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Abstract: Wind power generation output is highly uncertain, since it entirely depends on intermittent
environmental factors. This has brought a serious problem to the power industry regarding the
management of power grids containing a significant penetration of wind power. Therefore, a highly
accurate wind power forecast is very useful for operating these power grids effectively and sustainably.
In this study, a new dual-step integrated machine learning (ML) model based on the hybridization of
wavelet transform (WT), ant colony optimization algorithm (ACO), and feedforward artificial neural
network (FFANN) is devised for a 24 h-ahead wind energy generation forecast. The devised model
consists of dual steps. The first step uses environmental factors (weather variables) to estimate wind
speed at the installation point of the wind generation system. The second step fits the wind farm
actual generation with the actual wind speed observation at the location of the farm. The predicted
future speed in the first step is later given to the second step to estimate the future generation of
the farm. The devised method achieves significantly acceptable and promising forecast accuracy.
The forecast accuracy of the devised method is evaluated through several criteria and compared
with other ML based models and persistence based reference models. The daily mean absolute
percentage error (MAPE), the normalized mean absolute error (NMAE), and the forecast skill (FS)
values achieved by the devised method are 4.67%, 0.82%, and 56.22%, respectively. The devised
model outperforms all the evaluated models with respect to various performance criteria.

Keywords: machine learning; feedforward artificial neural network; ant colony optimization; wavelet
transform; renewable energy; wind energy; forecasting

1. Introduction

Installation of renewable energy—predominantly wind energy—has received a great deal of
attention globally due to several environmental protocols agreed upon by almost all countries as
the primary directives of the United Nation (UN). This is due the fact that wind power generation
is a zero-carbon generation method, is accessible everywhere, requires a smaller installation space,
etc. Moreover, the advent of power electronics and the associated control technology has further
accelerated the rapid deployment of wind generation systems globally.

Wind energy is a promising source of energy for the future generation smart grid. This is mainly
due to the cleanness and the wide availability of wind energy. The recent and rapid development of
power electronic converter technology is the other main reason for the promising integration of wind
energy in the future smart grid.

Appl. Sci. 2019, 9, 2125; doi:10.3390/app9102125 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2222-7161
http://www.mdpi.com/2076-3417/9/10/2125?type=check_update&version=1
http://dx.doi.org/10.3390/app9102125
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 2125 2 of 21

Although wind power generation has significant environmental advantages and is a promising
source of energy for the future, its uncertainty due to intermittency of weather variables makes it worth
less than the conventional generation sources. This is because the generation power uncertainty causes
large problems with power grid stability and control.

However, this problem is not unmanageable. To harness the benefit and increase the
competitiveness of wind energy, an enhanced forecast of wind generation is essential. An accurate
wind power forecast enhances control, stability, sustainability, and flexibility of electricity grids with a
large proportion of wind generation. Accurate forecasts allow the various stakeholders involved in the
power industry to make better decisions regarding power system investment, planning, operation,
management, economics, market, strategy, risk analysis, etc. Thus, accurate 24 h-ahead (called
short-term) prediction of wind generation plays a key role in the power systems containing a huge
penetration of wind energy.

Plenty of approaches and enabling tools have been implemented in the last few years to forecast
wind speed and the associated energy output. These methods are grouped as statistical, physical, and
time-series methodologies according to the estimation approaches the techniques use [1]. A number
of research groups nowadays use the integration of statistical and physical approaches to find
improved hybrid approaches that can be used for a longer horizon of forecast. In the hybrid
approaches, the statistical approaches play auxiliary roles on the forecast input dataset gathered by the
physical approaches.

Although these two approaches have become very common for wind power prediction (WPP) [2,3],
as mentioned above, the hybridization of statistical and physical techniques has become widely
implementable and more effective [4,5]. Additionally, several correlation-based methods have been
devised for wind energy prediction for obtaining lower forecast accuracy [6]. Contrarily, via time and
the emergence of higher-level mathematical programming tools [such as artificial intelligence (AI),
machine learning (ML), and deep learning (DL)], further innovative approaches have been devised for
WPP. Namely, neural networks [7–9], neural networks with Gaussian approximation and Bayesian
training [10], neural networks with wavelet transform (WT) [11], fuzzy system-based techniques [5,12],
Kalman filter [13], support vectors [14], and neural networks combined with fuzzy logic system [15]
were devised for WPP.

From the aforementioned previous works on WPP, the ML or the AI based methods have given
better forecast accuracy over the other approaches. However, most of these methods have only used
the wind power generation historical measurement records and did not consider environmental factors
(weather variable forecast values) while developing the forecast models. These methods are faced
with major problems when the historical wind power measurement dataset has skipped or provides
erroneous entries, and they are consequently incapable of giving accurate predictions.

