is adopted. Four elements were used for meshing longitudinal and inclined panels
due to the transfer of longitudinal loads along the edge of the web from the inclined panel to the
longitudinal panel.
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Numerical analysis using large general-purpose software ANSYS and theoretical verification are
performed in the following analysis. The data are shown in the following tables. The finite element
model is shown in Figure 4.

6.3. Loading and Boundary Conditions

The PCCSW is prevented from translational movements in some directions, while the rotational
displacements are excluded in all directions. The translational restraints of the AD and BC edges are
under the restrained state except in the shear load direction. All the longitudinal and inclined panels
of the AB and CD edges are subjected to radial restraints, and the boundaries of AB and CD are also
subjected to longitudinal restraints at the midpoint of all inclined panels. The shear load is uniformly
distributed along edge BC. The considered simply supported boundary conditions, representing the
lower bound conditions in real bridge girders, are shown in Table 2. It is worth pointing out that
these boundary conditions have been verified by the co-author [32] by comparing the critical buckling
stresses of flat webs with the theoretical predictions [29].

Table 2. Boundary conditions of the PCCSW (Note: R: Restrained, F: Free).

Boundary Symbols AB, CD AB, CD (Midpoint of Inclined Panel) AD BC

Translation
δx F R R R
δy F F R F
δz R F R R

Rotation
θx F F F F
θy F F F F
θz F F F F
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A uniform nodal force is applied along the boundary BC. The sum of all nodal forces on the edge
is the unit force. Thus, each nodal force is 1/n, where n is the node number. Figure 5 represents the
positive first order global elastic shear buckling mode of the PCCSW, which is the most conservative
mode in the structural buckling calculation [17]. The elastic buckling eigenvalue calculated by FEM
and the critical buckling value of the finite element can be calculated by:

τcr,F =
eigenvalue

tH
(38)

where buckling eigenvalue extraction uses the block Lanczos method, and the middle surface value of
the shell is extracted by finite element results.
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6.4. Trigonometric Relation between the Dimensions of PCCSW

To determine the relationship between the geometric variables of the PCCSW, a single wavelength
PCCSW is taken, as shown in Figure 6. Here, s is a single wavelength, l is the projected length of a
single wavelength in relation to the longitudinal axis, a is the length of the longitudinal panel, c is the
length of the inclined panel, b is the projected length of the inclined panel in relation to the longitudinal
axis, R is the radius of curvature, hr is the amplitude height of the PCCSW, t is the panel thickness, θ is
the angle of the inclined panel in relation to the tangent line of the longitudinal axis, θ1 is the outer
folded angle, θ2 is the inner folded angle, and α1, α2, α3, α4 and α5 are all auxiliary angles. Because
of the difference between the inside and outside folded angles, the curved shape appearance of the
PCCSW is formed.

The following equations (expressions about a, R, hr and c) are obtained in accordance with the
triangle cosine theorem:

cosα1 =
a

2(R + hr/2)
(39)

cosα2 =
c2 + 2Rhr

2c(R + hr/2)
(40)
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cosα3 =
c2 − 2Rhr

2c(R− hr/2)
(41)

cosα4 =
a

2(R− hr/2)
(42)

cos(θ + π/2) =
(c/2)2 + R2 − (R + hr/2)2

cR
(43)
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6.5. Angle Relationship of PCCSW

In virtue of the sum of angles being a perigon or straight angle, the equations are as follows:

α5 = 2π − α3 − α4 (44)

θ2 = π − α5 (45)

θ1 = π − α1 − α2 (46)

In terms of Equations (39), (40) and (46), using inverse operation of the trigonometric function,
the expression for the outer folded angle is obtained:

θ1 = π − arccos
a

2(R + hr/2)
− arccos

c2 + 2Rhr

2c(R + hr/2)
(47)

In a similar manner, in terms of Equations (41), (42), (44), and (45), the expression for the inner
folded angle is obtained:

