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Abstract: Fog computing makes up for the shortcomings of cloud computing. It brings many
advantages, but various peculiarities must be perceived, such as security, resource management,
storage, and other features at the same time. This paper investigates the resource contribution model
between the fog node and cloud or users when fog computing introduces blockchain. The proposed
model practices the reward and punishment mechanism of the blockchain to boost the fog nodes
to contribute resources actively. The behavior of the fog node in contributing resources and the
completion degree of the task also for contributing resources are packaged into blocks and stored
in the blockchain system to form a transparent, open, and tamper-free service evaluation index.
The differential game method is employed to model and solve the above process and address the
interaction between the optimal resource contribution strategy of the fog node and the optimal
benefit under the optimal resource contribution strategy. Indirectly, this service evaluation index
also brings long-term economic benefits to fog service providers. Besides, taking advantage of the
performance characteristics of the collective maintenance of blockchain and the ability to establish
a credible consensus mechanism in an untrusted environment, fog computing nodes, under the
proposed architecture, can have specific security protection capabilities.

Keywords: fog computing; blockchain; resource contribution; differential game

1. Introduction

1.1. Background

In recent years, with the continuous development of intelligent terminals and wireless network
technology, we have entered the new era of the Internet of Everything from the interconnection
of people and things, and the interconnection of things and things [1]. More and more data is
generated and distributed in this huge and complex network environment, bringing unprecedented
pressure on computing services. The traditional cloud computing model cannot meet not only the
heterogeneous, low delayed, and dense access networks but also the use of various applications for
intelligent terminal users. In order to solve this problem, Cisco’s Bonomi et al. proposed a new
computing paradigm in 2011 (i.e., fog computing) [2]. This model deals with the addition of a fog
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layer between the terminal device and the traditional cloud server to afford computing, storage, and
network services. The main aim is to relocate some core functions of the cloud to the “near” location of
the network edge, to overcome the defects of cloud computing regarding location awareness, mobility
support, and real-time interaction [3,4]. As an enlargement of cloud computing, fog computing
is alike to cloud computing, since it is also a network-based computing model that provides data
sharing, computing, storage, and other services through fog nodes on the Internet. Fog computing is a
processing environment with widely distributed deployment, confronted with relatively concentrated
cloud computing. Data storage and processing are more dependent on edge devices, so users of
fog computing usually pay a certain fee to get more effective services. The device that provides the
computing service can get a particular reward by providing its redundant computing resources [5].

Nevertheless, fog computing, as an emerging computing model, has brought new problems and
challenges to the computing service field due to its “fog node as a resource provider” [6]. Considering
that the fog computing environment has the features of restricted resources, wide distribution,
heterogeneous network, and selfish fog computing nodes, the proper management of these
characteristics in fog nodes has become one of the main aims focus in the fog computing research
field [7]. On the one hand, the income and cost of the fog node when contributing resources are often
not excellently balanced; on the other hand, the cloud service provider lacks an effective incentive
mechanism to promote the continuous and stable contribution of the fog node. Given the above
problems, many scholars have carried out research and discussion [8–11], and some progress has
been made. However, there are still many problems that restrict the extensive application of fog
computing. As a consequence, it is necessary to seek emerging technologies and methods to solve the
above difficulties.

Acknowledging the success and increasing popularity of digital cryptocurrencies such as
bitcoin [12], blockchain technology is gradually emerging. Its core advantage can use data encryption,
timestamp, distributed consensus, and economic incentives in the node without mutual trust in
the implementation of a distributed system based on a point-to-point decentralized credit trading,
coordination, and cooperation. These characteristics can solve issues related to the centralized
organization, the prevalence of high cost, low efficiency, and data storage [13]. The blockchain
system generally consists of a data layer, a network layer, a consensus layer, an incentive layer,
a contract layer, and an application layer [14]. The data layer is used to construct data blocks, encrypt
and sign data, and add timestamps. The network layer includes distributed peer-to-peer networks
for communication and data verification between nodes. The consensus layer implements various
consensus algorithms such as Proof of Work (PoW) [15] and Proof of Stake (PoS) [16] or Delegated
Proof of Stake (DPoS) [17]. The incentive layer is mainly used to develop the corresponding incentive
mechanism, and its issued token has unforgeable characteristics compared with the traditional monetary
reward. The contract layer mainly uses scripts or algorithms to formulate smart contracts that all
network nodes must be compliant. Finally, the application layer is based on various application
scenarios of blockchain technology.

Due to the characteristics of blockchain, scholars have carried out relevant studies on the
combination of blockchain technology with cloud computing, fog computing, and edge computing,
including research on the combination of blockchain technology with the Internet of Things (IoT),
access control technology, and other related fields. This paper focuses on the resource contribution
allocation in the fog computing environment. The critical point is related to the research of proper
resource management with a combination of blockchain technology and fog computing.