Deeper review of the prior studies on WPP new prediction approaches are still in demand to
enhance accuracy and maintain consistency of forecasts while keeping an acceptable computational
time. This purpose inspired the implementation of integrated and dual-step WPP models based on
various ML techniques. These models use both statistical (wind energy measurement values) and
physical (weather information) datasets to implement improved WPPs. Namely, dual-step WPP based
on the adaptive neuro-fuzzy inference system (ANFIS) [16], the hybrid particle swarm optimization
(PSO)-artificial neural network (ANN) [17], the hybrid genetic algorithm (GA)-ANN [18], and the
hybrid Hilbert-Huang transform (HHT)-GA-ANN [19] have been applied for WPP using historical
wind energy dataset, wind speed actual observation, and meteorological forecasts. In addition,
dual-stage game theory-based ML approaches have been applied for demand response management in
the context of a smart grid [20,21]. These methods have achieved very acceptable prediction accuracy
and suggested innovative techniques of treating skipped wind farm power records. However, the
prediction accuracies obtained by these methods are not quite enough and can be further improved.
The improvement can be achieved by employing more robust and global optimization techniques
for training and obtaining the best parameter sets of the forecast engines and by applying more
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suitable feature extraction algorithms and reconfiguring the forecast engines, as proposed in this
paper. Some of the dual-step ML methods are also computationally exhaustive [20,21] for wind power
forecasting problem.

In this study, a new, effective, and computationally simple dual-step 24 h-ahead WPP integrated
ML model consisting of WT, ant colony optimization algorithm (ACO), and feedfoward artificial neural
network (FFANN) is devised. The devised model trains with datasets from wind farm actual power
generation and numerical weather prediction (NWP).

The devised dual-step integrated WT-ACO-FFANN WPP model is compared with persistence,
dual-step BP-FFANN, dual-step GA-FFANN, and dual-step PSO-FFANN based WPP models to validate
its suitability regarding prediction accuracy and running time performances.

The key aims of this study are outlined as follows:

(1) Provide a new and effective dual-step integrated ML model for 24 h-ahead WPP considering
wind farm power generation and weather forecast datasets;

(2) Improve forecast accuracy, validated through performance comparison with persistence-based
reference models and other ML based models;

(3) Recommend practical insights for WPP problems involving training datasets with skipped entries.

The remaining sections of the paper are outlined as follows. Section 2 provides the devised
dual-step WPP model. Section 3 presents the depiction and the preparation of the forecast inputs.
The WT-ACO-FFANN configuration for WPP and the theory and mathematical modeling of WT,
ACO, and FFANN are described in Section 4. Section 5 defines the various criteria employed for
estimating the effectiveness of the devised technique. The experimental outcomes and validations for
the investigated operational wind generation system are discussed in Section 6. The study is finally
summarized in Section 7.

2. Devised 24 h-Ahead Prediction Approach

The devised WPP technique is based on the integration of WT, ACO, and FFANN. The WT is
employed to extract the most important and healthy time subseries (data elements) from the target
variable (wind power) original data time series. That means WT is applied in this paper to expand
the initial target data into subseries. Using the target data subseries instead of the original data series
increases the forecast accuracy of the devised WPP method. Therefore, the target data subseries is
employed as the training target for the FFANN model at the second stage. That means the second
stage FFANN models the existing affiliation between the wind speed actual measurement data at
the farm spot and the wind generation actual measurement data subseries (obtained from the WT
decomposition), while the first stage FFANN models the existing affiliation between the weather
variables and the actual wind speed measurement.

Hence, through data-driven training of the FFANN models in these two stages, a trained wind
power forecast model is obtained. The future (forecasted) weather variables from NWP models
(weather stations) are given to the first-stage trained model to estimate the looming wind speed at the
farm spot. This forecasted speed in the initial step is then given to the second step trained model to
estimate the future wind generation subseries. The ACO algorithm is applied for the FFANN model in
each stage of the devised approach for finding the global best values of the FFANN connecting weights.
The ACO algorithm searches the optimal values of the FFANN weight parameters to ensure that the
possible lowest error of the wind generation forecast is achieved. Finally, the desired wind generation
forecast is found using the inverse WT of the obtained future wind power subseries.

The devised dual-step WPP approach in this paper is shown schematically in Figure 1.
As aforementioned, the ACO-FFANN at the first step is implemented to estimate the farm spot
and the turbine hub elevation. In this step, a predictor set consisting of historical weather forecasts
as the input and prior wind speed actual record as the target are employed to train the FFANN
model. In the second step, the WT-ACO-FFANN is implemented to fit the wind speed versus power
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relationship using actual measurement data. Then, the estimated speed by the ACO-FFANN in the
first step is given to the WT-ACO-FFANN in the second step to estimate the wind generation for the
time ahead.
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colony optimization algorithm (ACO)-feedfoward artificial neural network (FFANN).

3. Data Sources and Treatments

In this section, the main data sources and types used to construct the proposed wind power
forecasting model are discussed. The relevant data treatment techniques used in the forecasting process
are also presented in this section.

