Brain Functional Correlates of Resting Hypnosis and Hypnotizability: A Review
Abstract
:1. Introduction
2. EEG Spectral Analysis and Functional Neuroimaging Techniques
2.1. EEG and Neuroimaging
2.2. PET and fMRI Methods
3. Functional Neuroimaging Correlates of Resting Following Hypnotic Induction without Specific Suggestions
Study | Sample | Experimental Task | Technique | Main Results |
---|---|---|---|---|
Structural Neuroimaging | ||||
Rainville et al. (2019) [78] | HHs, HHs and LHs (N = 28, 14 men) | Resting state following neutral hypnotic induction | MRI, arterial spin labeling scan (ASL) | An increase in perception of automaticity was associated with enhanced activity in the parietal operculum and in the anterior-supra callosal mid-cingulate cortex (aMCC) |
Functional l Neuroimaging—Resting Condition | ||||
Deeley et al. (2012) [73] | HHs (N = 8, 4 women) | Resting state following hypnotic induction | fMRI | Self-Rated Hypnotic Depth: Positively correlated with ECN (right MFG, bilateral IFG, bilateral PreCG) and negatively with DMN (left MFG, right ACC, and bilateral PCC; and bilateral PHGs) |
Demertzi et al. (2011) [74] | High Dissociation and Absorption scores (level > 6/10; N = 12, 4 women) | Resting state following hypnotic induction | fMRI | (1) Increased anterior DMN connectivity, whereas its posterior midline and PHG structures decreased their connectivity; (2) reduced “extrinsic” lateral frontoparietal connectivity |
Lipari et al. (2012) [95] | N = 1 Women hypnotic virtuoso | Resting state following hypnotic induction | fMRI and EEG | Enhancement of activity in posterior regions of the DMN (PreCu, PostCG, retrosplenial cortex, IPL, and PH) and decreased activity in anterior DMN areas (mPFC, MFG, ACC) |
Maquet et al. (1999) [69] | N = 15 HHs (N = 11 women) | Resting state following hypnotic induction | PET | Activation of left-sided occipital, parietal, precentral, premotor, and ventrolateral prefrontal cortices and a few right-sided regions, including occipital and anterior cingulate cortices. |
McGeown et al. (2015) [96] | HHs (N = 7), MHS (N = 9) and LHs (N = 13); (N = 29, 12 women) | Resting state following hypnotic induction | fMRI | Less connectivity in the anterior part of the DMN |
McGeown et al. (2009) [9] | HHs (N = 11) and LHs (N = 7) | Resting state following hypnotic induction | fMRI | There is less activity in the anterior part of the SN and DMN |
Rainville et al. (1999a,b) [71,78] | HHs only (N = 8, 3 women) | Prehypnosis-resting state, hypnosis relaxation, and hypnosis relaxation plus suggestions to alter pain unpleasantness | PET and EEG | Modulation of CEN, SN, and DMN: Hypnosis-relaxation-related rCBF decreases in the right IPL, left PreCu, and PCC. Hypnosis-with-suggestions-related increases in rCBF in the left frontal cortices and the medial and lateral posterior parietal cortices |
Rainville et al. (2002) [70] | N = 10 HHs only (N = 6 women) | Resting state following hypnotic induction | PET | Modulation of CEN, SN and DMN: Involvement of the ACC, thalamus, and ponto-mesencephalic brainstem and increase in occipital rCBF in hypnosis relaxation; Enhanced rCBF with increased mental absorption during hypnosis in a distributed network of cortical and subcortical structures known as the brain’s attentional system |
Jiang et al. (2017) [67] | HHs (N = 36) and LHs (N = 21) | Resting state following hypnotic induction | fMRI | Enhanced functional connectivity between the DLPFC of the ECN and insula in the SN, and reduced connectivity between the DLPFC and PCC in the DMN (PCC) |
Vázquez et al. (2023) [97] | MHs and HHs (N = 24, 12 women) | Resting state following neutral hypnosis induction | fMRI | Higher connectivity in the neutral hypnosis than in the resting condition for the frontoparietal cortices of the dorsolateral attention network (DAN), SN, and SMN. Parietal and occipital regions displayed increased network connectivity, implying dissociation from the frontal cortices |
de Matos et al. (2023) [98] | HHs (N = 55, 37 women) | Two different depth levels of neutral hypnosis and respective control states | fMRI | Hypnosis: (1) whole-brain analysis disclosed key neural hubs in parieto-occipital-temporal areas, cuneal/precuneal and occipital cortices, lingual gyri, and the occipital pole; (2) Comparing both hypnotic states directly revealed depth-dependent connectivity changes, notably in left superior temporal/supramarginal gyri, cuneus, planum temporale, and LGs |
4. Structural and Functional Neuroimaging Correlates of Hypnotizability
5. EEG Oscillations and Their Associations with Hypnotizability and Hypnosis
6. EEG Connectivity of Hypnosis and Hypnotizability
6.1. EEG Functional Connectivity Measure
6.2. EEG Functional Connectivity Findings under Resting Hypnosis
Study | Sample | Experimental Task | EEG Measure | Main Results |
---|---|---|---|---|
Fingelkurts et al. (2007) [248] | A single HH woman, hypnotic virtuoso | Resting state following hypnotic induction | Functional Connectivity | Hypnosis: (1) Lower EEG functional connectivity (Index of Structural Synchrony) for delta (1–3 Hz), alpha (7–13 Hz), beta (15–25 Hz), and gamma (35–45 Hz) frequency bands (except for theta band, 4–6 Hz); (2) Stable functional connection between the right occipital and left inferior-temporal cortex with the highest number of connections for beta, and the lowest for gamma band |
Cardeña et al. (2013) [156] | HHs (N = 12), MHs (N = 13) and LHs (N = 12) | Baseline and Seven Resting state following neutral hypnotic induction with hypnotic depth reports | Global Functional Connectivity | Hypnosis: Spontaneous imagery, positive affect, and anomalous perceptual states were associated with lower global functional connectivity in HHs. An opposite pattern of correlations was found in LHs |
Li et al. (2017) [250] | HHs, MHs, LHs (SHSS: M = 7.5, SD = 2.8; N = 42 male smokers) | Resting state in Baseline and following hypnotic induction | Coherence | Hypnosis: Increased EEG-delta and theta coherence and reduced alpha and beta coherence during resting hypnosis, suggesting that hypnotic induction yields alterations in consciousness. Higher EEG-delta coherence between specific brain regions predicted reductions in cigarette cravings |
Panda et al. (2023) [251] | HHs (N = 9, 6 women) | Resting state following neutral hypnotic induction | Functional Connectivity (weighted phase-lag-index) and Graph Theory Analysis (network segregation and integration) | Hypnosis: (1) Decreased midline and frontal-midline functional connectivities in the alpha (8–11.75 Hz) and beta2 (20–29.75 Hz) bands that were paralleled by a reduction in external awareness and sense of dissociation from the surrounding environment; (2) Increased delta (1–3.75 Hz) band connectivity in frontal and frontoparietal regions, reflecting a heightened state of dissociation; (3) Increased network segregation (short-range connections) in delta and alpha bands, and increased integration (long-range connections) in beta-2 band. These observations may reflect a more effective cognitive processing and a reduced tendency for mind-wandering during hypnosis. |
Landry et al. (2023) [232] | HHs and LHs (N = 40, 27 women) | Waking Resting-state and resting state following hypnotic induction | Aperiodic and Periodic Power spectra; Functional Connectivity and Graph Theory Analysis (network segregation and integration) | After the Hypnotic Induction: (1) Opposite patterns of alpha-band and beta-band clustering coefficients, with decreased alpha-band clustering coefficients and increased for the beta-band clustering coefficients. These changes were more pronounced in HHs compared to LHs; (2) Increased global efficiency for theta frequencies and decreased modularity for delta frequencies in HHs compared to LHs |
6.3. EEG Functional Connectivity Correlates with Hypnotizability
7. Conclusions and Future Directions
Funding
Conflicts of Interest
Abbreviations
References
- Kihlstrom, J.F. The domain of hypnosis, revisited. In The Oxford Handbook of Hypnosis: Theory, Research and Practice; Oxford University Press: New York, NY, USA, 2008; pp. 21–52. [Google Scholar]
- Halsband, U.; Mueller, S.; Hinterberger, T.; Strickner, S. Plasticity changes in the brain in hypnosis and meditation. Contemp. Hypn. 2009, 26, 194–215. [Google Scholar] [CrossRef]
- Kihlstrom, J.F.; Glisky, M.L.; McGovern, S.; Rapcsak, S.Z.; Mennemeier, M.S. Hypnosis in the right hemisphere. Cortex 2013, 49, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Oakley, D.A.; Halligan, P.W. Hypnotic suggestion: Opportunities for cognitive neuroscience. Nat. Rev. Neurosci. 2013, 14, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Terhune, D.B.; Cleeremans, A.; Raz, A.; Lynn, S.J. Hypnosis and top-down regulation of consciousness. Neurosci. Biobehav. Rev. 2017, 81, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Vanhaudenhuyse, A.; Laureys, S.; Faymonville, M.E. Neurophysiology of hypnosis. Clin. Neurophysiol. 2014, 44, 343–353. [Google Scholar] [CrossRef]
- Reyher, J. A paradigm for determining the clinical relevance of hypnotically induced psychopathology. Psychol. Bull. 1962, 59, 344–352. [Google Scholar] [CrossRef]