θ2 = arccos
c2 − 2Rhr

2c(R− hr/2)
+ arccos

a
2(R− hr/2)

− π (48)

In terms of Equation (43), the expression for the angle of the inclined panel in relation to the
tangent line of the longitudinal axis is obtained:

θ = arccos
(c/2)2 + R2 − (R + hr/2)2

cR
− π/2 (49)

6.6. Parametric Analysis and Comparison

To analyze the pure shear global elastic shear buckling behavior of PCCSW, the corrugation
dimensions of CSWs for existing bridges [8], given in Table 3, are used. The ratios of parameters for
the current analysis of the global shear buckling are:
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• Corrugation height-to-thickness ratio: hr/t = 8–28;
• Web height-to-thickness ratio: H/t = 136–750;
• Ratio of the bending rigidity in the y-direction to that in the x-direction: Dy/Dx = 139–1483;
• Angle of the inclined panel in relation to the tangent line of the longitudinal axis: θ = 23.62◦–39.14◦;
• Outer folded angle: θ1 = 23.83◦–39.33◦;
• Inner folded angle: θ2 = 23.48◦–39.02◦;

Table 3. Corrugation dimension of CSWs for existing bridges.

Bridge Name a (mm) b (mm) c (mm) hr (mm)

Shinkai 250 200 250 150
Maupre 284 241 284 150

Matsnoki 300 260 300 150
Hondani 330 270 336 200

Iisun 330 330 386 200
Cognac 353 319 353 150

Dole 430 370 430 220

Radius of curvature: R = 30 m–110 m (30 m is the smallest curvature radius of a steel-concrete
composite curved bridge [33], which is the most challenging curvature radius for a curved girder
bridge with CSWs in the future; 110 m is the minimum curvature radius of the existing curved girder
bridge with CSWs, which has already been built in China, namely, Yuwotou Bridge [34] located in
Guangzhou, Guangdong).

In the range of the above ratios of parameters, considering the relatively high web height of the
bridge, the overall buckling is easy to occur. Additionally, local buckling and interactive buckling are
not the main points discussed in this paper, so they are omitted in the data analysis.

It can clearly be observed from Table 4 and Figure 7 that the critical shear stress of the global
elastic shear buckling of PCCSW (e.g., for R = 110 m) increases with the increase of panel thickness
t and with the reduction of both the height H and the height-to-thickness ratio (H/t). The greater
H/t is, the smaller the absolute difference between the theory and finite element values is. Moreover,
theoretical values τcr,T of the 63 sets of data are in good agreement with the corresponding finite
element values τcr,F as shown in Table 4 and Figure 8; the mean of the τcr,F/τcr,T ratios is 1.00, and the
covariance is 0.09, and the max and min values are 1.15 and 0.84, respectively. Thus, the accuracy of
the theoretical values is verified.

Table 4. Global elastic shear buckling strength of PCCSW with varying height and thickness for R =
110 m. AVE: average value; COV: covariance.

Bridge H (mm) t (mm) H/t hr/t τcr,T (MPa) τcr,F (MPa) τcr,F/τcr,T

Shinkai

2500 10 250 15 1067.81 914.28 0.86
2500 12 208 13 1171.43 1157.80 0.99
2500 14 179 11 1267.46 1416.00 1.12
2700 10 270 15 916.22 887.85 0.97
2700 12 225 13 1005.13 1126.23 1.12
3000 8 375 19 664.07 635.54 0.96
3000 10 300 15 743.34 850.87 1.14
3500 6 583 25 423.83 410.31 0.97

Maupre

2500 14 179 11 1242.19 1133.89 0.91
2500 16 156 9 1330.58 1349.98 1.01
2500 18 139 8 1414.45 1577.02 1.11
3150 8 394 19 590.98 504.48 0.85
3150 10 315 15 661.52 674.19 1.02
3500 8 438 19 480.16 484.50 1.01
4000 6 667 25 320.08 315.94 0.99
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Table 4. Cont.