3.1. Wind Farm Actual Power Generation Data

Wind generation systems have a Supervisory Control and Data Acquisition (SCADA) center that
archives the generated power and the status of the wind turbines in a fixed time interval (usually
1 min, 10 min, 15 min, or 1 h resolutions). The SCADA is computer software that can be run on a single
computer if the wind farm is a smaller size and contains a smaller number of wind turbines located in
the same or nearby locations. However, it can be run in a distributed framework if the wind farm has a
large capacity and contains a huge number of turbines dispersed in various locations. The SCADA
system enables wind farm operators to supervise and regulate remote operations and turbines online.
In this paper, the SCADA system of an operational microgrid wind generation system in Beijing, China
is examined. The generation system is rated at 2500 kW. In this work, the wind generation data are a
vector consisting of the wind generation historical archives for three years (2014–2016) with 10-min
resolution. The two-year (2014–2015) data are employed for the forecast model training and validation,
while the remaining one-year (2016) data are utilized for the mode testing or forecast. The wind
generation data are achieved based on the local time zone, which is China standard time (CST) [CST =

Coordinated Universal Time (UTC) + 08:00].
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3.2. Environmental (Weather) Data

Weather data play the major role in the devised WPP approach. Several techniques exist for
obtaining weather data at specific sites and resolutions; for example, through observation, data-mining,
and NWP. Observation is the most reliable technique but is not usually feasible and accessible.
Data-mining is comparatively malleable but incapable of downscaling. NWP uses energy conservation
principles to obtain the weather information and is able to downscale the weather data to a desired
point in space. The accuracy of the weather data source highly influences the accuracy of WPPs.

There are various types of NWP models, for instance, Consortium for Small-scale Modeling
(COSMO), weather research and forecast (WRF), Regional atmospheric modeling system (RAMS),
and Mesoscale Meteorological Model, version 5 (MM5) [22–25]. In this paper, weather information
(forecast) from the WRF model is used. The weather forecast is downscaled for the location of the farm
and the hub elevation.

The weather information used is a matrix where the rows represent the samples and the columns
represent each weather variable. Six selected weather attributes (wind speed, wind direction, pressure,
temperature, dew point, and humidity) recorded for three years (2014–2016) with 15-min resolution
are used. The two-year (2014–2015) weather data are used for the wind power forecast model training
and validation, while the remaining one-year (2016) weather data are employed to test the model.
The weather variables are selected due to their high correlation with wind energy. The WRF weather
data are achieved based on the UTC time, which lags 8 h from the CST.

3.3. Data Treatment

Here, the input data are treated with various methodologies in order to obtain useable and
synchronized forms of all the data. The data treatment stage is performed before the WT transformation
and the FFANN model training steps are executed. The following are the data treatment techniques
employed in this paper [19].

(1) Both the 10-min resolution actual measurement data and the 15-min resolution weather data are
changed into hourly-average data to form a complete one-hour resolution data;

xhouly(t) =

∑6
t=1 x10-min(t)

6
, (1)

for the wind speed and power actual measurements,

xhouly(t) =

∑4
t=1 x15-min(t)

4
, (2)

for the weather forecast information.
Here, x10-min(t), x15-min(t), and xhourly(t) are the 10-min resolution wind energy generation data,

the 15-min resolution weather data, and the hourly resolution values, respectively.

(2) The WRF weather archives are converted from the UTC to the CST (data timestamp
synchronization);

xCST(t) = xUTC(t + 8) (2)

Here, xCST(t) and xUTC(t) are hourly weather data in CST and UTC, respectively.

(3) Skipped raw data are replaced by an equivalent data generated by the following expression:

xi = µ1xi−24 + µ2xi+24 (3)

Here, xi denotes the value at the ith timestamp, and µ1 and µ2 are weight coefficients (0.5 is
used in this work). xi−24 and xi+24 are the values at similar hours on the prior day and the following
day, respectively.
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4. Devised Configuration for the Integrated WT-ACO-FFANN Based ML Forecast Model

Here, the configuration of the proposed integrated wind power forecasting model is discussed.
The working principles and the mathematical modeling of each of the constitute algorithms in the
integrated model are also presented in this section.

4.1. Wavelet Transform (WT)

The amplitude of the energy output of wind turbines alternates in each timestamp. Deeper
investigation of the wind power generation data shows that it has non-stationary and non-linear
behaviors. This makes the data more complex for understanding and simplification, as there might be
several noise (unimportant) components superimposed. The direct use of this raw data for prediction
model training input may compromise the quality of forecasts. This calls for the use of some sort
of mechanism for extracting the most important and well-behaving features from the original (raw)
dataset, as proposed in this work.

Wavelet transform (WT) decomposes the forecast model target variable dataset into a group of
subseries. It extracts a new set of features from the original target variable. The resulting new features
provide enhanced performance compared to the original target feature. Therefore, using the new
features derived from the WT decomposition instead of the original target variable (wind generation)
definitely enhances the performance of the wind generation forecast.

The main reason for the enhanced performance of the new data features obtained from the WT
decomposition is due to the data filtering capability of the WT.

There are two types of wavelet transform. They are continuous wavelet transform (C-WT) and
discrete wavelet transform (D-WT). The C-WT, WT (p, q) of a signal h(x) with reference to a mother
wavelet Φ(x), is formulated below [26].

WT(p, q) =
1
√

p

+∞∫
−∞

h(x)·Φ
(

x− q
p

)
dx (4)

Here, p is the wavelet scaling parameter that regulates the scattering of the wavelet, and q is the
wavelet transformation parameter that determines the center of the wavelet. The D-WT, WT (r, s), is
as precise as the C-WT but more efficiently powerful [27]. D-WT is formulated as follows.