1.2. Related Works

As mentioned above, resource contribution is a critical technical issue in resource management
and allocation, especially in fog computing. Resource contribution refers to the provision of computing,
storage, and other resources by devices with idle resources. Although the resources and computing
power of idle resource devices have different degrees of restrictions [18], they can jointly cooperatively
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complete computing and storage tasks, thereby lightening the resource bottleneck problem of the
primary service provider. In recent years, the issue of resource contribution has been the focus
and hotspot of distributed computing in cloud computing, fog computing, and edge computing.
Zhang et al. [19] proposed a game framework for resource management three-layered structure in data
service operator (DSO), fog node (FN), and data service subscriber (ADSS) scenarios. Their solution is
based on the Stackelberg game. The moral hazard model and the matching game strategy give the
stability strategy of the fog computing system under the framework.

Zhao et al. [20] proposed a resource sharing mechanism based on the alliance game by studying
the resource contribution between cooperative cloud providers. The authors consider the uncertainty
of mobile users fully. The purpose is to optimize the resource utilization rate and to reduce the cost of
the cloud service provider. The authors aim to form the cloud service provider alliance by using the
alliance game to ensure the stability of the mechanism structure and to analyze the resource usage cost
of the cloud service provider participating in the alliance game by employing the Shapley value theory
Distribution situation. Nishio et al. [21] proposed a service-oriented heterogeneous resource sharing
scheme, which effectively reduces the service waiting time. Dong et al. [22] studied the optimization
of energy and communication resource sharing between mobile devices with limited energy and
restricted data in mobile cloud computing. Ye et al. [23] offload the computational tasks in the cloud to
the fog server by bypassing the private cloud allocation strategy and use a genetic algorithm to find
the optimal allocation scheme. Su et al. [24] proved that the shortest path scheme based on Steiner
tree theory is more efficient than the traditional scheme to minimize the path cost of the fog server
contributing resources.

Alsaffar et al. [25] proposed a linear tree decision rule algorithm based on service size, completion
time, and virtual machine capacity, which helps workload balancing and improves resource allocation.
Shi et al. [26] used the Representational State Transfer (REST) design pattern and the IoT Constrained
Application Protocol (CoAP) to enable resource cooperation in the form of a planar architecture
between fog nodes. Neto et al. [27] optimized the load balancing in a fog environment using the
multi-tenant allocation algorithm (MtLDF), which takes into account the latency and priority of specific
multi-tenant needs. Kochar and Sarkar [28] constructed a two-tier edge computing resource sharing
framework that takes into account the benefits of the fog service provider, resulting in higher system
utilization. Chen et al. [29] designed a fog computing resource contribution system consisting of a
remote cloud server, computing access point (CAP) and users, and designed the CAP as a mobile
user. Agarwal et al. [30] used virtualization technology to analyze potential threats and attacks in
the fog computing environment and constructed a cloud architecture with elastic resource allocation.
Deng et al. [31] developed a systematic framework to study the trade-off between power consumption
and latency in cloud systems.

In the above approaches, most of the researchers analyzed the resource contribution methods of
different resource providers from a static perspective and did not consider the interaction between
resource contributors. In practical applications, the resource requirements of cloud service providers
or users change dynamically, and contributing resources are not 100% successful [32] (or 100% total
contribution). Hence, it is significant to design a reasonable resource contribution scheme under the
premise of fully considering the dynamic changes of resource demand in time and the success rate
of contribution.

The authors of [33] analyze the rapid development of IoT services, carry out analysis concerning
the innovative application of blockchain technology based on the fog computing architecture, and
propose a fog computing architecture which is built on Hypriot Cluster Lab of Fog computing
(HCL-BaFog) based on blockchain. This architecture enables efficient and secure collection and sharing
of sensor-sensitive data, especially in smart homes and applications requiring secure electronic medical
applications. The proposed architecture uses the license chain and the full virtualization capabilities of
the fog compute node network. It also utilizes the container orchestration and management system
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Docker and multi-chain frameworks to test some of the necessary performance metrics of the proposed
architecture using Raspberry Pi System Basis Chips (SBCs).

In [34], Tang et al. consider the scenario in the fog computing offload environment in which
mobile users may mistakenly transfer computing tasks to nearby fog servers that are attacked, causing
a series of privacy and security issues. In response to this challenge, the authors introduced blockchain
technology into the fog computing environment and sought to check the accuracy and authenticity of
the fog server performing the unloading in a short time. More in detail, they use the characteristics
of collective maintenance in blockchain technology to continuously maintain a set of authorized fog
servers to ensure the accuracy and authenticity of the unloaded fog server when the uninstall task
is executed.

A blockchain-based distributed cloud architecture is proposed in [35]. The proposed solution
practices software-defined networking technologies to provide the need for on-demand access to make
secure and low-cost the IoT networks. Moreover, it brings computing resources to the edge of the IoT
network, implements a secure distributed fog node architecture based on Software Defined Network
(SDN), and designs blockchain intending to simplify the network traffic in the core network. At
the same time, in the IoT device, minimal end-to-end latency and computational resources can
be achieved. The results of the evaluation show that the system performance can be significantly
improved by reducing induction delays, reducing response time, increasing throughput, and detecting
real-time attacks.

