Associations between Gross and Fine Motor Skills, Physical Activity, Executive Function, and Academic Achievement: Longitudinal Findings from the UK Millennium Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Analytic Sample
2.2. Measures
2.2.1. Motor Skills at 9 Months
2.2.2. Physical Activity at 7 and 11 Years
2.2.3. Executive Function at 11 Years
2.2.4. Academic Achievement at 11 Years
2.2.5. Control Variables
2.2.6. Analytic Strategy
3. Results
3.1. Preliminary Analyses
3.2. Main Analyses
3.2.1. Gross and Fine Motor Skills, Physical Activity, and EF
3.2.2. Gross and Fine Motor Skills, Physical Activity, EF, and Academic Achievement
4. Discussion
4.1. How Are Infant Motor Skills Linked to Later Cognitive Functions?
4.2. Is Physical Activity Beneficial for Cognitive Development?
4.3. Meditating Role of EF
4.4. Strengths and Limitations
4.5. Clinical Application
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Cortés Pascual, A.; Moyano Muñoz, N.; Quílez Robres, A. The Relationship Between Executive Functions and Academic Performance in Primary Education: Review and Meta-Analysis. Front. Psychol. 2019, 10, 1582. [Google Scholar] [CrossRef] [PubMed]
- Baler, R.D.; Volkow, N.D. Drug addiction: The neurobiology of disrupted self-control. Trends Mol. Med. 2006, 12, 559–566. [Google Scholar] [CrossRef]
- Moffitt, T.E.; Arseneault, L.; Belsky, D.; Dickson, N.; Hancox, R.J.; Harrington, H.; Houts, R.; Poulton, R.; Roberts, B.W.; Ross, S.; et al. A gradient of childhood self-control predicts health, wealth, and public safety. Proc. Natl. Acad. Sci. USA 2011, 108, 2693–2698. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cognit Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef]
- McClelland, M.M.; Cameron, C.E. Developing together: The role of executive function and motor skills in children’s early academic lives. Early Child. Res. Q. 2019, 46, 142–151. [Google Scholar] [CrossRef]
- Thorell, L.B.; Lindqvist, S.; Bergman Nutley, S.; Bohlin, G.; Klingberg, T. Training and transfer effects of executive functions in preschool children. Dev. Sci. 2009, 12, 106–113. [Google Scholar] [CrossRef]
- Buckner, R.L. The Cerebellum and Cognitive Function: 25 Years of Insight from Anatomy and Neuroimaging. Neuron. 2013, 80, 807–815. [Google Scholar] [CrossRef]
- Piek, J.P.; Dyck, M.J.; Nieman, A.; Anderson, M.; Hay, D.; Smith, L.M.; McCoy, M.; Hallmayer, J. The relationship between motor coordination, executive functioning and attention in school aged children. Arch. Clin. Neuropsychol. 2004, 19, 1063–1076. [Google Scholar] [CrossRef]
- Piaget, J. The Origins of Intelligence in Children; International Universities Press: Madison, CT, USA, 1952. [Google Scholar]
- Koziol, L.F.; Lutz, J.T. From Movement to Thought: The Development of Executive Function. Appl. Neuropsychol. Child. 2013, 2, 104–115. [Google Scholar] [CrossRef]
- Leiner, H.C. Solving the Mystery of the Human Cerebellum. Neuropsychol. Rev. 2010, 20, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Murray, G.K.; Veijola, J.; Moilanen, K.; Miettunen, J.; Glahn, D.C.; Cannon, T.; Jones, P.B.; Isohanni, M. Infant motor development is associated with adult cognitive categorisation in a longitudinal birth cohort study. J. Child. Psychol. Psychiatry 2006, 47, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Ridler, K.; Veijola, J.M.; Tanskanen, P.; Miettunen, J.; Chitnis, X.; Suckling, J.; Murray, G.K.; Haapea, M.; Jones, P.B.; Isohanni, M.K.; et al. Fronto-cerebellar systems are associated with infant motor and adult executive functions in healthy adults but not in schizophrenia. Proc. Natl. Acad. Sci. USA 2006, 103, 15651–15656. [Google Scholar] [CrossRef] [PubMed]