- Cox, R.E.; Bryant, R.A. Advances in hypnosis research: Methods, designs and contributions of intrinsic and instrumental hypnosis. In The Oxford Handbook of Hypnosis: Theory, Research, and Practice; Oxford University Press: New York, NY, USA, 2008; pp. 311–336. [Google Scholar]
- McGeown, W.J.; Mazzoni, G.; Venneri, A.; Kirsch, I. Hypnotic induction decreases anterior default mode activity. Conscious. Cogn. 2009, 18, 848–855. [Google Scholar] [CrossRef]
- Oakley, D.A.; Halligan, P.W. Hypnotic suggestion and cognitive neuroscience. Trends Cogn. Sci. 2009, 13, 264–270. [Google Scholar] [CrossRef]
- Rainville, P.; Price, D.D. Hypnosis Phenomenology and the Neurobiology of Consciousness. Int. J. Clin. Exp. Hypn. 2003, 51, 105–129. [Google Scholar] [CrossRef]
- De Pascalis, V.; Scacchia, P.; Vecchio, A. Influences of hypnotic suggestibility, contextual factors, and EEG alpha on placebo analgesia. Am. J. Clin. Hypn. 2021, 63, 302–328. [Google Scholar] [CrossRef]
- Cardeña, E.; Terhune, D.B. Hypnotizability, personality traits, and the propensity to experience alterations of consciousness. Psychol. Conscious. Theory Res. Pract. 2014, 1, 292–307. [Google Scholar] [CrossRef]
- Piccione, C.; Hilgard, E.R.; Zimbardo, P.G. On the degree of stability of measured hypnotizability over a 25-year period. J. Personal. Soc. Psychol. 1989, 56, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Gorassini, D.R.; Spanos, N.P. A social-cognitive skills approach to the successful modification of hypnotic susceptibility. J. Personal. Soc. Psychol. 1986, 50, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Gorassini, D.R.; Spanos, N.P. The Carleton Skill Training Program for modifying hypnotic suggestibility: Original version and variations. In Clinical Hypnosis and Self-Regulation: Cognitive-Behavioral Perspectives; American Psychological Association: Washington, DC, USA, 1999; pp. 141–177. [Google Scholar] [CrossRef]
- Rossi, E.L. Hypnosis and Ultradian Cycles: A New State(s) Theory of Hypnosis? Am. J. Clin. Hypn. 1982, 25, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Green, J.P.; Smith, R.J.; Kromer, M. Diurnal Variations in Hypnotic Responsiveness: Is There an Optimal Time to Be Hypnotized? Int. J. Clin. Exp. Hypn. 2015, 63, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Fassler, O.; Lynn, S.J.; Knox, J. Is hypnotic suggestibility a stable trait? Conscious. Cogn. 2008, 17, 240–253. [Google Scholar] [CrossRef]
- Lynn, S.J.; Maxwell, R.; Green, J.P. The hypnotic induction in the broad scheme of hypnosis: A sociocognitive perspective. In Hypnotic Induction, 1st ed.; Routledge: London, UK, 2017; pp. 109–130. [Google Scholar]
- Lynn, S.J. Hypnotic reponsiveness can be modified after hypnotic training. In Proceedings of the Oral Presentation at XXI World Congress of Medical and Clinical Hypnosis, Montréal, QC, Canada, 22–25 August 2018. [Google Scholar]
- Landry, M.; Lifshitz, M.; Raz, A. Brain correlates of hypnosis: A systematic review and meta-analytic exploration. Neurosci. Biobehav. Rev. 2017, 81, 75–98. [Google Scholar] [CrossRef] [PubMed]
- Terhune, D.B. Discrete response patterns in the upper range of hypnotic suggestibility: A latent profile analysis. Conscious. Cogn. 2015, 33, 334–341. [Google Scholar] [CrossRef]
- Halsband, U.; Gerhard Wolf, T. Functional Changes in Brain Activity After Hypnosis: Neurobiological Mechanisms and Application to Patients with a Specific Phobia—Limitations and Future Directions. Int. J. Clin. Exp. Hypn. 2019, 67, 449–474. [Google Scholar] [CrossRef]
- Jensen, M.P.; Patterson, D.R. Hypnotic approaches for chronic pain management: Clinical implications of recent research findings. Am. Psychol. 2014, 69, 167–177. [Google Scholar] [CrossRef]
- Facco, E.; Bacci, C.; Zanette, G. Hypnosis as sole anesthesia for oral surgery: The egg of Columbus. J. Am. Dent. Assoc. 2021, 152, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Faymonville, M.; Fissette, J.; Mambourg, P.; Roediger, L.; Joris, J.; Lamy, M. Hypnosis as adjunct therapy in conscious sedation for plastic surgery. Reg. Anesth. 1995, 20, 145–151. [Google Scholar] [PubMed]
- Jensen, M.P.; Jamieson, G.A.; Lutz, A.; Mazzoni, G.; McGeown, W.J.; Santarcangelo, E.L.; Demertzi, A.; De Pascalis, V.; Bányai, É.I.; Rominger, C.; et al. New directions in hypnosis research: Strategies for advancing the cognitive and clinical neuroscience of hypnosis. Neurosci. Conscious. 2017, 2017, nix004. [Google Scholar] [CrossRef]
- Barnier, A.J.; Nash, M.R. 1 Introduction: A roadmap for explanation, a working definition. In The Oxford Handbook of Hypnosis: Theory, Research, and Practice; Barnier, A.J., Nash, M.R., Eds.; Oxford University Press: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Halsband, U. Learning in trance: Functional brain imaging studies and neuropsychology. J. Physiol. Paris 2006, 99, 470–482. [Google Scholar] [CrossRef] [PubMed]
- Woody, E.Z.; McConkey, K.M. What we don’t know about the Brain and Hypnosis, but need to: A View from the Buckhorn Inn. Int. J. Clin. Exp. Hypn. 2003, 51, 309–338. [Google Scholar] [CrossRef]
- Jensen, M.P.; Adachi, T.; Hakimian, S. Brain Oscillations, Hypnosis, and Hypnotizability. Am. J. Clin. Hypn. 2015, 57, 230–253. [Google Scholar] [CrossRef]
- De Pascalis, V. EEG oscillatory activity concomitant with hypnosis and hypnotizability. In International Handbook of Clinical Hypnosis; Linden, J.H., De Benedittis, G., Sugarman, L.I., Varga, K., Eds.; Routledge: London, UK, 2024; in press. [Google Scholar]
- Farahzadi, Y.; Kekecs, Z. Towards a multi-brain framework for hypnosis: A review of quantitative methods. Am. J. Clin. Hypn. 2021, 63, 389–403. [Google Scholar] [CrossRef]
- Hasson, U.; Ghazanfar, A.A.; Galantucci, B.; Garrod, S.; Keysers, C. Brain-to-brain coupling: A mechanism for creating and sharing a social world. Trends Cogn. Sci. 2012, 16, 114–121. [Google Scholar] [CrossRef]
- Barabasz, A.; Barabasz, M.; Jensen, S.; Calvin, S.; Trevisan, M.; Warner, D. Cortical event-related potentials show the structure of hypnotic suggestions is crucial. Int. J. Clin. Exp. Hypn. 1999, 47, 5–22. [Google Scholar] [CrossRef]
- Gable, P.; Miller, M.; Bernat, E. The Oxford Handbook of EEG Frequency; Oxford University Press: New York, NY, USA, 2022. [Google Scholar]
- Donoghue, T.; Haller, M.; Peterson, E.J.; Varma, P.; Sebastian, P.; Gao, R.; Noto, T.; Lara, A.H.; Wallis, J.D.; Knight, R.T.; et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat. Neurosci. 2020, 23, 1655–1665. [Google Scholar] [CrossRef]
- Manning, J.R.; Jacobs, J.; Fried, I.; Kahana, M.J. Broadband Shifts in Local Field Potential Power Spectra Are Correlated with Single-Neuron Spiking in Humans. J. Neurosci. 2009, 29, 13613. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.J.; Hermes, D.; Honey, C.J.; Hebb, A.O.; Ramsey, N.F.; Knight, R.T.; Ojemann, J.G.; Fetz, E.E. Human motor cortical activity is selectively phase-entrained on underlying rhythms. PLoS Comput. Biol. 2012, 8, e1002655. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, G.; Hildebrandt, A.; Schmitz, F.; Herrmann, C.S. Decomposing alpha and 1/f brain activities reveals their differential associations with cognitive processing speed. NeuroImage 2020, 205, 116304. [Google Scholar] [CrossRef] [PubMed]
- Güntekin, B.; Başar, E. A review of brain oscillations in perception of faces and emotional pictures. Neuropsychologia 2014, 58, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Buzsáki, G. Rhythms of the Brain; Oxford University Press Inc.: NewYork, NY, USA, 2006. [Google Scholar]
- Cohen, M.X. Analyzing Neural Time Series Data: Theory and Practice; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Keil, A.; Thigpen, N. From Neural Oscillations to Cognitive Processes. In The Oxford Handbook of EEG Frequency; Gable, P.A., Miller, M.W., Bernat, E.M., Eds.; Oxford University Press: New York, NY, USA, 2022; pp. 40–64. [Google Scholar] [CrossRef]
- Ray, W.J.; Oathes, D. Brain Imaging Techniques. Int. J. Clin. Exp. Hypn. 2003, 51, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.M.; Murray, M.M. Towards the utilization of EEG as a brain imaging tool. NeuroImage 2012, 61, 371–385. [Google Scholar] [CrossRef]
- De Lucia, M.; Michel, C.M.; Murray, M.M. Comparing ICA-based and Single-Trial Topographic ERP Analyses. Brain Topogr. 2010, 23, 119–127. [Google Scholar] [CrossRef]
- Stephan, K.E.; Friston, K.J. Analyzing effective connectivity with functional magnetic resonance imaging. WIREs Cogn. Sci. 2010, 1, 446–459. [Google Scholar] [CrossRef]
- Kiebel, S.J.; Garrido, M.I.; Moran, R.J.; Friston, K.J. Dynamic causal modelling for EEG and MEG. Cogn. Neurodynamics 2008, 2, 121–136. [Google Scholar] [CrossRef]
- Kaminski, M.J.; Blinowska, K.J. A new method of the description of the information flow in the brain structures. Biol. Cybern. 1991, 65, 203–210. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Vinck, M.; Oostenveld, R.; van Wingerden, M.; Battaglia, F.; Pennartz, C.M.A. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. NeuroImage 2011, 55, 1548–1565. [Google Scholar] [CrossRef] [PubMed]