Andreas et al. [36] introduced a decentralized market for industrial edge applications, Industrial
Internet of Things (IIoT) Bazaar, which uses the blockchain’s collective maintenance, timing, and other
features to create high transparency for users while ensuring edge device applications. The traceability
of the installation considerably improves the safety of the edge device. At the same time, the use of
fog calculations integrates resource-constrained edge devices into the IIoT Bazaar ecosystem. In the
meantime, Augmented Reality (AR) technology is used to enable more intuitive human-computer
interaction between users and edge devices. Through their research, software developers and users can
be brought together jointly, so that people can provide a variety of performance needs more conveniently.

Gulshan et al. [37] proposed a statistical method to solve the expected value of a mathematical
problem in the PoW consensus, to make the blockchain better suited for cloud computing or fog
computing. This method relies on the desired mathematical model and uses polynomial matrix
decomposition to make it easier to obtain the PoW consensus solution, taking into account all the
constraints of the mathematical puzzle. Because the proposed method is not complicated and easy
to model and configure, it also has lower time complexity and memory consumption, so that the
blockchain technology can be better combined with the cloud computing or fog computing architecture.

Zhu and Youakim [38] introduced a mixture of networking architecture. This architecture
combines a blockchain-based social network to support the fog computing architecture, ensuring
security in an untrusted IoT environment. Therefore, users can establish tamper-resistant digital
identity management intelligent objects in an environment with a low-trust level, and establish a
series of new authentication and authorization mechanisms for the Internet of Things system, which
significantly improves the security performance of the traditional IoT system.

Jiao et al. [39] introduced an auction-based market model to efficiently perform computational
resource allocation in a cloud or fog computing environment. The main aim is to offload computing
tasks in the PoW and to solve cloud problems in a cloud or fog server computing resources. The authors
consider that the computing resources in the PoW-based blockchain network are limited, and the
allocation of externalities is individually considered when designing the auction mechanism. Instead,
they have developed two bidding options, the fixed demand plan and the multiple demand plan.
The approximation algorithm solves the NP problem of maximizing the return of all participants in the
multiple schemes.



Appl. Sci. 2019, 9, 5538 5 of 18

Li et al. [40] consider that, in the fog-based car networking environment, the users may have a
certain degree of security and privacy issues when sharing their sensitive information (such as identity
and location) during carpooling. This situation could allow malicious users to upload incorrect location
information to produce errors in the matching system. The authors propose a carpooling scheme that is
efficient and protects user privacy. The scheme uses blockchain technology to assist vehicles to support
conditional privacy, with one-to-many target matching and data auditable traceability. The performance
of the scheme is evaluated based on the computational cost and communication overhead.

Randa et al. [41] propose a user authentication scheme in a fog node that involves blockchain.
The fog node in the scheme and the Ethereum contract interface are employed for user access to the
IoT device for authentication. The fog node provides scalability for the entire system by mitigating the
heavy computational tasks of IoT devices.

Pan et al. [42] designed a marginal Internet of things framework, called EdgeChain internal tokens.
This framework integrates the licensed chain system by moving the edge server resource pool and the
behavior of the state of each IoT devices together. Moreover, the proposed framework is supplemented
by a resource management system based on a credit scheme and intelligent contract. The solution
introduced by the authors can standardize the behavior of Internet equipment, to control the IoT
devices from the edge of the server resources.

In the above research, scholars mostly use the characteristics of collective maintenance, traceability,
and high security in blockchain technology to solve security problems in the fog computing
environment [33–35,38,40], and resource allocation issues [39,42]. Some scholars have also studied
the problem of the blockchain itself so that it can better serve cloud computing or fog computing [37].
Further, some scholars have developed blockchain-based systems under the environment of cloud
computing or fog computing [36,41]. Although there are still some problems in the above studies, such
as low system throughput, high energy consumption, and too ideal experimental environment, it can
be recognized that the use of blockchain technology could solve many problems in fog calculation, and
it is a simple and efficient way.

1.3. Motivations and Contributions

The rise of blockchain technology provides the possibility to solve the resource management
problem of fog computing. At the same time, it cryptographically guarantees the data’s irreversible
and unforgeable characteristics and also protects the data security of users in the fog computing
environment [43]. Besides, cloud service providers, fog service providers, and users in the fog computing
environment also correspond to the identity characteristics of the alliance chain participants.

Therefore, the primary goal of this paper is to propose a fog computing resource contribution
model based on an alliance chain and advances the blockchain system into the fog computing network
architecture. The reward and punishment mechanism of blockchain is used to boost fog computing
nodes to contribute resources actively and to solve the resource management problem of fog computing.
The resource contribution behavior of fog nodes and the satisfaction degree of task completion are
recorded in the blockchain form, producing an untamable evaluation system, which can solve problems
such as malicious bad review and brushing in practical applications.

The primary contributions of this paper can be summarized as follows:

• A blockchain-based fog computing resource contribution model is proposed, which considers a
satisfaction degree (task completion degree) as an evaluation index for service provided by fog
computing service providers.