- Poranen-Clark, T.; von Bonsdorff, M.B.; Lahti, J.; Räikkönen, K.; Osmond, C.; Rantanen, T.; Kajantie, E.; Eriksson, J.G. Infant motor development and cognitive performance in early old age: The Helsinki Birth Cohort Study. Age 2015, 37, 44. [Google Scholar] [CrossRef] [PubMed]
- Thelen, E. Motor development: A new synthesis. Am. Psychol. 1995, 50, 79–95. [Google Scholar] [CrossRef]
- Van der Fels, I.M.; Te Wierike, S.C.; Hartman, E.; Elferink-Gemser, M.T.; Smith, J.; Visscher, C. The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. J. Sci. Med. Sport. 2015, 18, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Luz, C.; Rodrigues, L.P.; Cordovil, R. The relationship between motor coordination and executive functions in 4th grade children. Eur. J. Dev. Psychol. 2015, 12, 129–141. [Google Scholar] [CrossRef]
- Cook, C.J.; Howard, S.J.; Scerif, G.; Twine, R.; Kahn, K.; Norris, S.A.; Draper, C.E. Associations of physical activity and gross motor skills with executive function in preschool children from low-income South African settings. Dev. Sci. 2019, 22, e12820. [Google Scholar] [CrossRef]
- Albuquerque, M.R.; Rennó, G.V.C.; Bruzi, A.T.; Fortes, L.D.S.; Malloy-Diniz, L.F. Association between motor competence and executive functions in children. Appl. Neuropsychol. Child. 2022, 11, 495–503. [Google Scholar] [CrossRef]
- Liu, S.; Chen, S.T.; Cai, Y. Associations Between Gross Motor Coordination and Executive Functions: Considering the Sex Difference in Chinese Middle-Aged School Children. Front. Psychol. 2022, 13, 875256. [Google Scholar] [CrossRef]
- Rigoli, D.; Piek, J.P.; Kane, R.; Oosterlaan, J. Motor coordination, working memory, and academic achievement in a normative adolescent sample: Testing a mediation model. Arch. Clin. Neuropsychol. 2012, 27, 766–780. [Google Scholar] [CrossRef]
- Oberer, N.; Gashaj, V.; Roebers, C.M. Motor skills in kindergarten: Internal structure, cognitive correlates and relationships to background variables. Hum. Mov. Sci. 2017, 52, 170–180. [Google Scholar] [CrossRef]
- Wu, M.; Liang, X.; Lu, S.; Wang, Z. Infant motor and cognitive abilities and subsequent executive function. Infant. Behav. Dev. 2017, 49, 204–213. [Google Scholar] [CrossRef]
- Grissmer, D.; Grimm, K.J.; Aiyer, S.M.; Murrah, W.M.; Steele, J.S. Fine motor skills and early comprehension of the world: Two new school readiness indicators. Dev. Psychol. 2010, 46, 1008–1017. [Google Scholar] [CrossRef] [PubMed]
- Pagani, L.S.; Messier, S. Links between Motor Skills and Indicators of School Readiness at Kindergarten Entry in Urban Disadvantaged Children. J. Educ. Dev. Psychol. 2012, 2, 95. [Google Scholar] [CrossRef]
- Gandhi, M.; Teivaanmaki, T.; Maleta, K.; Duan, X.; Ashorn, P.; Cheung, Y.B. Child development at 5 years of age predicted mathematics ability and schooling outcomes in Malawian adolescents. Acta Paediatr. 2013, 102, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Escolano-Pérez, E.; Herrero-Nivela, M.L.; Losada, J.L. Association Between Preschoolers’ Specific Fine (But Not Gross) Motor Skills and Later Academic Competencies: Educational Implications. Front. Psychol. 2020, 11, 1044. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, M.; Ito, H.; Murayama, Y.; Hamada, M.; Nakajima, S.; Takayanagi, N.; Uemiya, A.; Myogan, M.; Nakai, A.; Tsujii, M. Fine and gross motor skills predict later psychosocial maladaptation and academic achievement. Brain Dev. 2021, 43, 605–615. [Google Scholar] [CrossRef]