- Onnela, J.-P.; Saramäki, J.; Kertész, J.; Kaski, K. Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E 2005, 71, 065103. [Google Scholar] [CrossRef] [PubMed]
- Latora, V.; Marchiori, M. Efficient Behavior of Small-World Networks. Phys. Rev. Lett. 2001, 87, 198701. [Google Scholar] [CrossRef]
- Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef]
- Xie, W.; Jensen, S.K.G.; Wade, M.; Kumar, S.; Westerlund, A.; Kakon, S.H.; Haque, R.; Petri, W.A.; Nelson, C.A. Growth faltering is associated with altered brain functional connectivity and cognitive outcomes in urban Bangladeshi children exposed to early adversity. BMC Med. 2019, 17, 199. [Google Scholar] [CrossRef]
- Craig, S.L.; Edward, J.H. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys. Med. Biol. 1999, 44, 781. [Google Scholar] [CrossRef]
- Kwong, K.K.; Belliveau, J.W.; Chesler, D.A.; Goldberg, I.E.; Weisskoff, R.M.; Poncelet, B.P.; Kennedy, D.N.; Hoppel, B.E.; Cohen, M.S.; Turner, R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 1992, 89, 5675–5679. [Google Scholar] [CrossRef]
- Ogawa, S.; Tank, D.W.; Menon, R.; Ellermann, J.M.; Kim, S.G.; Merkle, H.; Ugurbil, K. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 1992, 89, 5951–5955. [Google Scholar] [CrossRef]
- Bandettini, P.A.; Wong, E.C.; Hinks, R.S.; Tikofsky, R.S.; Hyde, J.S. Time course EPI of human brain function during task activation. Magn. Reson. Med. 1992, 25, 390–397. [Google Scholar] [CrossRef]
- Logothetis, N.K.; Pfeuffer, J. On the nature of the BOLD fMRI contrast mechanism. Magn. Reson. Imaging 2004, 22, 1517–1531. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Leone, A.; Walsh, V.; Rothwell, J. Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr. Opin. Neurobiol. 2000, 10, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Egner, T.; Jamieson, G.; Gruzelier, J. Hypnosis decouples cognitive control from conflict monitoring processes of the frontal lobe. NeuroImage 2005, 27, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Faymonville, M.E.; Laureys, S.; Degueldre, C.; Del Fiore, G.; Luxen, A.; Franck, G.; Lamy, M.; Maquet, P. Neural mechanisms of antinociceptive effects of hypnosis. Anesthesiol. Phila. Then Hagerstown 2000, 92, 1257–1267. [Google Scholar] [CrossRef]
- Grond, M.; Pawlik, G.; Walter, H.; Lesch, O.M.; Heiss, W.-D. Hypnotic catalepsy-induced changes of regional cerebral glucose metabolism. Psychiatry Res. Neuroimaging 1995, 61, 173–179. [Google Scholar] [CrossRef]
- Jiang, H.; White, M.P.; Greicius, M.D.; Waelde, L.C.; Spiegel, D. Brain Activity and Functional Connectivity Associated with Hypnosis. Cereb. Cortex 2017, 27, 4083–4093. [Google Scholar] [CrossRef]
- Kosslyn, S.M.; Thompson, W.L.; Costantini-Ferrando, M.F.; Alpert, N.M.; Spiegel, D. Hypnotic Visual Illusion Alters Color Processing in the Brain. Am. J. Psychiatry 2000, 157, 1279–1284. [Google Scholar] [CrossRef]
- Maquet, P.; Faymonville, M.E.; Degueldre, C.; Delfiore, G.; Franck, G.; Luxen, A.; Lamy, M. Functional neuroanatomy of hypnotic state. Biol. Psychiatry 1999, 45, 327–333. [Google Scholar] [CrossRef]
- Rainville, P. Brain mechanisms of pain affect and pain modulation. Curr. Opin. Neurobiol. 2002, 12, 195–204. [Google Scholar] [CrossRef]
- Rainville, P.; Hofbauer, R.K.; Paus, T.; Duncan, G.H.; Bushnell, M.C.; Price, D.D. Cerebral mechanisms of hypnotic induction and suggestion. J. Cogn. Neurosci. 1999, 11, 110–125. [Google Scholar] [CrossRef]
- Szechtman, H.; Woody, E.; Bowers, K.S.; Nahmias, C. Where the imaginal appears real: A positron emission tomography study of auditory hallucinations. Proc. Natl. Acad. Sci. USA 1998, 95, 1956–1960. [Google Scholar] [CrossRef] [PubMed]
- Deeley, Q.; Oakley, D.A.; Toone, B.; Giampietro, V.; Brammer, M.J.; Williams, S.C.R.; Halligan, P.W. Modulating the Default Mode Network Using Hypnosis. Int. J. Clin. Exp. Hypn. 2012, 60, 206–228. [Google Scholar] [CrossRef] [PubMed]
- Demertzi, A.; Soddu, A.; Faymonville, M.E.; Bahri, M.A.; Gosseries, O.; Vanhaudenhuyse, A.; Phillips, C.; Maquet, P.; Noirhomme, Q.; Luxen, A.; et al. Chapter 20-Hypnotic modulation of resting state fMRI default mode and extrinsic network connectivity. In Progress in Brain Research; Van Someren, E.J.W., Van Der Werf, Y.D., Roelfsema, P.R., Mansvelder, H.D., Lopes Da Silva, F.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 193, pp. 309–322. [Google Scholar]
- Müller, K.; Bacht, K.; Prochnow, D.; Schramm, S.; Seitz, R.J. Activation of thalamus in motor imagery results from gating by hypnosis. NeuroImage 2013, 66, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Müller, K.; Bacht, K.; Schramm, S.; Seitz, R.J. The facilitating effect of clinical hypnosis on motor imagery: An fMRI study. Behav. Brain Res. 2012, 231, 164–169. [Google Scholar] [CrossRef]
- Vanhaudenhuyse, A.; Boly, M.; Balteau, E.; Schnakers, C.; Moonen, G.; Luxen, A.; Lamy, M.; Degueldre, C.; Brichant, J.F.; Maquet, P.; et al. Pain and non-pain processing during hypnosis: A thulium-YAG event-related fMRI study. NeuroImage 2009, 47, 1047–1054. [Google Scholar] [CrossRef]
- Rainville, P.; Streff, A.; Chen, J.-I.; Houzé, B.; Desmarteaux, C.; Piché, M. Hypnotic Automaticity in the Brain at Rest: An Arterial Spin Labelling Study. Int. J. Clin. Exp. Hypn. 2019, 67, 512–542. [Google Scholar] [CrossRef]
- Dienes, Z.; Beran, M.; Brandl, J.L.; Perner, J.; Proust, J. Is hypnotic responding the strategic relinquishment of metacognition. In Foundations of Metacognition; Oxford University Press: New York, NY, USA, 2012; pp. 267–277. [Google Scholar]
- Jaffer, U.; Jamieson, G.A. Hypnosis and the neuroscience of cognitive and affective control. Aust. J. Clin. Exp. Hypn. 2012, 40, 1–20. [Google Scholar]
- Bowers, K.S. Imagination and Dissociation in Hypnotic Responding. Int. J. Clin. Exp. Hypn. 1992, 40, 253–275. [Google Scholar] [CrossRef]
- Woody, E.Z.; Sadler, P. Dissociation theories of hypnosis. In The Oxford Handbook of Hypnosis: Theory, Research, and Practice; Oxford University Press Inc.: New York, NY, USA, 2008; pp. 81–110. [Google Scholar]
- Dienes, Z.; Perner, J. Executive control without conscious awareness: The cold control theory of hypnosis. In Hypnosis and Conscious States: The Cognitive Neuroscience Perspective; Jamieson, G.A., Ed.; Oxford University Press: New York, NY, USA, 2007; pp. 293–314. [Google Scholar]
- Chambon, V.; Wenke, D.; Fleming, S.M.; Prinz, W.; Haggard, P. An Online Neural Substrate for Sense of Agency. Cereb. Cortex 2013, 23, 1031–1037. [Google Scholar] [CrossRef]
- Haggard, P.; Chambon, V. Sense of agency. Curr. Biol. 2012, 22, R390–R392. [Google Scholar] [CrossRef]
- Lush, P.; Naish, P.; Dienes, Z. Metacognition of intentions in mindfulness and hypnosis. Neurosci. Conscious. 2016, 2016, niw007. [Google Scholar] [CrossRef] [PubMed]
- Otto, T. Effective Connectivity Changes in Hypnotic Visual Illusion. Master’s Thesis, University of Maastricht, Maastricht, The Netherlands, 2007. [Google Scholar]
- Buchner, R.; Andrews-Hanna, J.; Schacter, D. The brain’s default network. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, D.; Levitin, D.J.; Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl. Acad. Sci. USA 2008, 105, 12569–12574. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.D.; Raichle, M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 2007, 8, 700–711. [Google Scholar] [CrossRef] [PubMed]
- Halsband, U.; Wolf, T.G. Current neuroscientific research database findings of brain activity changes after hypnosis. Am. J. Clin. Hypn. 2021, 63, 372–388. [Google Scholar] [CrossRef]
- Wolf, T.G.; Faerber, K.A.; Rummel, C.; Halsband, U.; Campus, G. Functional Changes in Brain Activity Using Hypnosis: A Systematic Review. Brain Sci. 2022, 12, 108. [Google Scholar] [CrossRef]
- Faymonville, M.E.; Boly, M.; Laureys, S. Functional neuroanatomy of the hypnotic state. J. Physiol.-Paris 2006, 99, 463–469. [Google Scholar] [CrossRef]
- Rainville, P.; Carrier, B.t.; Hofbauer, R.K.; Bushnell, M.C.; Duncan, G.H. Dissociation of sensory and affective dimensions of pain using hypnotic modulation. Pain 1999, 82, 159–171. [Google Scholar] [CrossRef]
- Lipari, S.; Baglio, F.; Griffanti, L.; Mendozzi, L.; Garegnani, M.; Motta, A.; Cecconi, P.; Pugnetti, L. Altered and asymmetric default mode network activity in a “hypnotic virtuoso”: An fMRI and EEG study. Conscious. Cogn. 2012, 21, 393–400. [Google Scholar] [CrossRef]
- McGeown, W.J.; Mazzoni, G.; Vannucci, M.; Venneri, A. Structural and functional correlates of hypnotic depth and suggestibility. Psychiatry Res. Neuroimaging 2015, 231, 151–159. [Google Scholar] [CrossRef]
- Vázquez, P.G.; Whitfield-Gabrieli, S.; Bauer, C.C.C.; Barrios, F.A. Brain functional connectivity of hypnosis without target suggestion—An intrinsic hypnosis rs-fMRI study. World J. Biol. Psychiatry 2023, 1–11. [Google Scholar] [CrossRef]
- de Matos, N.M.; Staempfli, P.; Seifritz, E.; Preller, K.; Bruegger, M. Investigating functional brain connectivity patterns associated with two hypnotic states. Front. Hum. Neurosci. 2023, 17, 1286336. [Google Scholar] [CrossRef] [PubMed]
- van Osch, M.J.P.; Teeuwisse, W.M.; Chen, Z.; Suzuki, Y.; Helle, M.; Schmid, S. Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow. J. Cereb. Blood Flow Metab. 2018, 38, 1461–1480. [Google Scholar] [CrossRef] [PubMed]