WT(r, s) = 2−(r/2)
T−1∑
t=0

h(t)·Φ
(

t− s2r

2r

)
(5)

Here, T is the size of h(t), p and q are functions of the integral values r and s (i.e., p = 2r, q = s2r),
and t is a discretized time.

Mallat et al. [28] developed a very quick and efficient D-WT algorithm relying on the four
fundamental filter types. Multi-resolution using the Mallat decomposition and reconstruction
techniques is a way to obtain “approximation” and “detail” components of a particular signal. Through
sequential decomposition of the approximation, a multistep ranked decomposition is achieved. That
means the initial given signal is decomposed to reduced resolution sub-signals. Figure 2 shows the
flowchart of the multistep WT decomposition process.

In this paper, a Daubechies order 4 (Db4) wavelet function is employed as the mother wavelet
φ(t). Db4 φ(t) compromises evenness versus wavelength to provide a relevant feature for WPP. Db4
φ(t) based WTs have been implemented by prior researchers for electricity demand prediction [26,27],
electricity price prediction [29], and solar power forecasting [30]. Moreover, three decomposition stages
are employed, as in [29,30], since this can represent the target variable (wind power) data series in a
precise and sensible manner.
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4.2. Ant Colony Optimization (ACO)

ACO is a probabilistic algorithm to solve optimization cost functions that are able to be represented
for searching better paths via graphs. ACO is widely applied in computer science and operations
research. Its development was motivated by the behavior of ants searching for the optimal path of
a food location. The pheromone-based information exchange method of real ants is generally the
major modeling framework of ACO [31]. Artificial ants represent heuristic optimization techniques
motivated by the action of biological ants. Hybridizations of artificial ants and search methods has
become an optional technique for several optimization works containing some kind of graph, for
instance, vehicle and internet routing.

ACO is a class of AI-based metaheuristic optimization algorithms established based on the
behavior of colonies of biological ants [32]. Artificial ants are the simulating agents that trace the best
solutions through the exploration of a parameter domain consisting of all possible solutions. Biological
ants excrete pheromones communicating with each other for food when discovering their surroundings.
The artificial ants in ACO likewise save their locations and the excellence of their solutions; thus, in
future search steps, additional ants discover improved solutions [33].

To increase the forecasting performance of wind power prediction models, the ACO is employed
to search the global best parameter set of the models. Specifically, in this work, the ACO technique is
employed to find the optimal parameters (neuron connection weights) of the FFANN wind power
forecasting model.

The ACO algorithm builds a full-directed graph via n FFANN model parameters. Initially, m ants
are arbitrarily positioned in n parameter nodes (locations). The record list recordk saves the nodes that
the ants have moved to, and recordk is set for each ant k. The pheromone concentration ξij(0) at each
side is initially set at 0. The ant chooses the following node according to the pheromone concentration
at each side. The probability ρk

i j(t) that the ant travels from parameter i to parameter j at the t step can
be expressed as follows.

ρk
i j(t) =


ξαi j(t).η

β
i j(t)∑

q<recordk
ξαiq(t).η

β
iq(t)

, j < recordk

0, otherwise
(6)

Here, ηij is a heuristic message that is normally calculated as 1/di j; where dij is the Euclidean
distance between two parameters, ξij(t) is the pheromone concentration on the route from parameter
i to parameter j at the t step of the ACO running, and α and β are the message heuristic coefficient
and the anticipation heuristic coefficient that are employed to allocate the weights for the heuristic
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message and the pheromone concentration. When the ant finishes its travel, the message (information)
concentration on each route is modified as follows.

ξi j ← (1− p).ξi j + p.
m∑

k=1

∆ξk
i j (7)

Here, p ∈ (0, 1] is a weight coefficient, which is called the pheromone evaporation ratio. ∆ξk
i j is the

pheromone improvement of the route between parameter i and parameter j while traveling, and it is
described as follows.

∆ξk
i j =

 Q
Lk

, (i, j) ∈ route o f k
0, otherwise

(8)

Here, Q is a fixed-term known as pheromone intensity, and Lk is the route distance of the kth ant
in the travel. The ACO algorithm converges when all the ants arrive at a similar solution.

Figure 3 shows the flowchart of the ACO.
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The ACO algorithm parameters and their values employed in this paper are provided in Table 1.

Table 1. ACO parameters and their values.

Parameter Value

Number of iterations/generations 1000
Number of variables, n Number of FFANN neuron connection weights

Number of Ants, m 15
Initialization of pheromone, ξ0 0
Information heuristic weight, α 1.0
Expectation heuristic weight, β 1.0

Pheromone strength, Q 2
Pheromone evaporation ratio, p 0.90

4.3. Feedforward Artificial Neural Network (FFANN)

ANN is a robust data processing (regression or classification) model, which is able to capture an
existing complex relationship within a dataset. ANN can quickly learn the behavior of the data and
acquire knowledge from them. The development of the ANN model was motivated by the method the
human nervous system, specially the brain, employs to process facts. The important characteristic
of the ANN is its unique configuration for data manipulation. It consists of plenty of information
manipulating constituents known as neurons, which are configured in various hierarchical layers.
The layers are input, hidden, and output layers. The neurons making up the input, hidden, output
layers are respectively called input, hidden, and output neurons. Neurons are connected through
certain scaled connections. The neuron connecting scales are known as weights. The neurons in ANN
operate in combination to solve a given real-world problem (fitting, approximation, regression, pattern
recognition, classification, etc.) [19,34,35].