Bridge H (mm) t (mm) H/t hr/t τcr,T (MPa) τcr,F (MPa) τcr,F/τcr,T

Matsnoki

3000 10 300 15 723.65 626.20 0.87
3000 12 250 13 793.87 793.56 1.00
3000 14 214 11 858.94 971.79 1.13
3360 8 420 19 516.81 450.93 0.87
3360 10 336 15 578.50 600.68 1.04
3500 8 438 19 476.94 442.29 0.93
3500 10 350 15 533.86 592.26 1.11
4000 6 667 25 317.95 288.56 0.91
4000 8 500 19 367.48 421.28 1.15

Hondani

3000 18 167 11 1535.32 1389.96 0.91
3000 20 150 10 1620.65 1594.30 0.98
3000 22 136 9 1702.39 1806.67 1.06
3600 12 300 17 870.10 769.07 0.88
3600 14 257 14 940.72 939.17 1.00
3600 16 225 13 1006.79 1118.26 1.11
4000 10 400 20 644.70 582.85 0.90
4000 12 333 17 706.81 739.00 1.05
4500 8 563 25 457.60 415.81 0.91
4500 10 450 20 511.95 557.44 1.09
5000 8 625 25 373.25 399.60 1.07

Iisun

3500 16 219 13 1046.32 940.38 0.90
3500 18 194 11 1111.19 1099.46 0.99
3500 20 175 10 1172.94 1266.57 1.08
3960 12 330 17 708.64 617.80 0.87
3960 14 283 14 766.16 757.02 0.99
3960 16 248 13 819.96 904.97 1.10
4500 10 450 20 503.29 464.78 0.92
4500 12 375 17 551.78 591.94 1.07
5000 8 625 25 366.99 333.50 0.91
5000 10 500 20 410.58 448.70 1.09
5500 8 688 25 306.21 322.80 1.05

Cognac

3500 10 350 15 525.70 449.89 0.86
3500 12 292 13 576.71 570.55 0.99
3500 14 250 11 623.98 699.18 1.12
4032 8 504 19 356.36 319.54 0.90
4032 10 403 15 398.89 428.00 1.07
4500 6 750 25 249.74 210.50 0.84
4500 8 563 19 288.64 307.08 1.06

Dole

4500 14 321 16 682.03 608.44 0.89
4500 16 281 14 729.79 723.76 0.99
4500 18 250 12 774.85 844.56 1.09
4800 12 400 18 556.39 486.28 0.87
4800 14 343 16 601.45 594.08 0.99
4800 16 300 14 643.56 707.62 1.10
5500 10 550 22 390.71 364.18 0.93
5500 12 458 18 428.28 462.27 1.08
6000 8 750 28 296.57 263.02 0.89
6000 10 600 22 331.75 352.52 1.06

AVE 1.00
COV 0.09

MAX & MIN values 1.15 & 0.84
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Figure 7. Global elastic shear buckling strength τcr versus web height-to-thickness ratio H/t (R = 110 m). 
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Figure 8. Finite element value τcr,F versus theoretical value τcr,T of global elastic shear buckling 
strength. AVE: average value; COV: covariance 

Figure 8. Finite element value τcr,F versus theoretical value τcr,T of global elastic shear buckling
strength. AVE: average value; COV: covariance.

As seen from Figure 9, considering Cognac Bridge as an example, when the radius of curvature
and the height of the PCCSW are constant at R = 110 m and H = 4032 mm, the global shear buckling
stress of the PCCSW increases with the decrease of aspect ratios a/H and c/H of a single panel
(longitudinal panel or inclined panel). It is also clear from the figure that the global shear buckling
strength of the PCCSW is more sensitive to c/H than to a/H. This is reasonable as the global buckling
involves out of plane deformation for the corrugated web which is resisted by the inclined folds.
Hence, changing the width of the inclined folds become greater than that of the longitudinal folds.
This result illustrates that for global shear buckling of PCCSW with constant curvature radius and
height, the denser the corrugation is, the larger the buckling strength is. It is worth pointing out that
these conclusions remain accurate with different corrugation dimensions as the results of the other
bridge conditions are qualitatively similar to those of Cognac Bridge.
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110 m, H = 4032 mm).