- Blakemore, S.J.; Oakley, D.A.; Frith, C.D. Delusions of alien control in the normal brain. Neuropsychologia 2003, 41, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
- Darby, R.R.; Joutsa, J.; Burke, M.J.; Fox, M.D. Lesion network localization of free will. Proc. Natl. Acad. Sci. USA 2018, 115, 10792–10797. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K. Clinical Psychopathology; Grune & Stratton: New York, NY, USA, 1959. [Google Scholar]
- Meiron, O. Self-awareness in schizophrenia: Identifying neural oscillatory parameters underlying altered sense of self-agency and reduced prefrontal cortex excitability. Curr. Opin. Behav. Sci. 2024, in press. [Google Scholar]
- Greicius, M.D.; Srivastava, G.; Reiss, A.L.; Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proc. Natl. Acad. Sci. USA 2004, 101, 4637–4642. [Google Scholar] [CrossRef]
- Daselaar, S.M.; Porat, Y.; Huijbers, W.; Pennartz, C.M.A. Modality-specific and modality-independent components of the human imagery system. NeuroImage 2010, 52, 677–685. [Google Scholar] [CrossRef]
- Zvyagintsev, M.; Clemens, B.; Chechko, N.; Mathiak, K.A.; Sack, A.T.; Mathiak, K. Brain networks underlying mental imagery of auditory and visual information. Eur. J. Neurosci. 2013, 37, 1421–1434. [Google Scholar] [CrossRef]
- Lynn, S.J.; Laurence, J.-R.; Kirsch, I. Hypnosis, Suggestion, and Suggestibility: An Integrative Model. Am. J. Clin. Hypn. 2015, 57, 314–329. [Google Scholar] [CrossRef]
- Dienes, Z.; Hutton, S. Understanding hypnosis metacognitively: rTMS applied to left DLPFC increases hypnotic suggestibility. Cortex 2013, 49, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, G.A.; Woody, E. Dissociated control as a paradigm for cognitive neuroscience research and theorizing in hypnosis. In Hypnosis and Conscious States: The Cognitive Neuroscience Perspective; Jamieson, G.A., Ed.; Oxford University Press: New York, NY, USA, 2007; pp. 111–129. [Google Scholar]
- Connors, M.H. Hypnosis and belief: A review of hypnotic delusions. Conscious. Cogn. 2015, 36, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Meiron, O.; Lavidor, M. Prefrontal oscillatory stimulation modulates access to cognitive control references in retrospective metacognitive commentary. Clin. Neurophysiol. 2014, 125, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.A.; Mallard, D. Seeing is believing: The reality of hypnotic hallucinations. Conscious. Cogn. 2003, 12, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Barnier, A.J.; Cox, R.E.; O’Connor, A.; Coltheart, M.; Langdon, R.; Breen, N.; Turner, M. Developing hypnotic analogues of clinical delusions: Mirrored-self misidentification. Cogn. Neuropsychiatry 2008, 13, 406–430. [Google Scholar] [CrossRef] [PubMed]
- Uddin, L.Q. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 2015, 16, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Uddin, L.Q. Chapter 3—Functions of the salience network. In Salience Network of the Human Brain; Uddin, L.Q., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 11–16. [Google Scholar]
- Smallwood, J.; Brown, K.; Baird, B.; Schooler, J.W. Cooperation between the default mode network and the frontal–parietal network in the production of an internal train of thought. Brain Res. 2012, 1428, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Demertzi, A.; Soddu, A.; Laureys, S. Consciousness supporting networks. Curr. Opin. Neurobiol. 2013, 23, 239–244. [Google Scholar] [CrossRef]
- Vanhaudenhuyse, A.; Demertzi, A.; Schabus, M.; Noirhomme, Q.; Bredart, S.; Boly, M.; Phillips, C.; Soddu, A.; Luxen, A.; Moonen, G.; et al. Two Distinct Neuronal Networks Mediate the Awareness of Environment and of Self. J. Cogn. Neurosci. 2011, 23, 570–578. [Google Scholar] [CrossRef]
- Tellegen, A.; Atkinson, G. Openness to absorbing and self-altering experiences (“absorption”), a trait related to hypnotic susceptibility. J. Abnorm. Psychol. 1974, 83, 268–277. [Google Scholar] [CrossRef]
- Deshpande, G.; Santhanam, P.; Hu, X. Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data. NeuroImage 2011, 54, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Di, X.; Biswal, B.B. Dynamic brain functional connectivity modulated by resting-state networks. Brain Struct. Funct. 2015, 220, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Hu, Y.; Chen, X.; He, Y.; Yang, Y. Regional excitation-inhibition balance predicts default-mode network deactivation via functional connectivity. NeuroImage 2019, 185, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Demertzi, A.; Vanhaudenhuyse, A.; Noirhomme, Q.; Faymonville, M.-E.; Laureys, S. Hypnosis modulates behavioural measures and subjective ratings about external and internal awareness. J. Physiol.-Paris 2015, 109, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, G.A. A unified theory of hypnosis and meditation states: The interoceptive predictive coding approach. In Hypnosis and Meditation: Towards an Integrative Science of Conscious Planes; Raz, A., Lifshitz, M., Eds.; Oxford University Press: New York, NY, USA, 2016; pp. 313–342. [Google Scholar]
- Rothbart, M.K.; Rueda, M.R. The Development of Effortful Control. In Developing Individuality in the Human Brain: A Tribute to Michael I. Posner; American Psychological Association: Washington, DC, USA, 2005; pp. 167–188. [Google Scholar]
- Pessoa, L. How do emotion and motivation direct executive control? Trends Cogn. Sci. 2009, 13, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Knauff, M.; Mulack, T.; Kassubek, J.; Salih, H.R.; Greenlee, M.W. Spatial imagery in deductive reasoning: A functional MRI study. Cogn. Brain Res. 2002, 13, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Rumiati, R.I. One or two things I know about apraxia. Cortex 2014, 57, 279–280. [Google Scholar] [CrossRef]
- Maher, B. Delusional thinking and cognitive disorder. Integr. Physiol. Behav. Sci. 2005, 40, 136–146. [Google Scholar] [CrossRef]
- Guldenmund, P.; Demertzi, A.; Boveroux, P.; Boly, M.; Vanhaudenhuyse, A.; Bruno, M.-A.; Gosseries, O.; Noirhomme, Q.; Brichant, J.-F.; Bonhomme, V.; et al. Thalamus, Brainstem and Salience Network Connectivity Changes During Propofol-Induced Sedation and Unconsciousness. Brain Connect. 2013, 3, 273–285. [Google Scholar] [CrossRef]
- Ihalainen, R.; Gosseries, O.; de Steen, F.V.; Raimondo, F.; Panda, R.; Bonhomme, V.; Marinazzo, D.; Bowman, H.; Laureys, S.; Chennu, S. How hot is the hot zone? Computational modelling clarifies the role of parietal and frontoparietal connectivity during anaesthetic-induced loss of consciousness. NeuroImage 2021, 231, 117841. [Google Scholar] [CrossRef]
- Crone, J.S.; Ladurner, G.; Höller, Y.; Golaszewski, S.; Trinka, E.; Kronbichler, M. Deactivation of the default mode network as a marker of impaired consciousness: An fMRI study. PLoS ONE 2011, 6, e26373. [Google Scholar] [CrossRef] [PubMed]
- Bor, D.; Seth, A. Consciousness and the Prefrontal Parietal Network: Insights from Attention, Working Memory, and Chunking. Front. Psychol. 2012, 3, 63. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.; Massimini, M.; Boly, M.; Tononi, G. Neural correlates of consciousness: Progress and problems. Nat. Rev. Neurosci. 2016, 17, 307–321. [Google Scholar] [CrossRef]
- Koch, C.; Massimini, M.; Boly, M.; Tononi, G. Posterior and anterior cortex—Where is the difference that makes the difference? Nat. Rev. Neurosci. 2016, 17, 666. [Google Scholar] [CrossRef] [PubMed]
- Sato, W.; Kochiyama, T.; Uono, S.; Toichi, M. Neural mechanisms underlying conscious and unconscious attentional shifts triggered by eye gaze. NeuroImage 2016, 124, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Boly, M.; Massimini, M.; Tsuchiya, N.; Postle, B.R.; Koch, C.; Tononi, G. Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence. J. Neurosci. 2017, 37, 9603–9613. [Google Scholar] [CrossRef] [PubMed]
- Siclari, F.; Baird, B.; Perogamvros, L.; Bernardi, G.; LaRocque, J.J.; Riedner, B.; Boly, M.; Postle, B.R.; Tononi, G. The neural correlates of dreaming. Nat. Neurosci. 2017, 20, 872–878. [Google Scholar] [CrossRef] [PubMed]
- D’Esposito, M.; Postle, B.R. The Cognitive Neuroscience of Working Memory. Annu. Rev. Psychol. 2015, 66, 115–142. [Google Scholar] [CrossRef]
- Cojan, Y.; Waber, L.; Schwartz, S.; Rossier, L.; Forster, A.; Vuilleumier, P. The brain under self-control: Modulation of inhibitory and monitoring cortical networks during hypnotic paralysis. Neuron 2009, 62, 862–875. [Google Scholar] [CrossRef]
- Burgmer, M.; Kugel, H.; Pfleiderer, B.; Ewert, A.; Lenzen, T.; Pioch, R.; Pyka, M.; Sommer, J.; Arolt, V.; Heuft, G.; et al. The mirror neuron system under hypnosis–Brain substrates of voluntary and involuntary motor activation in hypnotic paralysis. Cortex 2013, 49, 437–445. [Google Scholar] [CrossRef]
- Peyron, R.; Laurent, B.; García-Larrea, L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol. Clin. 2000, 30, 263–288. [Google Scholar] [CrossRef] [PubMed]
- Barlow, J.S. The Cerebellum and Adaptive Control. 2002. Available online: https://cir.nii.ac.jp/crid/1361137044438297344#citations_container (accessed on 28 December 2023).