ANN learns about the environment (data behavior) through examples or experiences as human
beings do. ANNs are implemented to solve a given problem or application via a learning or training
procedure. Training a human brain is performed via sufficiently updating activities or rules of the
synaptic networks among neurons in the brain nervous system. The same is done for training the
ANN neurons. ANNs learn by updating the connection weights among the neurons.

There are different types of ANNs based on the configuration (connection arrangement) of the
neurons and the flow of information. ANNs can be categorized as feedforward artificial neural network
(static network) and recurrent artificial neural network (dynamic network). The FFANNs have no
feedback components and hold no delays. In FFANN, information flows right from inputs to output in
the forward direction. The model output is computed right from the input employing the feedforward
connection weights, while in the recurrent neural network models, the output relies not only on the
present inputs to the model but also on the present or the prior input, output, or state of the model.
Although they are effective for high dimensions and very complex problems, the recurrent neural
networks are complex for implementation and can be computationally exhaustive. On the other
hand, FFANNs are easy to implement, fast, and very effective for reduced-dimension data processing
problems such as forecasting.

While developing a FFANN model for solving a specific problem, the quantity of the hidden layer
neurons should be chosen properly and with great care. Nevertheless, there exists no clear technique
for optimal sizing of the amount of neurons at hidden layers. In this study, we determine the quantity
of hidden neurons through extensive and continuous experimentation, which is called the empirical
parametrization process. Various configurations of FFANN with plenty of neurons at the hidden layer
are examined. The best FFANN model configuration is selected using the root mean squared error
(RMSE) measure between the model output value and the target real value. The selected configuration
type and parameters values of the FFANN model for the proposed WPP problem in this paper are
given in Table 2.
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Table 2. Parameters of FFANN.

Parameter Value

Configuration Feedforward with 3 layers
Hidden layer size 1

Hidden neuron quantity 20
Hidden layer neurons activation Tangent sigmoid (tansig)

Output layer size 1
Output neuron quantity 1

Output layer neurons activation Pure linear (purelin)
Training ratio 0.01

Epochs 1000
Training target error 0.001

The chosen FFANN model configuration for the proposed WPP task in this paper is depicted
schematically in Figure 4. The corresponding parameter values of the model are presented in Table 2.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 20 
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In Figure 5, the xs are the inputs to the ith neuron, yi is the result, wij is a connecting weight, bi is a
bias quantity (usually constant), and fi is called the activation function. The activation function carries
out a major task during the FFANN model training. It controls the behavior of the neurons’ output.
Based on Figure 5, the FFANN neuron output can be formulated as follows.

yi = fi

 n∑
j=1

wi j.x j + bi

 (9)
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Normally, FFANN is developed using the back propagation (BP) training technique. In the BP
learning of the FFANN, the neuron connecting weights are adjusted by employing the BP algorithm
over the given input/output dataset. This greatly helps the FFANN model to learn the behavior of
the data very quickly. While running to find the values of the FFANN weight parameters during the
training process, the BP executes a gradient descent inside the solution domain in the direction of
the global least value. Although the BP training technique needs less computation time, it may be
stuck by suboptimal (local) solutions and is therefore not capable of reaching a global (system-level)
optimal solution. Hence, the BP training of the FFANN model does not guarantee reliable wind power
forecasting accuracy throughout the entire forecasting horizon and scenario.

This paper uses the ACO algorithm for the FFANN training. Hence, the ACO training of the
FFANN model results in global optimal values for the FFANN connection weights, which correspond
to a higher wind power forecasting accuracy.

The ACO optimization technique is computationally simple and convergent for a given
configuration of the FFANN model. In this work, the FFANN model weights are implemented
as parameters of the ACO. The mean squared error (MSE) between the FFANN result and the real
observation is formulated as the cost (fitness) function of the ACO algorithm. The goal of the devised
strategy is to obtain the smallest value of this fitness function. This procedure iterates until the
prediction error achieves the intended level.

The dual-step integrated ML algorithm employed to implement the devised WPP is discussed
stepwise in Appendix A.

5. Prediction Performance Evaluation

The following formulated criteria are employed to quantify the performance of the devised
dual-step integrated ML based WPP model.

• Mean absolute percentage error (MAPE):

MAPE =
100
N

N∑
h=1

∣∣∣∣∣∣∣P
a
h − Pf

h

Pa
h

∣∣∣∣∣∣∣ (10)

where Pa
h and Pf

h are the real and the prediction values of the power at hour h, respectively, and N is
the forecasting horizon.