As seen from Figures 10–12 and Tables 5 and 6, when the radius of curvature is constant at R
= 110 m, it can be concluded that the global shear buckling stress of the PCCSW increases with the
increase of the corrugation height hr. Additionally, the larger the web height-to-thickness ratio H/t is,
the slower the growth trend is. Different angles, such as the outer corrugation angle θ1, the intersection
angle θ of the central axis and the inner corrugation angle θ2 of the PCCSW, also increase with the
increase of the corrugation height hr. Note that the outer corrugation angle θ1 is greater than the inner
corrugation angle θ2; that is, these angles satisfy the inequality θ1 > θ > θ2, and the sum of θ1 and θ2 is
slightly larger than two times θ. It can also be observed that the global shear buckling stress of the
PCCSW increases with the increase of the inner and outer corrugation angles and it shows a steady
increasing trend. It can also be confirmed that the critical finite element values of the global elastic
shear buckling are well matched with the theoretical results, as can be noticed from Table 5.Appl. Sci. 2018, 8, x FOR PEER REVIEW  16 of 24 
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Figure 10. Global elastic shear buckling strength of PCCSW in theory τcr,T versus corrugation height hr

(R = 110 m).
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Figure 12. Global elastic shear buckling strength of PCCSW in theory τcr,T versus different angles θ1, θ

and θ2 (R = 110 m).

Table 5. Global elastic shear buckling strength of PCCSW with varying corrugation height for R =
110 m.

Bridge hr (mm) H (mm) t (mm) τcr,T (MPa) τcr,F (MPa) τcr,F/τcr,T

Shinkai

130 2700 10 728.09 838.52 1.15
140 2700 10 819.67 862.85 1.05
150 2700 10 916.22 887.85 0.97
160 2700 10 1017.79 902.33 0.89

Maupre

140 3150 10 593.26 654.63 1.10
150 3150 10 661.52 674.19 1.02
160 3150 10 733.11 691.87 0.94
170 3150 10 808.05 707.62 0.88
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Table 5. Cont.

Bridge hr (mm) H (mm) t (mm) τcr,T (MPa) τcr,F (MPa) τcr,F/τcr,T

Matsnoki

140 3360 10 519.32 582.26 1.12
150 3360 10 578.50 600.68 1.04
160 3360 10 640.49 617.59 0.96
170 3360 10 705.32 632.92 0.90
180 3360 10 772.98 646.58 0.84

Hondani

180 3600 14 794.56 905.24 1.14
190 3600 14 866.21 923.10 1.07
200 3600 14 940.72 939.17 1.00
210 3600 14 1018.13 953.43 0.94
220 3600 14 1098.44 965.79 0.88

Iisun

180 3960 14 649.19 728.91 1.12
190 3960 14 706.58 743.58 1.05
200 3960 14 766.16 757.02 0.99
210 3960 14 827.93 769.17 0.93
220 3960 14 891.91 780.10 0.87

Cognac

140 4032 10 359.16 413.22 1.15
150 4032 10 398.89 428.00 1.07
160 4032 10 440.41 441.96 1.00
170 4032 10 483.69 455.03 0.94
180 4032 10 528.75 467.24 0.88

Dole

200 4800 14 518.84 569.09 1.10
210 4800 14 559.46 581.95 1.04
220 4800 14 601.45 594.08 0.99
230 4800 14 644.81 605.46 0.94
240 4800 14 689.55 616.09 0.89

AVE 1.00
COV 0.09

Table 6. Global elastic shear buckling strength of PCCSW with different angles and corrugation heights
for R = 110 m.