- Camarillo, L.; Luna, R.; Nácher, V.; Romo, R. Coding perceptual discrimination in the somatosensory thalamus. Proc. Natl. Acad. Sci. USA 2012, 109, 21093–21098. [Google Scholar] [CrossRef] [PubMed]
- Preller, K.H.; Razi, A.; Zeidman, P.; Stämpfli, P.; Friston, K.J.; Vollenweider, F.X. Effective connectivity changes in LSD-induced altered states of consciousness in humans. Proc. Natl. Acad. Sci. USA 2019, 116, 2743–2748. [Google Scholar] [CrossRef] [PubMed]
- DeSouza, D.D.; Stimpson, K.H.; Baltusis, L.; Sacchet, M.D.; Gu, M.; Hurd, R.; Wu, H.; Yeomans, D.C.; Willliams, N.; Spiegel, D. Association between Anterior Cingulate NHuberbeurochemical Concentration and Individual Differences in Hypnotizability. Cereb. Cortex 2020, 30, 3644–3654. [Google Scholar] [CrossRef] [PubMed]
- De Benedittis, G. Neural Mechanisms of Hypnosis and Meditation-Induced Analgesia: A Narrative Review. Int. J. Clin. Exp. Hypn. 2021, 69, 363–382. [Google Scholar] [CrossRef]
- Hoeft, F.; Gabrieli, J.D.E.; Whitfield-Gabrieli, S.; Haas, B.W.; Bammer, R.; Menon, V.; Spiegel, D. Functional Brain Basis of Hypnotizability. Arch. Gen. Psychiatry 2012, 69, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Pinho, A.L.; Ullén, F.; Castelo-Branco, M.; Fransson, P.; de Manzano, Ö. Addressing a Paradox: Dual Strategies for Creative Performance in Introspective and Extrospective Networks. Cereb. Cortex 2015, 26, 3052–3063. [Google Scholar] [CrossRef] [PubMed]
- Acunzo, D.J.; Terhune, D.B.; Sharma, A.; Hickey, C.M. Absorption and dissociation mediate the relationship between direct verbal suggestibility and impulsivity/compulsivity. Acta Psychol. 2022, 231, 103793. [Google Scholar] [CrossRef]
- Cardeña, E.; Spiegel, D. Suggestibility, absorption, and dissociation: An integrative model of hypnosis. In Human Suggestibility: Advances in Theory, Research, and Application; Schumaker, J.F., Ed.; Routledge: London, UK, 1991; pp. 93–107. [Google Scholar]
- Halligan, P.W.; Oakley, D.A. Hypnosis and cognitive neuroscience: Bridging the gap. Cortex 2013, 49, 359–364. [Google Scholar] [CrossRef]
- Landry, M.; Raz, A. Hypnosis and Imaging of the Living Human Brain. Am. J. Clin. Hypn. 2015, 57, 285–313. [Google Scholar] [CrossRef]
- Barnier, A.J.; Cox, R.E.; McConkey, K.M. The province of “highs”: The high hypnotizable person in the science of hypnosis and in psychological science. Psychol. Conscious. Theory Res. Pract. 2014, 1, 168–183. [Google Scholar] [CrossRef]
- Heap, M.; Brown, R.J.; Oakley, D.A. The Highly Hypnotizable Person: Theoretical, Experimental and Clinical Issues; Routledge: London, UK, 2004. [Google Scholar]
- Cardeña, E.; Jönsson, P.; Terhune, D.B.; Marcusson-Clavertz, D. The neurophenomenology of neutral hypnosis. Cortex 2013, 49, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Pekala, R.J.; Kumar, V. An empirical-phenomenological approach to quantifying consciousness and states of consciousness: With particular reference to understanding the nature of hypnosis. In Hypnosis and Conscious States: The Cognitive Neuroscience Perspective; Jamieson, G.A., Ed.; Oxford University Press: New York, NY, USA, 2007; pp. 167–194. [Google Scholar]
- Huber, A.; Lui, F.; Duzzi, D.; Pagnoni, G.; Porro, C.A. Structural and functional cerebral correlates of hypnotic suggestibility. PLoS ONE 2014, 9, e93187. [Google Scholar] [CrossRef]
- Horton, J.E.; Crawford, H.J.; Harrington, G.; Downs, J.H., III. Increased anterior corpus callosum size associated positively with hypnotizability and the ability to control pain. Brain 2004, 127, 1741–1747. [Google Scholar] [CrossRef] [PubMed]
- Bloom, J.S.; Hynd, G.W. The Role of the Corpus Callosum in Interhemispheric Transfer of Information: Excitation or Inhibition? Neuropsychol. Rev. 2005, 15, 59–71. [Google Scholar] [CrossRef]
- Picerni, E.; Santarcangelo, E.L.; Laricchiuta, D.; Cutuli, D.; Petrosini, L.; Spalletta, G.; Piras, F. Cerebellar Structural Variations in Subjects with Different Hypnotizability. Cerebellum 2019, 18, 109–118. [Google Scholar] [CrossRef]
- Huber, A.; Lui, F.; Porro, C.A. Hypnotic susceptibility modulates brain activity related to experimental placebo analgesia. PAIN® 2013, 154, 1509–1518. [Google Scholar] [CrossRef]
- Lifshitz, M.; Raz, A. Hypnotic ability and baseline attention: fMRI findings from Stroop interference. Psychol. Conscious. Theory Res. Pract. 2015, 2, 134–143. [Google Scholar] [CrossRef]
- Cojan, Y.; Piguet, C.; Vuilleumier, P. What makes your brain suggestible? Hypnotizability is associated with differential brain activity during attention outside hypnosis. NeuroImage 2015, 117, 367–374. [Google Scholar] [CrossRef]
- Kihlstrom, J.F. Neuro-hypnotism: Prospects for hypnosis and neuroscience. Cortex 2013, 49, 365–374. [Google Scholar] [CrossRef]
- Crawford, H.J.; Gruzelier, J.H. A midstream view of the neuropsychophysiology of hypnosis: Recent research and future directions. In Contemporary Hypnosis Research; Guilford Press: New York, NY, USA, 1992; pp. 227–266. [Google Scholar]
- Gruzelier, J.H. A working model of the neurophysiology of hypnosis: A review of evidence. Contemp. Hypn. 1998, 15, 3–21. [Google Scholar] [CrossRef]
- De Pascalis, V. Psychophysiological correlates of hypnosis and hypnotic susceptibility. Int. J. Clin. Exp. Hypn. 1999, 47, 117–143. [Google Scholar] [CrossRef] [PubMed]
- Kallio, S.; Revonsuo, A.; Hämäläinen, H.; Markela, J.; Gruzelier, J. Anterior brain functions and hypnosis: A test of the frontal hypothesis. Int. J. Clin. Exp. Hypn. 2001, 49, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Castellani, E.; D’Alessandro, L.; Sebastiani, L. Hypnotizability and spatial attentional functions. Arch. Ital. De Biol. 2007, 145, 23–37. [Google Scholar]
- Crawford, H.J.; Brown, A.M.; Moon, C.E. Sustained attentional and disattentional abilities: Differences between low and highly hypnotizable persons. J. Abnorm. Psychol. 1993, 102, 534–543. [Google Scholar] [CrossRef]
- Dixon, M.; Laurence, J.-R. Hypnotic susceptibility and verbal automaticity: Automatic and strategic processing differences in the Stroop color-naming task. J. Abnorm. Psychol. 1992, 101, 344–347. [Google Scholar] [CrossRef]
- Egner, T.; Raz, A. Cognitive control processes and hypnosis. In Hypnosis and Conscious States: The Cognitive Neuroscience Perspective; Oxford University Press: New York, NY, USA, 2007; pp. 29–50. [Google Scholar]
- Kaiser, J.; Barker, R.; Haenschel, C.; Baldeweg, T.; Gruzelier, J.H. Hypnosis and event-related potential correlates of error processing in a stroop-type paradigm: A test of the frontal hypothesis. Int. J. Psychophysiol. 1997, 27, 215–222. [Google Scholar] [CrossRef]
- Raz, A.; Shapiro, T.; Fan, J.; Posner, M.I. Hypnotic Suggestion and the Modulation of Stroop Interference. Arch. Gen. Psychiatry 2002, 59, 1155–1161. [Google Scholar] [CrossRef]
- Rubichi, S.; Ricci, F.; Padovani, R.; Scaglietti, L. Hypnotic susceptibility, baseline attentional functioning, and the Stroop task. Conscious. Cogn. 2005, 14, 296–303. [Google Scholar] [CrossRef]
- Varga, K.; Németh, Z.; Szekely, A. Lack of correlation between hypnotic susceptibility and various components of attention. Conscious. Cogn. 2011, 20, 1872–1881. [Google Scholar] [CrossRef]
- Sheehan, P.; McConkey, K. Hypnosis and Experience (Psychology Revivals): The Exploration of Phenomena and Process; Routledge: London, UK, 2015. [Google Scholar]
- Bryant, R.A.; McConkey, K.M. Hypnotic blindness and the relevance of cognitive style. J. Personal. Soc. Psychol. 1990, 59, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Oakley, D.A. Hypnosis and Conversion Hysteria: A Unifying Model. Cogn. Neuropsychiatry 1999, 4, 243–265. [Google Scholar] [CrossRef] [PubMed]
- Oakley, D.; Frasquilho, F. Hypnotic susceptibility, or F-bias: Its relevance to eating disorders. Contemp. Hypn. 1998, 15, 40–51. [Google Scholar] [CrossRef]
- McConkey, K.M.; Glisky, M.L.; Kihlstrom, J.F. Individual differences among hypnotic virtuosos: A case comparison. Aust. J. Clin. Exp. Hypn. 1989, 17, 131–140. [Google Scholar]
- Terhune, D.B.; Cardeña, E. Heterogeneity in high hypnotic suggestibility and the neurophysiology of hypnosis. Neurophysiol. Clin. 2015, 45, 177–178. [Google Scholar] [CrossRef] [PubMed]
- Terhune, D.B.; Cardeña, E.; Lindgren, M. Dissociated control as a signature of typological variability in high hypnotic suggestibility. Conscious. Cogn. 2011, 20, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Terhune, D.B.; Cardeña, E.; Lindgren, M. Dissociative tendencies and individual differences in high hypnotic suggestibility. Cogn. Neuropsychiatry 2011, 16, 113–135. [Google Scholar] [CrossRef]