• Root mean squared error (RMSE):

RMSE =

√√√
1
N

N∑
h=1

(
Pa

h − Pf
h

)2
(11)

• Normalized mean absolute error (NMAE):

MAE =
1
N

N∑
h=1

∣∣∣Pa
h − Pf

h

∣∣∣
Pmax

(12)

where Pmax is the peak generation capacity of the wind generation system, which is 2500 kW in
this paper.

• Error Variance:

The inconsistency of the WPP method after development is an index of the stochasticity of
the method and is estimated by calculating the variance of the forecasting error. The prediction is
considered to be highly accurate or certain if the result of the variance is lower [19]. Using Equation (11),
daily error variance is expressed as:
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σ2
e,day =

1
N

N∑
h=1


∣∣∣∣∣∣∣P

a
h − Pf

h

Pa
h

∣∣∣∣∣∣∣− eday


2

(13)

eday =
1
N

N∑
h=1

∣∣∣∣∣∣∣P
a
h − Pf

h

Pa
h

∣∣∣∣∣∣∣ (14)

• Forecast skill (FS):

The FS measure calculates the worth of the WPP models by referring the prediction error to the
persistence output. For 24 h-ahead WPPs, the persistence outputs can be defined as:

Pf
h(t) = Pa

h(t− 24) (15)

The FS is estimated based on the relation of the RMSEs of forecast methods with reference to the
persistence method [19,36], and it is given as follows.

FS = 1−
RMSEModel

RMSEPersistence
(16)

6. Experimental Results and Discussion

In this work, the dual-step WT-ACO-FFANN integrated ML method is implemented for 24-ahead
WPP of a real wind generation system in Beijing, China. The actual measurement of the power
generation of the system is used for the forecast model construction. The wind farm has an installed
capacity of 2500 kW.

A two-year (2014–2015) historical dataset of meteorological forecast, wind speed, and power
real observations are employed for the forecast model training and validation; 85% of the dataset is
employed for the model training, while the remaining 15% is utilized for validation. The data points
are grouped either to the training or the validation dataset using a random selection mechanism.

The forecast performance of the devised model is tested using a one-year (2016) testing dataset.
The prediction test results are demonstrated for one representative day from each season of the testing
year and for the complete testing year on a monthly basis at the end. The four testing days are selected
randomly to reveal the wind power generation actual scenario and the irregular accuracy distribution
at different time frames in the testing year. The forecasts are presented in one-hour resolutions.

The forecasts by the proposed dual-step WT-ACO-FFANN integrated ML method are depicted
in Figures 6–9 for winter, spring, summer, and fall testing days, respectively. The figures show the
wind power generation actual measurements from the SCADA versus the predicted power by the
devised technique.
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As illustrated in Figures 6–9, the power forecast results by the devised method are quite similar
to the actual wind power archived by the SCADA. They follow the trends of the actual records with
smaller gaps or errors in between.
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Table 3 provides the values of the criteria employed to estimate the performance of the proposed
dual-step WT-ACO-FFANN integrated ML method for WPP.
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Table 3. Accuracy of the wind power forecasts by the proposed dual-step WT-ACO-FFANN integrated
machine learning (ML) method.

Day Type MAPE (%) RMSE (kW) Forecast Skill (%)

Winter 7.70 38.84 45.33
Spring 5.80 24.87 63.55

Summer 1.66 5.41 61.31
Fall 3.50 32.80 54.67

Average 4.67 25.48 56.22

MAPE: mean absolute percentage error, RMSE: root mean squared error.

Table 4 presents the comparison of the MAPEs obtained by the devised dual-step WT-ACO-FFANN
method and four other methods—persistence, dual-step BP-FFANN, dual-step GA-FFANN, and
dual-step PSO-FFANN methods. The devised method achieves improved accuracy with a mean MAPE
value of 4.67% for 24 h-ahead forecast. The devised method’s mean MAPE improvements over the
other four methods are 58.89%, 38.95%, 31.82%, and 22.30%, respectively.

Table 4. Comparison of MAPE results (%) by various wind power prediction (WPP) methods.

WPP Method Winter Spring Summer Fall Average

Persistence 13.84 17.83 4.56 9.32 11.36
BP-FFANN 9.41 11.97 2.70 6.52 7.65
GA-FFANN 8.88 10.35 2.55 5.61 6.85
PSO-FFANN 8.42 8.64 2.23 4.76 6.01

WT-ACO-FFANN 7.70 5.80 1.66 3.50 4.67

BP: back propagation, GA: genetic algorithm, PSO: particle swarm optimization.

Table 5 gives the comparison of the NMAEs achieved by the devised dual-step WT-ACO-FFANN
method and the other four methods.

Table 5. Comparison of normalized mean absolute error (NMAE) results (%) by various WPP methods.

WPP Method Winter Spring Summer Fall Average

Persistence 2.37 2.30 0.48 2.73 1.97
BP-FFANN 1.61 1.54 0.29 1.91 1.34
GA-FFANN 1.52 1.34 0.27 1.65 1.19
PSO-FFANN 1.44 1.11 0.23 1.40 1.05

WT-ACO-FFANN 1.32 0.75 0.18 1.02 0.82

Regarding the NMAE criterion values presented in Table 5, the devised dual-step WT-ACO-FFANN
WPP method achieves the lowest average error value, which equals 0.82% of the wind farm maximum
capacity. This a very acceptable value in the current research scope of WPP, which verifies the
effectiveness of the devised WPP method in this work.