Bridge θ (◦) θ1 (◦) θ2 (◦) H (mm) t (mm) hr (mm) τcr,T (MPa)

Shinkai

33.00 33.14 32.91 2700 10 130 728.09
34.97 35.11 34.87 2700 10 140 819.67
36.84 36.99 36.75 2700 10 150 916.22
38.63 38.78 38.54 2700 10 160 1017.79

Maupre

30.11 30.27 30.00 3150 10 140 593.26
31.85 32.02 31.74 3150 10 150 661.52
33.53 33.70 33.43 3150 10 160 733.11
35.15 35.32 35.04 3150 10 170 808.05

Matsnoki

28.28 28.46 28.17 3360 10 140 519.32
29.97 30.15 29.85 3360 10 150 578.50
31.59 31.77 31.48 3360 10 160 640.49
33.16 33.34 33.05 3360 10 170 705.32
34.68 34.86 34.57 3360 10 180 772.98

Hondani

33.66 33.85 33.53 3600 14 180 794.56
35.10 35.29 34.98 3600 14 190 866.21
36.49 36.69 36.37 3600 14 200 940.72
37.84 38.03 37.72 3600 14 210 1018.13
39.14 39.33 39.02 3600 14 220 1098.44
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Table 6. Cont.

Bridge θ (◦) θ1 (◦) θ2 (◦) H (mm) t (mm) hr (mm) τcr,T (MPa)

Iisun

28.56 28.77 28.43 3960 14 180 649.19
29.88 30.09 29.75 3960 14 190 706.58
31.16 31.38 31.04 3960 14 200 766.16
32.42 32.63 32.29 3960 14 210 827.93
33.64 33.85 33.51 3960 14 220 891.91

Cognac

23.62 23.83 23.48 4032 10 140 359.16
25.10 25.32 24.97 4032 10 150 398.89
26.56 26.77 26.42 4032 10 160 440.41
27.97 28.19 27.84 4032 10 170 483.69
29.35 29.57 29.22 4032 10 180 528.75

Dole

28.38 28.64 28.22 4800 14 200 518.84
29.57 29.82 29.41 4800 14 210 559.46
30.72 30.98 30.56 4800 14 220 601.45
31.86 32.11 31.70 4800 14 230 644.81
32.96 33.22 32.80 4800 14 240 689.55

As shown in Figure 13, the global elastic shear buckling stress of PCCSW increases with the
decrease of the curvature radius R, especially when R < 60 m. When the buckling strength is large, the
sensitivity of the difference between web height-to-thickness ratios H/t of the two adjacent curves to
the absolute difference of the buckling strength becomes great. As noted before, the global elastic shear
buckling strength of PCCSW with a small radius of curvature is greater than that of the others. Hence,
the absolute shear strength increases obviously, especially for the large CSW with large corrugation
dimensions and a small radius of curvature. On the other hand, Figure 14 and Table 7 show that the
strength of the CSW used in the curved girder bridge is higher than that of the straight girder bridge.
It also illustrates that PCCSW, to some extent, has a stiffening effect on the entire structure under pure
shear conditions.
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As shown in Figure 13, the global elastic shear buckling stress of PCCSW increases with the 
decrease of the curvature radius R, especially when R < 60 m. When the buckling strength is large, 
the sensitivity of the difference between web height-to-thickness ratios H/t of the two adjacent 
curves to the absolute difference of the buckling strength becomes great. As noted before, the global 
elastic shear buckling strength of PCCSW with a small radius of curvature is greater than that of the 
others. Hence, the absolute shear strength increases obviously, especially for the large CSW with 
large corrugation dimensions and a small radius of curvature. On the other hand, Figure 14 and 
Table 7 show that the strength of the CSW used in the curved girder bridge is higher than that of the 
straight girder bridge. It also illustrates that PCCSW, to some extent, has a stiffening effect on the 
entire structure under pure shear conditions. 
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Figure 14. Comparison of global shear buckling strength of a corrugated web used in a straight bridge
(R = ∞) and a curved bridge (R = 110 m).