• Using differential game theory to solve the proposed model, the numerical simulation is used to
discuss the interaction between the optimal resource contribution strategy of the fog node and the
optimal benefit under the optimal strategy.
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The rest of the paper is structured as follows: In Section 2, the construction process of the proposed
model is presented and explained by a differential game method. The validity of the experimental
results is verified by the numerical simulation experiment in Section 3. Finally, in Section 4, the work
carried out in this paper is sorted out, and the future research direction is discussed.

2. Materials and Methods

2.1. Problem Formulation and System Model

Fog computing, as an extension of the cloud computing model, is a weakly centralized computing
paradigm compared to cloud computing. The coalition chain model in the blockchain is also a
traditional centralized public chain. A weakly centralized form of distributed computing allows
combining the two structures. This paper proposes a resource contribution model for fog computing
based on the coalition chain technology in blockchain, which combines the fog calculation to make
full use of the idle resource cooperation mode and the characteristics of the incentive model in the
blockchain technology to solve the problem of resource contribution in fog computing. At the same time,
the safety of the fog computing itself is solved by the high security and non-destructible modification
of the blockchain technology.

Figure 1 shows a blockchain-based fog computing architecture diagram, which is a typical fog
computing three-layer architecture scenario. Full nodes with all block information are placed in the
cloud data center. The fog computing device has limited performance and storage capacity and is a
weak node in some circumstances. The light nodes in the blockchain are deployed in the fog computing
device and, according to the difference in device performance, can be used to run the number of blocks
that the device can withstand. After the nodes in the blockchain access the system, a series of activities,
such as creating a block or voting, need to be performed. Each activity needs to record the identity of
the participating nodes or verify it. Therefore, each node (i.e., the fog computing device in the figure)
adds an asymmetric key as the identity. Under this mechanism, every transaction in the system can be
tracked, and the disguise of illegal nodes is also prevented.
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As depicted in Figure 2, when the cloud data center issued a task (or other nodes request
service), it requires fog node to contribute resource cooperation to complete the task. At this point,
in broadcasting system, it is necessary to find the positive contribution of resources in fog node to
complete the task, while, at the end of the task, it will be relevant the task information (start time,
task types, task to complete satisfaction, equivalent public key, and signature information identification
equipment) to be managed into a “deal” information. The above information is converted into a certain
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length of hash through a chain system. The blockchain system verifies the rationality of the converted
“transaction” information and sends it to the trading pool after verification. After the time specified
by the system, the blockchain system encapsulates the transaction records in the transaction pool for
some time and broadcasts them. At this time, the blockchain system decides the voting win according
to the DPoS consensus [17], taking into account that the performance of fog node is limited, and
the computing resources are limited. Consequently, this paper adopts the DPoS consensus with low
computational requirements to complete the consensus link of the block system. Besides, the design of
the consensus algorithm is not the focus of this paper, so the improved DPoS consensus algorithm is
adopted [44] to complete the consensus process under the architecture proposed in this work.
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The DPoS consensus elects a group of proxy nodes (consensus committees) through elections.
These nodes are responsible for packing and message records of the blocks, while other nodes are only
responsible for monitoring and forwarding. In general, the DPoS consensus process is divided into
two parts: The election of the consensus member status in the agent node group and the scheduling
and production of its responsible block. Considering that block producers are primarily fixed, DPoS is
a consensus solution that sacrifices decentralized features to improve system throughput. Once the
rights of the consensus committee are too high, and there are malicious nodes mixed in it, it will cause
more significant harm to the entire blockchain system. According to the approach introduced in [44],
the improved DPoS algorithm can be applied to the environment of the alliance chain.

Specifically, the consensus program includes: setup, proposal, consensus identity generation,
voting, and counting of several processes.

• Setup: When a new node FNodei (whose public and private key is 〈KP
i , Ks

i 〉) is added to the system,
the newly joined node first updates its public key to the member public key MKP

i ; next, the new
public key will be used to calculate the membership signature MSi:

FN
∣∣∣∣MSi =

(
a·KS

i

)
×H

(
MKP

i , i
)
, (1)

where ai = h
(
KP

i ‖ KP
1 ‖ · · · ‖ KP

n

)
. When the federation chain receives the information 〈KP

i , MSi〉

disclosed by the new node, each consensus node needs to update its member public and private
key to MKS

i :

MKS
i =

∑i=n

i=1

(
a·KS

i

)
×H

(
MKP

i , i
)
, (2)

• Proposal: The types of proposals in the consensus phase mainly include the consensus node in
the alliance chain, which allows the new node to join the new consensus member proposal in the
alliance, propcreat; proposal to package “transaction information” into blocks and upload them to
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the alliance chain, propblock; proposal to deal with forks and eventually reach a consensus, prop f ork;
proposal to discover and punish a malicious user, proppunishment.

• Consensus identity generation: When the consensus node of the alliance chain receives the
proposal to create a new consensus member, it verifies that the random function calculates the
condition of participating in the consensus committee according to its stack. If the condition is
met and the identity is legal, the consensus vote is performed. The specific algorithm is shown in
Algorithm 1.