The hourly WPP absolute errors normalized by the wind farm maximum power (2500 kW) for all
the evaluated methods are displayed in Figures 10–13 for winter, spring, summer, and fall forecast test
days, respectively. It is illustrated in the figures that the devised dual-step WT-ACO-FFANN WPP
method achieves the lowest absolute error values over the other methods in most of the day hours.
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Beyond the MAPE and the NMAE criteria, the invariability of WPP results is a key indicator
of the prediction performance of WPP methods. Table 6 provides the comparison of the devised
dual-step WT-ACO-FFANN WPP method and the other four methods with respect to the variance of
the forecast error.

Table 6. Comparison of forecast error variance by various WPP methods.

WPP Method Winter Spring Summer Fall Average

Persistence 0.0083 0.0129 0.0007 0.0011 0.0057
BP-FFANN 0.0044 0.0078 0.0003 0.0009 0.0033
GA-FFANN 0.0023 0.0059 0.0004 0.0008 0.0023
PSO-FFANN 0.0023 0.0046 0.0003 0.0008 0.0020

WT-ACO-FFANN 0.0023 0.0026 0.0001 0.0008 0.0014

As presented in Table 6, the average variance of the forecast error achieved by the devised
WT-ACO-FFANN WPP method is the smallest one, revealing the lowest variability of forecasts. The
devised method’s average error variance improvements over the other four methods are 75.44%,
57.58%, 39.13%, and 30%, respectively.

The FS is also a key index for performance comparison among various WPP methods. It indicates
the merit of a WPP technique by evaluating its accuracy values with reference to a persistence prediction.
Table 7 gives the comparison of the devised WT-ACO-FFANN WPP method and the other four methods
regarding the FS index.

Table 7. Comparison of forecast skill (FS) results (%) by various WPP methods.

WPP Method Winter Spring Summer Fall Average

Persistence 0.0 0.0 0.0 0.0 0.0
BP-FFANN 30.56 29.60 38.96 27.25 31.59
GA-FFANN 39.13 39.07 39.59 35.93 38.43
PSO-FFANN 41.59 48.02 47.71 43.67 45.25

WT-ACO-FFANN 45.33 63.55 61.31 54.67 56.21

As given in Table 7, the devised WT-ACO-FFANN WPP method achieves an improved FS for all
the test days. This further verifies the enhanced quality of the WPP method devised in this paper.

For a broader performance comparison of the various WPP methods evaluated in this paper, the
values of the accuracy criteria for the complete testing year (2016) are provided hereafter, in Table 8.
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Table 8. Comparison of MAPE results (%) by various WPP methods for complete one-year (2016)
testing dataset.

Persistence BP-FFANN GA-FFANN PSO-FFANN WT-ACO-FFANN

January 11.02 7.49 7.07 6.70 6.13
February 15.24 10.36 9.78 9.27 8.48

March 18.96 10.01 9.44 8.9 8.19
April 17.12 9.03 8.53 8.08 7.39
May 19.41 10.24 9.67 9.17 8.38
June 5.60 3.32 3.13 2.74 2.04
July 4.01 2.37 2.24 1.96 1.46

August 6.32 3.74 3.53 3.09 2.30
September 10.22 7.15 6.15 5.22 3.84

October 9.11 6.37 5.48 4.65 3.42
November 11.37 7.95 6.84 5.81 4.27
December 14.92 10.14 9.57 9.08 8.30
Average 11.94 7.35 6.79 6.22 5.35

As verified by the annual MAPE results in Table 8, the MAPE values are almost similar (even
better in some of the months) to the values obtained for the individual testing days in the respective
seasons, which shows the consistency and the robust prediction performance of the devised WPP
technique in this work. Above all, the devised technique gives an improved annual MAPE over the
other four examined methods.

In summary, the devised dual-step WT-ACO-FFANN integrated ML WPP method achieves
improved 24 h-ahead wind power forecast results. It outperforms the other four evaluated WPP
methods with respect to MAPE, NMAE, variance, and FS performance indicators. Moreover, the
average computation time (excluding training and validation times) to generate the 24 h-ahead forecasts
from the trained model is about 10 s using the neural network toolbox of MATLAB software (version
R2018b) on a computer with Intel core i5-5200CPU, 2.20 GHz processor, and 4 GB random access
memory (RAM). Thus, the devised method is new and effective for a 24 h-ahead WPP.