- Macdonald, K.; Milne, N.; Orr, R.; Pope, R. Relationships between Motor Proficiency and Academic Performance in Mathematics and Reading in School-Aged Children and Adolescents: A Systematic Review. Int. J. Environ. Res. Public. Health 2018, 15, 1603. [Google Scholar] [CrossRef]
- Vuijk, P.J.; Hartman, E.; Mombarg, R.; Scherder, E.; Visscher, C. Associations Between Academic and Motor Performance in a Heterogeneous Sample of Children with Learning Disabilities. J. Learn. Disabil. 2011, 44, 276–282. [Google Scholar] [CrossRef]
- Pienaar, A.E.; Barhorst, R.; Twisk, J.W.R. Relationships between academic performance, SES school type and perceptual-motor skills in first grade South African learners: NW-CHILD study. Child. Care Health Dev. 2014, 40, 370–378. [Google Scholar] [CrossRef]
- da Silva Pacheco, S.C.; Gabbard, C.; Ries, L.G.K.; Bobbio, T.G. Interlimb coordination and academic performance in elementary school children. Pediatr. Int. 2016, 58, 967–973. [Google Scholar] [CrossRef] [PubMed]
- de Waal, E. Fundamental Movement Skills and Academic Performance of 5- to 6-Year-Old Preschoolers. Early Child. Educ. J. 2019, 47, 455–464. [Google Scholar] [CrossRef]
- Schmidt, M.; Egger, F.; Benzing, V.; Jäger, K.; Conzelmann, A.; Roebers, C.M.; Pesce, C. Disentangling the relationship between children’s motor ability, executive function and academic achievement. PLoS ONE 2017, 12, e0182845. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Sánchez, A.; Redondo-Tébar, A.; Sánchez-López, M.; Visier-Alfonso, M.E.; Muñoz-Rodríguez, J.R.; Martínez-Vizcaíno, V. Sex differences on the relation among gross motor competence, cognition, and academic achievement in children. Scand. J. Psychol. 2022, 63, 504–512. [Google Scholar] [CrossRef]
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef]
- McMorris, T.; Hale, B.J. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain Cogn. 2012, 80, 338–351. [Google Scholar] [CrossRef]
- Loturco, I.; Montoya, N.P.; Ferraz, M.B.; Berbat, V.; Pereira, L.A. A Systematic Review of the Effects of Physical Activity on Specific Academic Skills of School Students. Educ. Sci. 2022, 12, 134. [Google Scholar] [CrossRef]
- Owen, K.B.; Foley, B.C.; Wilhite, K.; Booker, B.; Lonsdale, C.; Reece, L.J. Sport Participation and Academic Performance in Children and Adolescents: A Systematic Review and Meta-analysis. Med. Sci. Sports Exerc. 2022, 54, 299–306. [Google Scholar] [CrossRef]
- Singh, A.S.; Saliasi, E.; Van Den Berg, V.; Uijtdewilligen, L.; De Groot, R.H.; Jolles, J.; Andersen, L.B.; Bailey, R.; Chang, Y.-K.; Diamond, A. Effects of physical activity interventions on cognitive and academic performance in children and adolescents: A novel combination of a systematic review and recommendations from an expert panel. Br. J. Sports Med. 2019, 53, 640–647. [Google Scholar] [CrossRef]
- Egger, F.; Benzing, V.; Conzelmann, A.; Schmidt, M. Boost your brain, while having a break! The effects of long-term cognitively engaging physical activity breaks on children’s executive functions and academic achievement. PLoS ONE 2019, 14, e0212482. [Google Scholar] [CrossRef]
- Best, J.R. Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Dev. Rev. 2010, 30, 331–351. [Google Scholar] [CrossRef]
- Diamond, A. Activities and Programs That Improve Children’s Executive Functions. Curr. Dir. Psychol. Sci. 2012, 21, 335–341. [Google Scholar] [CrossRef]