Algorithm 1. Algorithm of creating a new node in Delegated Proof of Stake (DPoS).

Input: win f (The influence of the fog computing node, stake); 〈KP
i , MSi〉 (Node information); seed: Hpre or Hpro;

prop:creat
Output: MCC: Membership of Consensus Committee or Null
1: MCC← empty ; p← win f /〈KP

i , MSi〉 ; i← 0
2: 〈hash, proo f 〉 ← VRFpk(Seed ‖ propcreat)

3: index← hash/2len(hash)

4: while index <
[∑i

k=0 Block
(
k, 〈KP

i , MSi〉, p
)
,
∑i+1

k=0 Block
(
k, 〈KP

i , MSi〉, p
)]

do
5: i ++

6: end while
7: if i > 0 then
8: MCC·pk← 〈KP

i , MSi〉·pk; MCC·i← i
9: MCC·hash← hash·pk; MCC·proo f ← proo f
10: return MCC
11: else
12: return null

• Voting: consensus nodes with legal status in the alliance chain vote for consensus based on the
type of proposal received, as shown below:

Sigi = KS
i ×H

(
MKP

i , prop
)
+ MKS

i , (3)

Then package its consensus identity and the hash value of the proposed result into
〈MCC, h(prop), Sigi〉, and broadcast to other nodes in the alliance chain.

• Counting: The node of the alliance chain collects the consensus votes received. When the number
of votes of a proposal exceeds the threshold set by the system and the signature set is verified, the
consensus node reaches a consensus.

After the DPoS consensus process is over, the consensus node will package the proposed
“transaction information” into blocks and upload them to the blockchain system database. The new
block is now established.

At this time, token rewards of a certain proportion are given to the nodes that participate in the
verification of voting records in the process of transaction initiator, namely resource contributor and
DPoS link, so as to continuously encourage fog nodes to actively contribute resources and promote other
fog nodes to jointly maintain the fog computing ecosystem based on blockchain. The token mechanism
in the blockchain, due to its high security and non-tamper ability, compared to the traditional fiat
currency payment incentive mechanism, has the following characteristics:

• Cryptographic digital currency is a decentralized currency compared to legal tender. As the
most successful product of blockchain technology, cryptographic digital currency allows people
to move freely and securely from one currency to another without the help of intermediaries.
The issuance of money is done spontaneously and impartially by the participants and is not
supervised by any external agency, even the central bank or government agency.
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• Compared with legal tender, encrypted digital currency is encrypted and anonymous. Encrypted
digital currency based on blockchain technology has all the advantages of blockchain technology
to ensure the security of all aspects of currency circulation. Moreover, the private key is the only
voucher for holding the currency. The public key is publicly disclosed and does not bind any
personal information of the private key holder, making the operation anonymous.

• Compared with traditional electronic currency, digital currency is a kind of currency that cannot
be tampered with and is open and transparent. Since accounts for encrypted digital currency
are recorded in the public ledger of blockchain, it means that transactions for digital currency,
once confirmed, cannot be tampered with and are open to all users across the network.

• Compared with traditional electronic money, digital money can deliver value. In the Internet,
traditional electronic currency can only deliver information, but cannot deliver value. Every
transfer of encrypted digital currency in the network is itself a transfer of value, and transfer is a
re-authorization of the right to use value.

The process of fog nodes contributing resources and completing tasks is regarded as the
“transaction” behavior in the blockchain. The behavior log of resources contributed by fog node is
regarded as the “asset” in the blockchain and uploaded to the blockchain network. The new block
is generated and recorded permanently in the “ledger” According to blockchain technology, once
records cannot be tampered with, the time stamp can be trading information for traceability and
high-security features, such as when the fog is used to calculate the abnormal conditions of network
nodes. According to the record information in the “book” traceability, other blocks of tokens in the
chain system are an incentive mechanism to make the fog compute node jointly maintain the entire
network environment. At the same time, considering the task satisfaction M as a record to keep in the
ledger, its essence is a transparent, open, non-tamper (brushing) evaluation system, which undoubtedly
brings long-term economic benefits for fog providers, as shown in Figure 3.

It is particularly noticeable that the blockchain technology used in this paper is the alliance chain,
and the token issued in this paper should not be qualified to exchange with legal coins, but only
circulated within the economic system of the alliance, which has many functions such as purchasing
upper cloud service resources, lower user information, and extra transmission bandwidth. Token
issued under this architecture is not only resource currency to some extent because when the node of
the alliance system has an abnormal condition, the behavior log, which has been recorded in the ledger,
becomes a piece of valuable asset information. At this time, the token becomes an asset currency
with an asset tag. At the same time, considering the satisfaction of task completion kept in the ledger,
it provides transparent and tamper-proof evaluation indexes for upper cloud service providers and
lowers users when they select the fog service, which is undoubtedly the feature of token asset currency
under this architecture.
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The vote in all participating nodes in the process of verification records will also get a round of
voting block ID, in the “the last round of voting block ID” in the collection, selected with the most
votes in the block as before a block of new blocks. According to this mechanism, as shown in Figure 4,
it is possible to connect the whole block following the order, under the condition of the resources
consumed less as far as possible.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 18 
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However, the resources, computing power, and storage capacity of fog nodes are limited. For this
reason, there are usually weak nodes, which consume their equipment while contributing resources.
Therefore, the fog node cannot contribute to unlimited resources for the reward. Anyhow, the reward
obtained by completing the task cannot be as much as the cost consumed by itself. Due to the DPoS
consensus mechanism, the authorized nodes involved in bookkeeping need to maintain a specific
online time rate (usually 99%), which undoubtedly leads to the loss of power [45].