- Terhune, D.B.; Cardeña, E. Dissociative Subtypes in Posttraumatic Stress Disorders and Hypnosis: Neurocognitive Parallels and Clinical Implications. Curr. Dir. Psychol. Sci. 2015, 24, 452–457. [Google Scholar] [CrossRef]
- Santarcangelo, E.L. New views of hypnotizability. Front. Behav. Neurosci. 2014, 8, 224. [Google Scholar] [CrossRef]
- Koziol, L.F.; Budding, D.; Andreasen, N.; D’Arrigo, S.; Bulgheroni, S.; Imamizu, H.; Ito, M.; Manto, M.; Marvel, C.; Parker, K.; et al. Consensus Paper: The Cerebellum’s Role in Movement and Cognition. Cerebellum 2014, 13, 151–177. [Google Scholar] [CrossRef]
- Santarcangelo, E.L.; Scattina, E. Responding to Sensorimotor Suggestions: From Endothelial Nitric Oxide to the Functional Equivalence between Imagery and Perception. Int. J. Clin. Exp. Hypn. 2019, 67, 394–407. [Google Scholar] [CrossRef] [PubMed]
- Coltheart, M.; Cox, R.; Sowman, P.; Morgan, H.; Barnier, A.; Langdon, R.; Connaughton, E.; Teichmann, L.; Williams, N.; Polito, V. Belief, delusion, hypnosis, and the right dorsolateral prefrontal cortex: A transcranial magnetic stimulation study. Cortex 2018, 101, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Faerman, A.; Bishop, J.H.; Stimpson, K.H.; Phillips, A.; Gülser, M.; Amin, H.; Nejad, R.; DeSouza, D.D.; Geoly, A.D.; Kallioniemi, E.; et al. The Stanford Hypnosis Integrated with Functional Connectivity-targeted Transcranial Stimulation (SHIFT): A Preregistered Randomized Controlled Trial. Nat. Ment. Health 2024, in press. [Google Scholar] [CrossRef]
- Perri, R.L.; Di Filippo, G. Alteration of hypnotic experience following transcranial electrical stimulation of the left prefrontal cortex. Int. J. Clin. Health Psychol. 2023, 23, 100346. [Google Scholar] [CrossRef] [PubMed]
- Bakan, P. Hypnotizability, Laterality of Eye-Movements and Functional Brain Asymmetry. Percept. Mot. Ski. 1969, 28, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Edmonston, W.E.; Grotevant, W.R. Hypnosis and Alpha Density. Am. J. Clin. Hypn. 1975, 17, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Engstrom, D.R.; London, P.; Hart, J.T. Hypnotic Susceptibility increased by EEG Alpha Training. Nature 1970, 227, 1261–1262. [Google Scholar] [CrossRef]
- London, P.; Hart, J.T.; Leibovitz, M.P.; McDevitt, R.A. The psychophysiology of hypnotic susceptibility. In Psychophysiological Mechanisms of Hypnosis: An International Symposium Sponsored by the International Brain Research Organization and the Centre de Recherche, Institut de Psychiatrie La Rochefoucauld, Paris; Springer: Berlin/Heidelberg, Germany, 1969; pp. 151–172. [Google Scholar]
- Morgan, A.H.; Macdonald, H.; Hilgard, E.R. EEG Alpha: Lateral Asymmetry Related to Task, and Hypnotizability. Psychophysiology 1974, 11, 275–282. [Google Scholar] [CrossRef]
- Ulett, G.A.; Akpinar, S.; Itil, T.M. Quantitative EEG analysis during hypnosis. Electroencephalogr. Clin. Neurophysiol. 1972, 33, 361–368. [Google Scholar] [CrossRef]
- De Pascalis, V.; Palumbo, G. EEG Alpha Asymmetry: Task Difficulty and Hypnotizability. Percept. Mot. Ski. 1986, 62, 139–150. [Google Scholar] [CrossRef]
- Graffin, N.F.; Ray, W.J.; Lundy, R. EEG concomitants of hypnosis and hypnotic susceptibility. J. Abnorm. Psychol. 1995, 104, 123–131. [Google Scholar] [CrossRef] [PubMed]
- MacLeod-Morgan, C. Hypnotic susceptibility, EEG theta and alpha waves, and hemispheric specificity. In Hypnosis 1979; Elsevier: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Williams, J.D.; Gruzelier, J.H. Differentiation of hypnosis and relaxation by analysis of narrow band theta and alpha frequencies. Int. J. Clin. Exp. Hypn. 2001, 49, 185–206. [Google Scholar] [CrossRef] [PubMed]
- Sabourin, M.E.; Cutcomb, S.D.; Crawford, H.J.; Pribram, K. EEG correlates of hypnotic susceptibility and hypnotic trance: Spectral analysis and coherence. Int. J. Psychophysiol. 1990, 10, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.; Schmidt, B.; Hecht, H.; Naumann, E.; Miltner, W.H.R. Suggested visual blockade during hypnosis: Top-down modulation of stimulus processing in a visual oddball task. PLoS ONE 2021, 16, e0257380. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Hecht, H.; Naumann, E.; Miltner, W.H.R. The Power of mind: Blocking visual perception by hypnosis. Sci. Rep. 2017, 7, 4889. [Google Scholar] [CrossRef]
- Crawford, H.J. Cognitive and psychophysiological correlates of hypnotic responsiveness and hypnosis. In Creative Mastery in Hypnosis and Hypnoanalysis: A Festschrift for Erika Fromm; Plenum Press: New York, NY, USA, 1990; pp. 47–54. [Google Scholar]
- De Pascalis, V.; Ray, W.J.; Tranquillo, I.; D’Amico, D. EEG activity and heart rate during recall of emotional events in hypnosis: Relationships with hypnotizability and suggestibility. Int. J. Psychophysiol. 1998, 29, 255–275. [Google Scholar] [CrossRef]
- Tebecis, A.K.; Provins, K.A.; Farnbach, R.W.; Pentony, P. Hypnosis and the EEG: A quantitative investigation. J. Nerv. Ment. Dis. 1975, 161, 1–17. [Google Scholar] [CrossRef]
- Crawford, H.J.; Clarke, S.W.; Kitner-Triolo, M. Self-generated happy and sad emotions in low and highly hypnotizable persons during waking and hypnosis: Laterality and regional EEG activity differences. Int. J. Psychophysiol. 1996, 24, 239–266. [Google Scholar] [CrossRef]
- Jensen, M.P.; Sherlin, L.H.; Askew, R.L.; Fregni, F.; Witkop, G.; Gianas, A.; Howe, J.D.; Hakimian, S. Effects of non-pharmacological pain treatments on brain states. Clin. Neurophysiol. 2013, 124, 2016–2024. [Google Scholar] [CrossRef]
- Freeman, R.; Barabasz, A.; Barabasz, M.; Warner, D. Hypnosis and Distraction Differ in Their Effects on Cold Pressor Pain. Am. J. Clin. Hypn. 2000, 43, 137–148. [Google Scholar] [CrossRef]
- Galbraith, G.C.; London, P.; Leibovitz, M.P.; Cooper, L.M.; Hart, J.T. EEG and hypnotic susceptibility. J. Comp. Physiol. Psychol. 1970, 72, 125–131. [Google Scholar] [CrossRef] [PubMed]
- De Benedittis, G. Neural mechanisms of hypnosis and meditation. J. Physiol.-Paris 2015, 109, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.P.; Adachi, T.; Tomé-Pires, C.; Lee, J.; Osman, Z.J.; Miró, J. Mechanisms of Hypnosis: Toward the Development of a Biopsychosocial Model. Int. J. Clin. Exp. Hypn. 2015, 63, 34–75. [Google Scholar] [CrossRef]
- De Pascalis, V.; Marucci, F.S.; Penna, P.M.; Pessa, E. Hemispheric activity of 40 Hz EEG during recall of emotional events: Differences between low and high hypnotizables. Int. J. Psychophysiol. 1987, 5, 167–180. [Google Scholar] [CrossRef] [PubMed]
- De Pascalis, V.; Marucci, F.S.; Penna, P.M. 40-Hz EEG asymmetry during recall of emotional events in waking and hypnosis: Differences between low and high hypnotizables. Int. J. Psychophysiol. 1989, 7, 85–96. [Google Scholar] [CrossRef]
- Schnyer, D.M.; Allen, J.J. Attention-related electroencephalographic and event-related potential predictors of responsiveness to suggested posthypnotic amnesia. Int. J. Clin. Exp. Hypn. 1995, 43, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Isotani, T.; Lehmann, D.; Pascual-Marqui, R.D.; Kochi, K.; Wackermann, J.; Saito, N.; Yagyu, T.; Kinoshita, T.; Sasada, K. EEG Source Localization and Global Dimensional Complexity in High- and Low-Hypnotizable Subjects: A Pilot Study. Neuropsychobiology 2001, 44, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Crawford, H.J. Brain dynamics and hypnosis: Attentional and disattentional processes. Int. J. Clin. Exp. Hypn. 1994, 42, 204–232. [Google Scholar] [CrossRef]
- Jamieson, G.A.; Burgess, A.P. Hypnotic induction is followed by state-like changes in the organization of EEG functional connectivity in the theta and beta frequency bands in high-hypnotically susceptible individuals. Front. Hum. Neurosci. 2014, 8, 528. [Google Scholar] [CrossRef]
- White, D.; Ciorciari, J.; Carbis, C.; Liley, D. EEG Correlates of Virtual Reality Hypnosis. Int. J. Clin. Exp. Hypn. 2009, 57, 94–116. [Google Scholar] [CrossRef]
- Kirenskaya, A.V.; Novototsky-Vlasov, V.Y.; Zvonikov, V.M. Waking EEG Spectral Power and Coherence Differences Between High and Low Hypnotizable Subjects. Int. J. Clin. Exp. Hypn. 2011, 59, 441–453. [Google Scholar] [CrossRef]
- Croft, R.J.; Williams, J.D.; Haenschel, C.; Gruzelier, J.H. Pain perception, hypnosis and 40 Hz oscillations. Int. J. Psychophysiol. 2002, 46, 101–108. [Google Scholar] [CrossRef] [PubMed]