Table 7. Global elastic shear buckling strength of PCCSW with varying curvature radius.

Bridge R (m) H (mm) t (mm) τcr,T (MPa) τcr,F (MPa) τcr,F/τcr,T

Shinkai

∞ 2700 10 913.40 884.19 0.97
110 2700 10 916.22 887.85 0.97
80 2700 10 918.74 887.89 0.97
50 2700 10 927.08 889.85 0.96
40 2700 10 934.79 892.89 0.96
30 2700 10 951.53 897.89 0.94

Maupre

∞ 3150 10 657.65 673.24 1.02
110 3150 10 661.52 674.19 1.02
80 3150 10 664.97 675.21 1.02
50 3150 10 676.43 677.08 1.00
40 3150 10 687.06 678.70 0.99
30 3150 10 710.19 681.11 0.96

Matsnoki

∞ 3360 10 574.09 599.82 1.04
110 3360 10 578.50 600.68 1.04
80 3360 10 582.43 601.58 1.03
50 3360 10 595.52 602.26 1.01
40 3360 10 607.69 603.27 0.99
30 3360 10 634.22 604.76 0.95

Hondani

∞ 3600 14 935.58 937.84 1.00
110 3600 14 940.72 939.17 1.00
80 3600 14 945.31 939.76 0.99
50 3600 14 960.54 940.54 0.98
40 3600 14 974.66 941.63 0.97
30 3600 14 1005.39 943.23 0.94

Iisun

∞ 3960 14 759.90 755.99 0.99
110 3960 14 766.16 757.02 0.99
80 3960 14 771.74 757.43 0.98
50 3960 14 790.33 757.95 0.96
40 3960 14 807.60 758.77 0.94
30 3960 14 845.31 759.94 0.90

Cognac

∞ 4032 10 392.50 427.38 1.09
110 4032 10 398.89 428.00 1.07
80 4032 10 404.61 428.27 1.06
50 4032 10 423.72 428.65 1.01
40 4032 10 441.60 429.14 0.97
30 4032 10 481.01 429.86 0.89

Dole

∞ 4800 14 592.65 593.24 1.00
110 4800 14 601.45 594.08 0.99
80 4800 14 609.31 594.46 0.98
50 4800 14 635.58 594.97 0.94
40 4800 14 660.12 595.67 0.90
30 4800 14 714.13 599.96 0.84

AVE 0.98
COV 0.05
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As shown in Figures 15 and 16 and Tables 7 and 8, as the radius of curvature R of PCCSW
decreases, the outer corrugation angle increases, while the inner corrugation angle decreases. Also,
for the same case, the intersection angle of the inclined panel in relation to the tangent line of the
longitudinal axis θ decreases slowly, and obviously the outer corrugation angle θ1 increases faster
than that of the inner corrugation angle θ2. With regard to buckling stress, it can be concluded from
Figure 16 that when the radius of curvature R is reduced, the global elastic shear buckling stress of
PCCSW increases with the increase of the outer corrugation angle θ1 and with the reduction of both
the intersection angle θ of the central axis and the inner corrugation angle θ2, and the increasing speed
is slower than that of θ1.
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Table 8. Global elastic shear buckling strength of PCCSW with different angles and curvature radii.

Bridge θ (◦) θ1 (◦) θ2 (◦) H (mm) t (mm) R (m) τcr,T (MPa)

Shinkai

36.84 36.99 36.75 2700 10 110 916.22
36.83 37.03 36.71 2700 10 80 918.74
36.81 37.13 36.61 2700 10 50 927.08
36.80 37.19 36.55 2700 10 40 934.79
36.77 37.30 36.44 2700 10 30 951.53

Maupre

31.85 32.02 31.74 3150 10 110 661.52
31.84 32.07 31.69 3150 10 80 664.97
31.81 32.18 31.58 3150 10 50 676.43
31.80 32.26 31.51 3150 10 40 687.06
31.77 32.38 31.38 3150 10 30 710.19