7. Conclusions

In this work, a new dual-step integrated machine learning method is devised for 24 h-ahead wind
power forecasting using wind power generation actual measurements and weather forecast datasets.
The devised technique is based on the hybridization of WT, ACO, and FFANN. The fundamental
prediction engine is the FFANN. The WT is employed to extract the healthy and the important elements
of the wind power raw data for improved forecast. The ACO algorithm is employed to find the
best (optimal) values of the FFANN weight parameters for better forecast accuracy. The devised
prediction method comprises two successive steps. In the first step, the ACO-FFANN is developed
to estimate wind speed at the generation system spot and the hub elevation. In this step, historical
weather variables as inputs and wind speed actual observation as the target are utilized to train the
FFANN using the ACO parameter optimization process. In the second step, the WT-ACO-FFANN is
implemented to fit the wind speed actual measurement with the wind power actual measurement.
Later, the future speed by the ACO-FFANN in the initial step is given to the modeled WT-ACO-FFANN
in the second step to predict the future wind generation subseries. The final generation power forecast
is then produced by applying the inverse WT on the obtained subseries data. Two-year (2014–2015)
historical weather data and wind speed and power actual measurement data are utilized to develop the
forecaster. The developed forecaster performance is tested using one-year (2016) out-of-sample data.
The devised method can be retrained when new training datasets exist in a rolling way. The application
of the devised technique for 24 h-ahead wind power prediction is new and effective and achieves
improved accuracy values. The daily mean MAPE, NMAE, and FS values achieved by the devised
method are 4.67%, 0.82%, and 56.22%, respectively. The devised method’s mean MAPE improvements
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over the other four methods (persistence, dual-step BP-FFANN, dual-step GA-FFANN, and dual-step
PSO-FFANN) are 58.89%, 38.95%, 31.82%, and 22.30%, respectively. The devised method’s average
error variance improvements over the other four methods are 75.44%, 57.58%, 39.13%, and 30%,
respectively. The devised method outperforms the other four evaluated methods, and the 24 h-ahead
forecast execution time is shorter than 10 s. Therefore, the demonstrated experimental outcomes
verify the effectiveness of the devised method for 24 h-ahead wind generation forecast. The obtained
short-term wind power forecast results can be used as input information for energy management
systems, demand response control, scheduling centers, dispatching centers, and other operational
control units of a power system or a smart grid containing high penetration of wind power generation.
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Nomenclature

AI Artificial Intelligence
ANFIS Adaptive neuro fuzzy inference system
ANN Artificial Neural Network
ACO Ant colony optimization
BP Back Propagation
CST China standard time
CPU Central processing unit
C-WT Continuous wavelet transform
Db Daubechies
DL Deep learning
D-WT Discrete wavelet transform
FFANN Feedforward Artificial Neural Network
FS Forecast skill
GA Genetic algorithm
GB Gigabyte
GHz Gigahertz
GMT Greenwich Mean Time
HHT Hilbert-Huang transform
kW kilowatts
MAPE Mean absolute percentage error
ML Machine learning
MSE Mean squared error
RMSE Mean squared error
NMAE Normalized mean absolute error
NWP Numerical weather prediction
PSO Particle swarm optimization
RAM Random access memory
RMSE Root mean squared error
RES Renewable energy source
s Second
SCADA Supervisory control and data acquisition
UTC Coordinated universal time
UN United Nation
WPP Wind power prediction
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WRF Weather Research and Forecast
WT Wavelet transform

Appendix A

Devised dual-step integrated ML Algorithm A1 for WPP.

Algorithm A1. The Devised WPP Approach

1. Begin
2. Enter historical dataset (raw data)

2.1. Historical wind power data (from wind farm SCADA)
2.2. Historical weather data (from WRF model)

3. Apply data treatment

3.1. Change all data to hourly resolution via averaging
3.2. Synchronize the time zones of all the data sources (use CST for all data entry timestamps)
3.3. Fill skipped data points, if any

4. Apply the WT decomposition to the historical target dataset (wind power)
5. Identify training datasets

5.1. For stage #1: Training dataset #1: historical weather variables vs. actual wind speed
5.2. For stage #2: Training dataset #2: historical actual wind speed vs. power

6. Initialize two FFANN networks

6.1. FFANN #1, for stage #1
6.2. FFANN #2, for stage #2

7. Set initial parameters of weights & biases for FFANN #1
8. Train FFANN #1 with Training dataset #1 using the ACO parameter optimization
9. Check convergence of FFANN #1 training

9.1. Save the trained network if the convergence condition is met (this saved network is called Wind
Speed Forecaster)

9.2. Otherwise, go to step (7)

10. Set initial parameters of weights & biases for FFANN #2
11. Train FFANN #2 with Training dataset #2 using the ACO parameter optimization
12. Check convergence of FFANN #2 training

12.1. Save the trained network if the convergence condition is met (this saved network is called Wind
Power Forecaster)

12.2. Otherwise, go to step (10)

13. Enter future dataset

13.1. Weather forecast input (from WRF model)

14. Apply data treatment

14.1. Change the weather data to hourly resolution
14.2. Convert the data entry timestamps to CST
14.3. Fill skipped data points, if any

15. Input the processed future weather forecast data in step (14) to the Wind Speed Forecaster saved in step
(9.1), and obtain the wind speed forecast at the farm and hub elevation

16. Input the future or forecasted wind speed in step (15) to the Wind Power Forecaster saved in step (12.1),
and obtain the wind power forecast subseries

17. Apply inverse WT on the wind power forecast subseries obtained in step (16), and obtain the wind power
forecast data for the desired time ahead (24 h-ahead in this paper)

18. End.
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