Therefore, it is advisable to assume that N = {1, 2, · · · , n} is the collection of fog nodes, m is the
number of fog nodes involved in a contribution behavior m∈N, and ci(t) is the resource contribution of
fog nodes. The above problem can be described as: How to contribute a reasonable amount of resource
ci(t) to maximize the income of fog nodes φi(t). (This paper assumes that fog nodes are rational and
selfish individuals who lack trust in each other but need to cooperate to complete tasks).

Therefore, we have:

φi(t) = R·ζ·P·ci(t) − γici(t) −
∑

j∈N−m,i, j
χc j(t)M(t), (4)

where R is the token of system reward; ζ is the reward coefficient, that is, in a resource contribution
behavior, the proportion of the reward obtained by the node in the total reward; P is the success rate of
the resource contribution by the fog node; γi is the power consumption coefficient of the fog node.
Considering that the fog node is not able to complete the task with 100% probability, the success rate of
introducing contributed resources is related to not only the power (in this paper, the power of fog node
is used to characterize the equipment performance of fog node, that is, the larger αi is, the better the
performance will be) of the fog node itself, but also the number of transactions ki after the introduction
of the blockchain system, that is, P(αi, ki) [46]. In addition, according to the definition in literature [47],
when trading blocks in the transmission will be affected by the transaction number ki and lead to a
longer confirm delay, if, in a certain period of time, it has not been confirmed or by other blocks in the
first step, then the block is thought to have been discarded, so this kind of situation is called orphaning,
that is, there is an orphaning probability According to [48], Pgl follows a Poisson distribution, namely:

Pgl(ki) = 1− e−λzki , (5)

where λ = 1/600 sec and z > 0 are denoted as time delays. Since the alliance chain is adopted in this
paper, λ satisfies 0 < λ < 1.
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Thus, we can get:
P = αi

(
1− Pgl

)
= αie−λzki , (6)

In addition, through the previous narrative we know that the reward R is issued after the new
block is generated. Therefore, the reward of the resource contribution of the fog node should have
a weight relationship between the itself resource contribution amount ci(t) and the ki transaction
numbers of the constituent blocks ζ, as (7).

ζ =
βi·ci(t)∑
iεki

ci(t)
, (7)

where βi is the power dissipation factor.
As mentioned above, M is the satisfaction of each “transaction”, that is, the task completion degree

of each time the fog node contributes resources. When the satisfaction of other fog nodes (N −m) in
the alliance is high, it will inevitably affect their own earnings. We assume that

∑
j∈N−m,i, j χc j(t)M(t)

is used to express the negative benefit of satisfaction M on the fog node, where χ is the loss coefficient,
then we can get φi(t) as (8):

φi(t) = R·
ci(t)∑

iεki
ci(t)
·βi·αie−λzki ·ci(t) − γici(t) −

∑
j∈N−m,i, j

χc j(t)M(t). (8)

In the architecture proposed in this paper, once the fog node completes the task, there will be a
record of satisfaction M. That is, satisfaction M is a function of ci(t), then we assume the average level
of satisfaction in the system architecture. The process of change is:

dM(t)
dt

= θM(t) +
∑

i∈N
ωci(t) +

∑
i∈m

Hici(t), (9)

whereθ ∈ [0, 1] is the change parameter of the satisfaction level; andω ∈ [−1, 1] is the effective parameter
of the resource contribution; Hi is the satisfaction effect brought by the hash operation [49–51]. This is
because the high-security, inextricable modification, and traceability of the blockchain, the generation
and transmission of transaction information, and the verification and recording between nodes are
required. Hash operation based on Secure Hash Algorithm (SHA) leads to additional waiting time,
which will affect the final satisfaction evaluation. The whole system model diagram is shown in
Figure 5.
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2.2. Game Formulation and Model Solving

As mentioned above, fog nodes are usually selfish and rational, that is, they will not contribute
resources endlessly without considering the cost. Furthermore, fog nodes should fully consider the
tradeoff between income and cost. In the game, the fog node as the player needs to choose the optimal
strategy to maximize its own revenue, and the differential game can clearly describe the dynamic
process of the player’s optimal strategy selection. Therefore, the following differential game model
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can be established to optimize the resource contribution ci(t) of fog node i and maximize its own
benefit φi(t):

G = max
ci(t)

∫ T

0
e−rt

{
R·

ci(t)∑
iεki

ci(t)
·βi·αie−λzki ·ci(t) − γici(t) −

∑
j∈N−m,i, j

χc j(t)M(t)
}

dt, (10)

where r is the discounted parameter, that is, the future income of the fog node is converted into the
parameter of the current value between 0 and 1, and the energy consumption change in the process of
contributing the resource by the fog node satisfies the formula (9).