- De Pascalis, V.; Cacace, I.; Massicolle, F. Perception and modulation of pain in waking and hypnosis: Functional significance of phase-ordered gamma oscillations. Pain 2004, 112, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Başar, E. Brain Function and Oscillations: II. Integrative Brain Function. Neurophysiology and Cognitive Processes; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Başar, E.; Schürmann, M.; Başar-Eroglu, C.; Demiralp, T. Selectively distributed gamma band system of the brain. Int. J. Psychophysiol. 2001, 39, 129–135. [Google Scholar] [CrossRef]
- Karakaş, S.; Başar, E. Early gamma response is sensory in origin: A conclusion based on cross-comparison of results from multiple experimental paradigms. Int. J. Psychophysiol. 1998, 31, 13–31. [Google Scholar] [CrossRef]
- Buzsaki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef] [PubMed]
- Lutz, A.; Greischar, L.L.; Rawlings, N.B.; Ricard, M.; Davidson, R.J. Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc. Natl. Acad. Sci. USA 2004, 101, 16369–16373. [Google Scholar] [CrossRef] [PubMed]
- Raz, A. Hypnosis: A twilight zone of the top-down variety: Few have never heard of hypnosis but most know little about the potential of this mind–body regulation technique for advancing science. Trends Cogn. Sci. 2011, 15, 555–557. [Google Scholar] [CrossRef]
- Lynn, S.J.; Kirsch, I.; Knox, J.; Fassler, O.; Lilienfeld, S.O. Hypnosis and neuroscience: Implications for the altered state debate. In Hypnosis and Conscious States: The Cognitive Neuroscience Perspective; Jamieson, G.A., Ed.; Oxford University Press: New York, NY, USA, 2007; pp. 145–165. [Google Scholar]
- Landry, M.; da Silva Castanheira, J.; Sackur, J.; Raz, A.; Ogez, D.; Rainville, P.; Jerbi, K. Unravelling the neural dynamics of hypnotic susceptibility: Aperiodic neural activity as a central feature of hypnosis. bioRxiv 2023. [Google Scholar] [CrossRef]
- Gao, R.; Peterson, E.J.; Voytek, B. Inferring synaptic excitation/inhibition balance from field potentials. NeuroImage 2017, 158, 70–78. [Google Scholar] [CrossRef]
- Voytek, B.; Kayser, A.S.; Badre, D.; Fegen, D.; Chang, E.F.; Crone, N.E.; Parvizi, J.; Knight, R.T.; D’Esposito, M. Oscillatory dynamics coordinating human frontal networks in support of goal maintenance. Nat. Neurosci. 2015, 18, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- Waschke, L.; Donoghue, T.; Fiedler, L.; Smith, S.; Garrett, D.D.; Voytek, B.; Obleser, J. Modality-specific tracking of attention and sensory statistics in the human electrophysiological spectral exponent. eLife 2021, 10, e70068. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, L.B.; Feuerriegel, D.; Jach, H.; Robinson, E.; Duong, V.N.; Bode, S.; Smillie, L. Disentangling Periodic and Aperiodic Resting EEG Correlates of Personality. 2023. Available online: https://osf.io/preprints/psyarxiv/6dtyq (accessed on 9 December 2023).
- Fingelkurts, A.A.; Fingelkurts, A.A.; Kähkönen, S. Functional connectivity in the brain—Is it an elusive concept? Neurosci. Biobehav. Rev. 2005, 28, 827–836. [Google Scholar] [CrossRef]
- Lee, L.; Harrison, L.M.; Mechelli, A. A report of the functional connectivity workshop, Dusseldorf 2002. NeuroImage 2003, 19, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Varela, F.; Lachaux, J.-P.; Rodriguez, E.; Martinerie, J. The brainweb: Phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2001, 2, 229–239. [Google Scholar] [CrossRef]
- Tsakiris, M.; Hesse, M.D.; Boy, C.; Haggard, P.; Fink, G.R. Neural Signatures of Body Ownership: A Sensory Network for Bodily Self-Consciousness. Cereb. Cortex 2007, 17, 2235–2244. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D. Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: Frequency decomposition. arXiv 2007, arXiv:0711.1455. [Google Scholar]
- Bullock, T.H.; McClune, M.C.; Enright, J.T. Are the electroencephalograms mainly rhythmic? Assessment of periodicity in wide-band time series. Neuroscience 2003, 121, 233–252. [Google Scholar] [CrossRef]
- Burgess, A. On the contribution of neurophysiology to hypnosis research: Current state and future directions. In Hypnosis and Conscious States: The Cognitive Neuroscience Perspective; Jamieson, G.A., Ed.; Oxford University Press: New York, NY, USA, 2007; pp. 195–219. [Google Scholar]
- Pereda, E.; Quiroga, R.Q.; Bhattacharya, J. Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 2005, 77, 1–37. [Google Scholar] [CrossRef]
- Stam, C.J.; Nolte, G.; Daffertshofer, A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 2007, 28, 1178–1193. [Google Scholar] [CrossRef]
- Hardmeier, M.; Hatz, F.; Bousleiman, H.; Schindler, C.; Stam, C.J.; Fuhr, P. Reproducibility of functional connectivity and graph measures based on the phase lag index (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG. PLoS ONE 2014, 9, e108648. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Marqui, R.D.; Lehmann, D.; Koukkou, M.; Kochi, K.; Anderer, P.; Saletu, B.; Tanaka, H.; Hirata, K.; John, E.R.; Prichep, L. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2011, 369, 3768–3784. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Kallio, S.; Revonsuo, A. Cortex functional connectivity as a neurophysiological correlate of hypnosis: An EEG case study. Neuropsychologia 2007, 45, 1452–1462. [Google Scholar] [CrossRef] [PubMed]
- De Pascalis, V. Phase-ordered gamma oscillations and the modulation of hypnotic experience. In Hypnosis and Conscious States: The Cognitive Neuroscience Perspective; Jamieson, G.A., Ed.; Oxford University Press: New York, NY, USA, 2007; pp. 67–89. [Google Scholar]
- Li, X.; Ma, R.; Pang, L.; Lv, W.; Xie, Y.; Chen, Y.; Zhang, P.; Chen, J.; Wu, Q.; Cui, G.; et al. Delta coherence in resting-state EEG predicts the reduction in cigarette craving after hypnotic aversion suggestions. Sci. Rep. 2017, 7, 2430. [Google Scholar] [CrossRef]
- Panda, R.; Vanhaudenhuyse, A.; Piarulli, A.; Annen, J.; Demertzi, A.; Alnagger, N.; Chennu, S.; Laureys, S.; Faymonville, M.-E.; Gosseries, O. Altered Brain Connectivity and Network Topological Organization in a Non-ordinary State of Consciousness Induced by Hypnosis. J. Cogn. Neurosci. 2023, 35, 1394–1409. [Google Scholar] [CrossRef] [PubMed]
- Woody, E.Z.; Farvolden, P. Dissociation in Hypnosis and Frontal Executive Function. Am. J. Clin. Hypn. 1998, 40, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Terhune, D.B.; Cardeña, E.; Lindgren, M. Differential frontal-parietal phase synchrony during hypnosis as a function of hypnotic suggestibility. Psychophysiology 2011, 48, 1444–1447. [Google Scholar] [CrossRef]
- Jamieson, G.A.; Kittenis, M.D.; Tivadar, R.I.; Evans, I.D. Inhibition of retrieval in hypnotic amnesia: Dissociation by upper-alpha gating. Neurosci. Conscious. 2017, 2017, nix005. [Google Scholar] [CrossRef]
- Keshmiri, S.; Alimardani, M.; Shiomi, M.; Sumioka, H.; Ishiguro, H.; Hiraki, K. Higher hypnotic suggestibility is associated with the lower EEG signal variability in theta, alpha, and beta frequency bands. PLoS ONE 2020, 15, e0230853. [Google Scholar] [CrossRef]
- Holt, D.J.; Cassidy, B.S.; Andrews-Hanna, J.R.; Lee, S.M.; Coombs, G.; Goff, D.C.; Gabrieli, J.D.; Moran, J.M. An Anterior-to-Posterior Shift in Midline Cortical Activity in Schizophrenia During Self-Reflection. Biol. Psychiatry 2011, 69, 415–423. [Google Scholar] [CrossRef]
- Cardeña, E. The phenomenology of deep hypnosis: Quiescent and physically active. Int. J. Clin. Exp. Hypn. 2005, 53, 37–59. [Google Scholar] [CrossRef] [PubMed]
- Gruzelier, J.H. Redefining hypnosis: Theory, methods and integration. Contemp. Hypn. 2000, 17, 51–70. [Google Scholar] [CrossRef]
- Gruzelier, J.H. Frontal functions, connectivity and neural efficiency underpinning hypnosis and hypnotic susceptibility. Contemp. Hypn. 2006, 23, 15–32. [Google Scholar] [CrossRef]
- Buzsáki, G. The Hippocampo-Neocortical Dialogue. Cereb. Cortex 1996, 6, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Tesche, C.D.; Karhu, J. Theta oscillations index human hippocampal activation during a working memory task. Proc. Natl. Acad. Sci. USA 2000, 97, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef] [PubMed]
- Bell, V.; Oakley, D.A.; Halligan, P.W.; Deeley, Q. Dissociation hysteria and hypnosis: Evidence from cognitive neuroscience. J. Neurol. Neurosurg. Psychiatry 2011, 82, 332. [Google Scholar] [CrossRef] [PubMed]
- Posner, M.I.; Dehaene, S. Attentional networks. Trends Neurosci. 1994, 17, 75–79. [Google Scholar] [CrossRef]
- Botvinick, M.; Nystrom, L.E.; Fissell, K.; Carter, C.S.; Cohen, J.D. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 1999, 402, 179–181. [Google Scholar] [CrossRef]