- Erwin, H.; Fedewa, A.; Ahn, S. Student Academic Performance Outcomes of a Classroom Physical Activity Intervention: A Pilot Study. Int. Electron. J. Elem. Educ. 2013, 5, 109–124. [Google Scholar]
- Gao, Z.; Hannan, P.; Xiang, P.; Stodden, D.F.; Valdez, V.E. Video Game–Based Exercise, Latino Children’s Physical Health, and Academic Achievement. Am. J. Prev. Med. 2013, 44, S240–S246. [Google Scholar] [CrossRef]
- Howie, E.K.; Schatz, J.; Pate, R.R. Acute Effects of Classroom Exercise Breaks on Executive Function and Math Performance: A Dose–Response Study. Res. Q. Exerc. Sport. 2015, 86, 217–224. [Google Scholar] [CrossRef]
- Mullender-Wijnsma, M.J.; Hartman, E.; de Greeff, J.W.; Bosker, R.J.; Doolaard, S.; Visscher, C. Improving Academic Performance of School-Age Children by Physical Activity in the Classroom: 1-Year Program Evaluation. J. Sch. Health. 2015, 85, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.L.; Tomporowski, P.D.; McDowell, J.E.; Austin, B.P.; Miller, P.H.; Yanasak, N.E.; Allison, J.D.; Naglieri, J.A. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychol. 2011, 30, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Kamijo, K.; Pontifex, M.B.; O’Leary, K.C.; Scudder, M.R.; Wu, C.T.; Castelli, D.M.; Hillman, C.H. The effects of an afterschool physical activity program on working memory in preadolescent children. Dev. Sci. 2011, 14, 1046–1058. [Google Scholar] [CrossRef] [PubMed]
- Krafft, C.E.; Schwarz, N.F.; Chi, L.; Weinberger, A.L.; Schaeffer, D.J.; Pierce, J.E.; Rodrigue, A.L.; Yanasak, N.E.; Miller, P.H.; Tomporowski, P.D.; et al. An 8-Month Randomized Controlled Exercise Trial Alters Brain Activation During Cognitive Tasks in Overweight Children. Obesity 2014, 22, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A.; Ling, D.S. Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Dev. Cogn. Neurosci. 2016, 18, 34–48. [Google Scholar] [CrossRef]
- Plewis, I.; Calderwood, L.; Hawkes, D.; Hughes, G.; Joshi, H. Millennium Cohort Study: Technical Report on Sampling; Centre for Longitudinal Studies: London, UK, 2007. [Google Scholar]
- Frankenburg, W.K.; Dodds, J.B. The Denver Developmental Screening Test. J. Pediatr. 1967, 71, 181–191. [Google Scholar] [CrossRef]
- Rothney, M.P.; Schaefer, E.V.; Neumann, M.M.; Choi, L.; Chen, K.Y. Validity of Physical Activity Intensity Predictions by ActiGraph, Actical, and RT3 Accelerometers. Obesity 2008, 16, 1946–1952. [Google Scholar] [CrossRef]
- Pulsford, R.M.; Cortina-Borja, M.; Rich, C.; Kinnafick, F.E.; Dezateux, C.; Griffiths, L.J. Accelerometer-Defined Boundaries for Sedentary Behaviour and Physical Activity Intensities in 7 Year Old Children. PLoS ONE 2011, 6, e21822. [Google Scholar] [CrossRef] [PubMed]
- Robbins, T.W.; James, M.; Owen, A.M.; Sahakian, B.J.; McInnes, L.; Rabbitt, P. Cambridge Neuropsychological Test Automated Battery (CANTAB): A Factor Analytic Study of a Large Sample of Normal Elderly Volunteers. Dement. Geriatr. Cogn. Disord. 1994, 5, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, M. Millennium Cohort Study Interpreting the Cantab Cognitive Measures; Centre for Longitudinal Studies: London, UK, 2015. [Google Scholar]