We assume that the strategy set
{
c∗i (t) = u∗i (·), i ∈ N

}
constitutes a feedback Nash equilibrium

solution for the finite time domain games (10) and (9), and if and only if there is a continuous
differentiable function Vi(M, t) : Rm

→ R , the following Bellman equations are satisfied [52]:

−Vi(M, t) = R· ci(t)∑
iεki

ci(t)
·βi·αie−λzki ·ci(t) − γici(t) −

∑
j∈N−m,i, j χc j(t)M(t)

+Vi
E(M, t)[θM(t) +

∑
i∈N ωci(t) +

∑
i∈m Hici(t)]

(11)

Deriving ci(t) on the right side of (11) and letting it be 0 gives the optimal solution u∗i (t):

u∗i (t) =
γi + Hi·Vi

M −R·βi·αie−λzki + Vi
M·ω−

√
R·βi·αie−λzki−Vi

M(ω+Hi)−γi

R·βi·αie−λzki

γi + Hi·Vi
M −R·βi·αie−λzki + Vi

M·ω+

√
R·βi·αie−λzki−Vi

M(ω+Hi)−γi

R·βi·αie−λzki

(12)

Due to the characteristics of the differential game solution, considering the characteristics of (10),
this paper uses the form of Vi(M, t) = AM + B to solve, that is:

Vi(M, t) = e−rt[A(t)M + B(t)]. (13)

The above formula is obtained by deriving t and M, respectively:

Vi
M = e−rt

·A(t). (14)

Vi
t = e−rt

[
−rA(t) +

.
A(t)

]
·M + e−rt

[
−rB(t) +

.
B(t)

]
. (15)

Simultaneous (11), (14), and (15) are obtained according to the corresponding coefficient:

.
A(t) = (r− θ)A(t) +

∑
j∈N−m,i, j

χc j(t). (16)

.
B(t) = rB(t) −R·

ci(t)∑
iεki

ci(t)
·βi·αie−λzki ·ci(t) − γici(t) −A(t)

∑
i∈N

ωci(t) −
∑
i∈m

Hici(t)

. (17)

Substituting (14) and (16) into (12), we get:

u∗i (t) =
γi + Hi·e−rt

·A(t) −R·βi·αie−λzki + e−rt
·A(t)·ω−

√
R·βi·αie−λzki−e−rt·A(t)(ω+Hi)−γi

R·βi·αie−λzki

γi + Hi·e−rt·A(t) −R·βi·αie−λzki + e−rt·A(t)·ω+

√
R·βi·αie−λzki−e−rt·A(t)(ω+Hi)−γi

R·βi·αie−λzki

(18)

Substituting the above formula into (4) and (9), we get the optimal income φ∗i (t) and satisfaction
M∗(t) under optimal control:
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φ∗i (t) = R·
u∗i (t)∑

iεki
u∗i (t)

·βi·αie−λzki ·u∗i (t) − γi u∗i (t) −
∑

j∈N−m,i, j
χ u∗j(t)M

∗(t) (19)

dM∗(t)
dt

= θM∗(t) +
∑

i∈N
ω u∗i (t) +

∑
i∈m

Hi u∗i (t), (20)

u∗i (t) =
γi+Hi·e−rt

·A(t)−R·βi·αie−λzki+e−rt
·A(t)·ω−

√
R·βi ·αie

−λzki−e−rt ·A(t)(ω+Hi)−γi
R·βi ·αie

−λzki

γi+Hi·e−rt·A(t)−R·βi·αie−λzki+e−rt·A(t)·ω+

√
R·βi ·αie

−λzki−e−rt ·A(t)(ω+Hi)−γi
R·βi ·αie

−λzki

φ∗i (t) = R·
u∗i (t)∑

iεki
u∗i (t)
·βi·αie−λzki ·u∗i (t) − γi u∗i (t) −

∑
j∈N−m,i, j χ u∗j(t)M

∗(t)
dM∗(t)

dt = θM∗(t) +
∑

i∈N ω u∗i (t) +
∑

i∈m Hi u∗i (t)

(21)

From this we can get the differential Equation (21):
Based on the above, Algorithm 2 gives the realization process of the resource contribution

algorithm of the fog computing node based on blockchain:

Algorithm 2. The resources contribution algorithm of fog computing nodes based on blockchain.