- Carter, C.S.; Macdonald, A.M.; Botvinick, M.; Ross, L.L.; Stenger, V.A.; Noll, D.; Cohen, J.D. Parsing executive processes: Strategic vs. evaluative functions of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 2000, 97, 1944–1948. [Google Scholar] [CrossRef]
- Faerman, A.; Spiegel, D. Shared cognitive mechanisms of hypnotizability with executive functioning and information salience. Sci. Rep. 2021, 11, 5704. [Google Scholar] [CrossRef] [PubMed]
- Parris, B.A. The role of frontal executive functions in hypnosis and hypnotic suggestibility. Psychol. Conscious. Theory Res. Pract. 2017, 4, 211–229. [Google Scholar] [CrossRef]
Study | Sample | Experimental Task | Technique | Main Results |
---|---|---|---|---|
Structural Neuroimaging | ||||
Huber et al. (2014) [158] | LHs and HHs (N = 37 women) | MRI data recording | MRI | HHs: Enhanced grey matter volume in the left Superior and Medial Frontal Gyri and reduced grey matter volume in the left insula. For LHs: Enhanced grey matter volume in Superior, Mid-Temporal, and Mid-Occipital Gyri |
Horton et al. (2004) [159] | HHs (N = 8, four men) and LHs (N = 10, five men) | MRI data recording | MRI | HHs: Increased white matter volume in the rostrum of the corpus callosum and more effective attentional and inhibitory capabilities (inhibitory control of pain) |
McGeown et al. (2015) [96] | HHs (N = 7), LHs (N = 13) and MHs (N = 9); (N = 29, 17 men) | MRI data recording | MRI | HHs: Greater grey matter volume in the left Mid-Occipital and Mid-Temporal as well as Superior Temporal gyri |
DeSouza et al. (2020) [146] | HHs, MHs, and LHs (N = 10 women, N = 10 men) | MRI data recording | MRI | HHs: Higher GABA concentration within the ACC such that the higher the GABA concentration, the more hypnotizable an individual. A negative relationship between glutamate and individual absorption and imaginative involvement tendencies was found |
Picerni et al. (2019) [161] | HHs (N = 12, 4 men) and LHs (N = 37, 19 men) | MRI data recording | MRI | HHs: Gray matter volumes in left cerebellar lobules IV/V and VI and in the right inferior temporal gyrus, middle and superior orbitofrontal cortex, parahippocampal gyrus, and supramarginal parietal gyrus, as well as in left gyrus rectus, insula, and middle temporal cortex smaller than LHs. |
Functional l Neuroimaging—Resting Condition | ||||
Huber et al. (2014) [158] | LHs and HHs (N = 37 women) | Resting-state data recording | fMRI | Reduced connectivity between the Thalamus and the right Fronto-Parietal Network; increase in connectivity between the Posterior Cingulate Cortex and Precuneus with the left Fronto-Parietal Network; enhanced connectivity between the Inferior Parietal Lobule and the Central Executive Network. |
Hoeft et al. (2012) [148] | HHs (N = 12, 6 men) and LHs (N = 12, 6 men); (N = 24) | Resting-state data recording | fMRI | HHs: (1) Enhanced functional connectivity between bilateral PCC and Precuneus, and both the lateral visual network and the left frontoparietal network; (2) higher connectivity between the ECN and a right postcentral/parietal area; (3) decreased connectivity between the right frontoparietal network and the right lateral thalamus |
Functional l Neuroimaging—Placebo | ||||
Huber et al. (2013) [162] | HHs, MHs and LHs; (N = 32, 11 women) | Placebo Analgesia | fMRI | HSs: during the anticipation phase, increased activity in the right DLPC and reduced functional connectivity in the mACC/mPFC (brain regions related to emotional and evaluative pain processing); lower activity in the bilateral anterior thalamus/left caudate regions and left precuneus as well as bilateral posterior temporal foci, during pain perception |
Functional l Neuroimaging - Baseline/Attention Condition | ||||
Egner et al. (2005) [64] | HHs (N = 11) and LHs (N = 11); (N = 22, 10 women) | Baseline of Stroop Task | fMRI | HHs: Neural responses did not differ between hypnotizability groups for ACC and DLPC |
Lifshitz and Raz (2015) [163] | HHs (N = 8, 4 women); LHs (N = 8, 4 women); (N = 16) | fMRI | Enhanced activity in Fusiform Gyrus and Pulvinar | |
Jiang et al. (2017) [67] | HHs (N = 36) and LHs (N = 21) | Resting, Emotion, Memory | fMRI | HHs: higher dACC amplitude during rest than LHs, and significantly lower dACC activity in emotion/memory conditions during hypnosis compared to rest. Increased functional connectivity between the dorsolateral prefrontal cortex (DLPFC; ECN) and the insula in the SN, and reduced connectivity between the ECN (DLPFC) and the DMN (PCC) during hypnosis. |
Study | Sample | Experimental Task | EEG Measure | Main Results |
---|---|---|---|---|
Egner et al. (2005) [64] | HHs (N = 11) and LHs (N = 11); (N = 22, 10 women) | Baseline of Stroop Task | Coherence | HHs showed a decrease in EEG gamma (30–49.9 Hz) band coherence between frontal midline and left lateral scalp sites after hypnosis, while in LHs, gamma coherence showed an increase |
White et al. (2008) [221] | HHs (N = 7) and LHs (N = 10); (N = 17, 9 women) | Resting state following virtual reality hypnotic induction | Coherence | HHs showed decreased beta (13–30 Hz) coherence between medial frontal and lateral left prefrontal sites, while LHs demonstrated an increase in coherence |
Terhune et al. (2011) [253] | HHs (N = 28, 21 women) and LHs (N = 19, 13 women) | Resting state following hypnotic induction | Phase Synchrony | HHs reliably experienced a spontaneous greater state dissociation and exhibited lower frontal-parietal phase synchrony in the alpha2 (10.5–12 Hz) frequency band during neutral hypnosis than LHs |
Jamieson and Burgess (2014) [220] | HH (N = 12, 2 men) and LH (N = 11, 3 men) | Resting state following hypnotic induction | Imaginary Coherence (iCOH) | Increased theta (4–7.9 Hz) band functional connectivity following hypnotic induction in HHs but not LHs organized around a central-parietal hub. Decreased beta1 beta1 (13–19.9 Hz) iCOH from the pre-hypnosis to hypnosis condition with a focus on a frontocentral and an occipital hub that was greater in high compared to low susceptibles |
Jamieson et al. (2017) [254] | HHs (N = 15) and LHs (N = 9); (N = 24, 15 women) | Hypnotic amnesia for face recognition (old-new paradigm) | Lagged-Nonlinear Connectivity | In HHs, the inability to recognize old faces in response to the amnesia suggestion is linked to significant increases in evoked upper alpha (10–12 Hz) and increases in lagged nonlinear connectivity between the right superior parietal lobule, right parahippocampal gyrus, right fusiform gyrus, and right middle temporal gyrus. Synchrony between these regions is suggested as essential for the recall of recent faces |
Keshmiri et al. (2020) [255] | HHs (N = 6, 3 women) and LHs (N = 8, 3 women) | Ending phase of hypnotic induction | Differential Entropy; Functional Connectivity | Higher hypnotizability is associated with significantly lower differential entropy (i.e., the average information content) of theta, alpha, and beta frequencies, and this lower variability is paralleled by significantly higher functional connectivity in the parietal and parieto-occipital regions of theta (4–7.9 Hz), and alpha (8–11.9 Hz) frequency bands |
Landry et al. (2023) [232] | HHs and LHs (N = 40, 27 women) | Waking Resting State and resting state following hypnotic induction | Aperiodic and Periodic Power Spectra; Graph Theory Measures derived from Functional Connectivity (Clustering Coefficient, Global Efficiency, Global Modularity) | HHs exhibit a greater slope of the aperiodic exponent of the power spectrum across the entire scalp. However, this pattern was particularly pronounced in the anterior part of the frontal site and the right temporal region. The periodic activity did not differ between hypnotizability groups; HHs show greater global efficiency (i.e., the level of shared information across the entire network) in delta band activity during the pre-induction rs-EEG period |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Pascalis, V. Brain Functional Correlates of Resting Hypnosis and Hypnotizability: A Review. Brain Sci. 2024, 14, 115. https://doi.org/10.3390/brainsci14020115
De Pascalis V. Brain Functional Correlates of Resting Hypnosis and Hypnotizability: A Review. Brain Sciences. 2024; 14(2):115. https://doi.org/10.3390/brainsci14020115
Chicago/Turabian StyleDe Pascalis, Vilfredo. 2024. "Brain Functional Correlates of Resting Hypnosis and Hypnotizability: A Review" Brain Sciences 14, no. 2: 115. https://doi.org/10.3390/brainsci14020115