- Luciana, M.; Nelson, C.A. Assessment of Neuropsychological Function Through Use of the Cambridge Neuropsychological Testing Automated Battery: Performance in 4- to 12-Year-Old Children. Dev. Neuropsychol. 2002, 22, 595–624. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.J.; Need, A.C.; Cirulli, E.T.; Chiba-Falek, O.; Attix, D.K. A comparison of the Cambridge Automated Neuropsychological Test Battery (CANTAB) with “traditional” neuropsychological testing instruments. J. Clin. Exp. Neuropsychol. 2013, 35, 319–328. [Google Scholar] [CrossRef]
- Green, R.; Till, C.; Al-Hakeem, H.; Cribbie, R.; Téllez-Rojo, M.M.; Osorio, E.; Hu, H.; Schnaas, L. Assessment of neuropsychological performance in Mexico City youth using the Cambridge Neuropsychological Test Automated Battery (CANTAB). J. Clin. Exp. Neuropsychol. 2019, 41, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Kam, C.M.; Lee, T.M. Better Working Memory and Motor Inhibition in Children Who Delayed Gratification. Front. Psychol. 2016, 7, 1098. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Golkhandan, S.; Piek, J.P.; Steenbergen, B.; Wilson, P.H. Hot executive function in children with Developmental Coordination Disorder: Evidence for heightened sensitivity to immediate reward. Cogn. Dev. 2014, 32, 23–37. [Google Scholar] [CrossRef]
- Seidler, R.D.; Bo, J.; Anguera, J.A. Neurocognitive Contributions to Motor Skill Learning: The Role of Working Memory. J. Mot. Behav. 2012, 44, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.; Johnson, J.; Joshi, H. Millennium Cohort Study, a Guide to the Datasets (Eighth Edition) First, Second, Third, Fourth and Fifth Surveys. CLS Rep. 2014. Available online: https://cls.ucl.ac.uk/wp-content/uploads/2017/07/MCS-Guide-to-the-Datasets-022014.pdf (accessed on 24 January 2024).
- Frank, K.A. Impact of a Confounding Variable on a Regression Coefficient. Sociol. Methods Res. 2000, 29, 147–194. [Google Scholar] [CrossRef]
- Rochette, É.; Bernier, A. Parenting, Family Socioeconomic Status, and Child Executive Functioning: A Longitudinal Study. Merrill-Palmer. Q. 2014, 60, 431–460. [Google Scholar] [CrossRef]
- Pearce, A.; Sawyer, A.C.; Chittleborough, C.R.; Mittinty, M.N.; Law, C.; Lynch, J.W. Do early life cognitive ability and self-regulation skills explain socio-economic inequalities in academic achievement? An effect decomposition analysis in UK and Australian cohorts. Soc. Sci. Med. 2016, 165, 108–118. [Google Scholar] [CrossRef]
- Tsomokos, D.I.; Flouri, E. Superior social cognitive abilities in childhood are associated with better reward-seeking strategies in adolescence: Evidence for a Social-Motivational Flexibility Model. Advances/Psychol. 2023, 1, 1–19. [Google Scholar] [CrossRef]
- Elliott, E. BAS II: British Ability Scales, 2nd ed.; NFER-Nelson: Windsor, UK, 1996. [Google Scholar]
- Filzmoser, P.; Garrett, R.G.; Reimann, C. Multivariate outlier detection in exploration geochemistry. Comput. Geosci. 2005, 31, 579–587. [Google Scholar] [CrossRef]
- Aguinis, H.; Gottfredson, R.K.; Joo, H. Best-Practice Recommendations for Defining, Identifying, and Handling Outliers. Organ. Res. Methods 2013, 16, 270–301. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013; ISBN 978-0-12-179060-8. [Google Scholar]
- Abelson, R.P. A Variance Explanation Paradox: When a Little is a Lot. Psychol. Bull. 1985, 97, 129. [Google Scholar] [CrossRef]
- Roebers, C.M.; Kauer, M. Motor and cognitive control in a normative sample of 7-year-olds. Dev. Sci. 2009, 12, 175–181. [Google Scholar] [CrossRef]
- Emami Kashfi, T.; Sohrabi, M.; Saberi Kakhki, A.; Mashhadi, A.; Jabbari Nooghabi, M. Effects of a Motor Intervention Program on Motor Skills and Executive Functions in Children with Learning Disabilities. Percept. Mot. Skills. 2019, 126, 477–498. [Google Scholar] [CrossRef]