A Differential Game Algorithm for Fog Computing Node Resource Contribution Based on Blockchain
Input: Total number of nodes N, Differential equation (21)
Output: Optimal strategy u∗i (t), Optimal income φ∗i (t), Satisfaction M∗(t)
1. Set equation parameters γ, H, k, α, β, λ, z, ω, r, R, χ, θ
2. For t = 1 to T
3. Solve the optimal strategy u∗i (t) using equations (11), (14), and (16)
4. Using equation (18) to solve the optimal benefit φ∗i (t) and satisfaction M∗(t)
5. Solving the optimal state trajectory using equation (21)
6. End For
7. Return optimal state, optimal strategy and optimal revenue track

The results of (18), (19), and (20) are validated in the next section.

3. Results

In this paper, MATLAB R2018b simulation software was used to numerically simulate the optimal
resource contribution u∗i (t) (GB) of the fog node and the fog node’s own income φ∗i (t) (Yuan.¥) under
the optimal resource contribution, and the fog cluster overall satisfaction M∗(t), the specific parameters
are shown in Table 1.

Table 1. Simulation parameter.

γi
(¥/GB)

Hi
(¥/GB) ki

αi
(W)

βi
(GB−1·W−1)

λ
(S−1)

z ω r R (¥) χ
(¥/GB) θ

i = 1 0.35 0.2 12.5 0.4
i = 2 0.45 0.3 60 25 0.5 0.25 1 0.5 0.05 100 0.25 0.1
i = 3 0.55 0.4 37.5 0.6
i = 4 0.6 0.5 50 0.7

The variation trend of the optimal resource contribution u∗i (t), fog cluster overall satisfaction M∗(t),
and its own benefit φ∗i (t) under the optimal contribution in the game time T, as shown in Figure 6,
were first analyzed. From the figure it is possible to get that as the game time goes on, the optimal
resource contribution strategy u∗i (t), the satisfaction level M∗(t) of fog cluster, and the income φ∗i (t)
of fog node all increase. With the passage of time, under the control of the optimal strategy u∗i (t),
the yield φ∗i (t) of the fog node reaches the maximum and tends to be stable. It can be seen that the time
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node at which the fog node reaches the optimal resource strategy is almost the same as the time node
with the largest gain of its own; and the different fog nodes have different power, energy consumption,
and hash power. Thus, it can be found that the smaller the power of the fog node, the more resources
it needs to contribute; thus with the node with higher power, the resource contribution is relatively
low. Observing its own benefits, the nodes with low power have higher returns because of the higher
contribution, but the nodes with higher power are not necessarily lower. This is because the higher the
power, the better the performance, and the higher the degree of completion of contributing resources,
which indirectly affects its own revenue. That is to say, the better the performance of the fog node,
the higher the amount of resource contribution that can be achieved. At the same time, the satisfaction
level of the entire fog cluster is also at a relatively high level.
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Figure 7 shows the trend of u∗i (t), M∗(t), and φ∗i (t) with parameter ki at t = 4. We find that as the
value of ki increases, u∗i (t), M∗(t), and φ∗i (t) are incremented and then decremented after reaching the
maximum value. This is because ki is the number of transactions in each block. The more transactions
there are, the greater the probability that the block will be orphaned. However, the smaller the number
of transactions, the lower the throughput of the blockchain system will be. Therefore, it is necessary to
dynamically adjust the number of transactions in the block by balancing the benefits of fog nodes with
the use efficiency of the system.
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Figure 8 shows that under different λ values the resource contribution of the fog node u∗i (t) is
increasing, and then decreasing after reaching the maximum value; while the satisfaction M∗(t) is
different under four different λ values, when λ is small, the level of satisfaction is declining. This is
because λ is the reciprocal of the trading time, that is, the transaction frequency. In [48], λ = 1/600 sec,
and “600 sec” is the transaction confirmation time of Bitcoin for one hour. So the smaller the λ,
the slower the transaction speed, the lower the system efficiency, and the lower the level of satisfaction.
When λ increases, the level of satisfaction M∗(t) also rises; when λ exceeds a certain range, the level
of satisfaction M∗(t) decreases. This is because λ is also a parameter that affects the abandonment of
the block. The larger λ is, the block is the probability of abandonment is also greater and thus the
level of satisfaction M∗(t) is declining. Similarly, the fog node’s own gain φ∗i (t) also increases as the λ
value increases, and decreases as it reaches the maximum value. In addition, when λ is larger, the
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transaction frequency is faster, which leads to more frequent hashing, and the hash power loss Hi
increases, thereby affecting the profit of the fog node itself. Therefore, the benefits of fog nodes and the
use efficiency of the whole alliance chain system should be fully considered to dynamically adjust the
size of λ.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 18 
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4. Discussion

In this paper, a model based on blockchain technology for resource contribution in fog computing
nodes was presented. In particular, the differential game was utilized not only to construct the resource
contribution model under the framework and simulate the optimal resource contribution strategy
through mathematical experiments, but also to investigate the introduction of the blockchain system in
the traditional fog computing architecture. It was recognized that the influence of critical parameters
and the profit of the fog node can help the latter to optimize the resources management and maximize
the benefits. In future works, it could be possible to model and analyze, from different perspectives
(cloud service providers or users), other employments of the proposed framework to further solve the
problem of fog computing in the field of resource management.
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