Matsnoki

29.97 30.15 29.85 3360 10 110 578.50
29.95 30.20 29.80 3360 10 80 582.43
29.93 30.32 29.68 3360 10 50 595.52
29.91 30.40 29.60 3360 10 40 607.69
29.88 30.53 29.46 3360 10 30 634.22

Hondani

36.49 36.69 36.37 3600 14 110 940.72
36.48 36.74 36.31 3600 14 80 945.31
36.45 36.87 36.19 3600 14 50 960.54
36.43 36.96 36.10 3600 14 40 974.66
36.40 37.10 35.96 3600 14 30 1005.39

Iisun

31.16 31.38 31.04 3960 14 110 766.16
31.15 31.44 30.97 3960 14 80 771.74
31.11 31.58 30.83 3960 14 50 790.33
31.09 31.68 30.73 3960 14 40 807.60
31.05 31.84 30.58 3960 14 30 845.31

Cognac

25.10 25.32 24.97 4032 10 110 398.89
25.09 25.39 24.91 4032 10 80 404.61
25.05 25.53 24.76 4032 10 50 423.72
25.03 25.63 24.66 4032 10 40 441.60
24.99 25.79 24.50 4032 10 30 481.01

Dole

30.72 30.98 30.56 4800 14 110 601.45
30.71 31.06 30.49 4800 14 80 609.31
30.67 31.23 30.31 4800 14 50 635.58
30.64 31.34 30.20 4800 14 40 660.12
30.60 31.53 30.01 4800 14 30 714.13

7. Conclusions

In this paper, CSWs in composite curved girders were analyzed by an orthotropic open cylindrical
shell modelling. Theoretical derivation of the shear strength and parameter analysis of the global
elastic shear buckling behavior of PCCSW was carried out. Based on the detailed study described in
this paper, the following conclusions are obtained:

(1) According to the elastic theories of shells and orthotropic materials, the governing differential
equations of global elastic shear buckling of PCCSW were given. Through a reasonable
dis-placement mode, the critical shear stress of the PCCSW of a composite curved girder was
obtained by using the Galerkin method and the variational extremum principle.

(2) The correctness of the proposed theoretical buckling formula was verified by the parametric
analysis of a series of finite element models. A comparison of the numerical results of the finite
element models with theoretical results showed good agreement. It was found that the denser
the corrugation of PCCSW with constant curvature radius and height is, the larger the buckling
strength is. Additionally, the global shear buckling strength of PCCSW was found to be more
sensitive to the variation of the inclined panel width than to that of the longitudinal panel.
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Moreover, the outer folded angle was found to be greater than the inner folded angle, and the
sum of the outer and inner folded angles is slightly larger than two times the intersection angle
between the inclined panel and the tangent line of the longitudinal axis. Additionally, the results
indicated that the global elastic shear buckling stress of PCCSW increases with a decrease in the
curvature radius, especially when R < 60 m. Thus, PCCSW has a stiffening effect on the entire
structure under the pure shear condition.

(3) Through analysis of the influence of a constant or variable radius of curvature on buckling
performance, the following rules were obtained: when the radius of curvature is constant, the
smaller the web height and the ratio of web height-to-thickness are or the greater the web
thickness and the corrugation height are, the higher the global elastic shear buckling strength
of PCCSW is. However, the global shear buckling critical stress of PCCSW increases with a
decrease in the radius of curvature of the PCCSW and its inner angle and an increase in the outer
folded angle.

(4) By considering the characteristic of PCCSW, namely, there exist a common effect of geometric
curvature and orthotropic properties, the effect of these key factors are considered in the
calculation of the global elastic shear buckling of CSWs in a composite curved girder for the
first time.

Finally, to the authors’ opinion, this study can provide a theoretical reference for the design and
application of composite curved girders with CSWs, instead of just applying a modification factor for
the straight girder’s calculations. The applicability of such buckling formula for the use in calculating
the ultimate shear strength of curved composite girders is intended in further publication.
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