- Ludyga, S.; Pühse, U.; Gerber, M.; Herrmann, C. Core executive functions are selectively related to different facets of motor competence in preadolescent children. Eur. J. Sport. Sci. 2019, 19, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Koziol, L.F.; Budding, D.E.; Chidekel, D. From Movement to Thought: Executive Function, Embodied Cognition, and the Cerebellum. Cerebellum 2012, 11, 505–525. [Google Scholar] [CrossRef] [PubMed]
- Roebers, C.M.; Röthlisberger, M.; Neuenschwander, R.; Cimeli, P.; Michel, E.; Jäger, K. The relation between cognitive and motor performance and their relevance for children’s transition to school: A latent variable approach. Hum. Mov. Sci. 2014, 33, 284–297. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.N.; Roebers, C.M. Towards a better understanding of the association between motor skills and executive functions in 5- to 6-year-olds: The impact of motor task difficulty. Hum. Mov. Sci. 2019, 66, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Kübler, A.; Dixon, V.; Garavan, H. Automaticity and Reestablishment of Executive Control—An fMRI Study. J. Cogn. Neurosci. 2006, 18, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Smith-Spark, J.H.; Gordon, R. Automaticity and Executive Abilities in Developmental Dyslexia: A Theoretical Review. Brain Sci. 2022, 12, 446. [Google Scholar] [CrossRef] [PubMed]
- Pitchford, N.J.; Papini, C.; Outhwaite, L.A.; Gulliford, A. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years. Front. Psychol. 2016, 7, 783. [Google Scholar] [CrossRef] [PubMed]
- Hadders-Algra, M. Early human motor development: From variation to the ability to vary and adapt. Neurosci. Biobehav. Rev. 2018, 90, 411–427. [Google Scholar] [CrossRef]
- Pagani, L.S.; Fitzpatrick, C.; Archambault, I.; Janosz, M. School readiness and later achievement: A French Canadian replication and extension. Dev. Psychol. 2010, 46, 984–994. [Google Scholar] [CrossRef]
- Alesi, M.; Bianco, A.; Padulo, J.; Luppina, G.; Petrucci, M.; Paoli, A.; Palma, A.; Pepi, A. Motor and cognitive growth following a Football Training Program. Front. Psychol. 2015, 6, 1627. [Google Scholar] [CrossRef]
- Biino, V.; Tinagli, V.; Borioni, F.; Pesce, C. Cognitively enriched physical activity may foster motor competence and executive function as early as preschool age: A pilot trial. Phys. Educ. Sport. Pedagog. 2021, 28, 425–443. [Google Scholar] [CrossRef]
- Diamond, A. Close Interrelation of Motor Development and Cognitive Development and of the Cerebellum and Prefrontal Cortex. Child. Dev. 2000, 71, 44–56. [Google Scholar] [CrossRef]
- Sakamoto, S.; Takeuchi, H.; Ihara, N.; Ligao, B.; Suzukawa, K. Possible requirement of executive functions for high performance in soccer. PLoS ONE 2018, 13, e0201871. [Google Scholar] [CrossRef]
- Ferreira Vorkapic, C.; Alves, H.; Araujo, L.; Joaquim Borba-Pinheiro, C.; Coelho, R.; Fonseca, E.; Oliveira, A.; Dantas, E.H. Does Physical Activity Improve Cognition and Academic Performance in Children? A Systematic Review of Randomized Controlled Trials. Neuropsychobiology 2021, 80, 454–482. [Google Scholar] [CrossRef]
- Muntaner-Mas, A.; Mazzoli, E.; Abbott, G.; Mavilidi, M.F.; Galmes-Panades, A.M. Do Physical Fitness and Executive Function Mediate the Relationship between Physical Activity and Academic Achievement? An Examination Using Structural Equation Modelling. Children 2022, 9, 823. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.G.; Weinberger, A.B.; Uttal, D.H.; Kolvoord, B.; Green, A.E. Spatial activity participation in childhood and adolescence: Consistency and relations to spatial thinking in adolescence. Cogn. Res. Princ. Implic. 2020, 5, 43. [Google Scholar] [CrossRef] [PubMed]
- Visier-Alfonso, M.E.; Álvarez-Bueno, C.; Sánchez-López, M.; Cavero-Redondo, I.; Martínez-Hortelano, J.A.; Nieto-López, M.; Martínez-Vizcaíno, V. Fitness and executive function as mediators between physical activity and academic achievement. J. Sports Sci. 2021, 39, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- Bentivegna, F.; Flouri, E.; Papachristou, E. Reciprocal associations between affective decision-making and mental health in adolescence. Eur. Child. Adolesc. Psychiatry 2022, 32, 2513–2522. [Google Scholar] [CrossRef] [PubMed]
- Zelazo, P.D.; Carlson, S.M. Hot and Cool Executive Function in Childhood and Adolescence: Development and Plasticity. Child. Dev. Perspect. 2012, 6, 354–360. [Google Scholar] [CrossRef]
- Leshem, R.; De Fano, A.; Ben-Soussan, T.D. The Implications of Motor and Cognitive Inhibition for Hot and Cool Executive Functions: The Case of Quadrato Motor Training. Front. Psychol. 2020, 11, 940. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Golkhandan, S.; Steenbergen, B.; Piek, J.P.; Caeyenberghs, K.; Wilson, P.H. Revealing hot executive function in children with motor coordination problems: What’s the go? Brain Cogn. 2016, 106, 55–64. [Google Scholar] [CrossRef]
- Tomporowski, P.D.; McCullick, B.; Pendleton, D.M.; Pesce, C. Exercise and children’s cognition: The role of exercise characteristics and a place for metacognition. J. Sport. Health Sci. 2015, 4, 47–55. [Google Scholar] [CrossRef]
Models | Specification |
---|---|
Model 1 | Family income and maternal education |
Model 2 | Model 1 + gross motor skills |
Model 3 | Model 2 + fine motor skills |
Model 4 | Model 3 + BAS naming vocabulary and picture similarity and pattern construction |
Model 5 | Model 4 + MVPA |
Model 6 | Model 5 + Self-reported PA |
Models | Specification |
---|---|
Model 1 | Family income and maternal education |
Model 2 | Model 1 + gross motor skills |
Model 3 | Model 2 + fine motor skills |
Model 4 | Model 3 + BAS naming vocabulary and picture similarity and pattern construction |
Model 5 | Model 4 + MVPA |
Model 6 | Model 5 + Self-reported PA |
Model 7 | Model 6 + Decision making quality and SWM reaction time and SWM total errors |
Variable | Mean | SD | 95% Confidence Interval |
---|---|---|---|
Family income | 356.66 | 208.91 | [349.40, 363.91] |
Maternal education | 4.70 | 1.89 | [4.63, 4.76] |
Gross motor skills | 9.57 | 1.13 | [9.53, 9.61] |
Fine motor skills | 11.61 | 0.79 | [11.58, 11.63] |
Naming vocabulary | 15.04 | 3.27 | [14.92, 15.15] |
Picture similarity | 16.04 | 3.41 | [15.93, 16.16] |
Pattern construction | 20.01 | 7.62 | [19.75, 20.28] |
MVPA (min) | 62.56 | 22.20 | [61.78, 63.33] |
Self-reported PA | 4.38 | 0.89 | [4.35, 4.41] |
Decision making quality | 0.83 | 0.17 | [0.82, 0.83] |
SWM reaction time (ms) | 28,523.70 | 6050.06 | [28,313.60, 28,733.79] |
SWM total errors | 32.26 | 17.74 | [31.64, 32.87] |
English performance | 3.55 | 0.96 | [3.52, 3.58] |
Math performance | 3.61 | 0.96 | [3.57, 3.64] |
Science performance | 3.55 | 0.82 | [3.52, 3.58] |
PE performance | 3.39 | 0.78 | [3.36, 3.41] |
Valid N | 3188 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1. Gross motor skills | -- | ||||||||||
2. Fine motor skills | 0.17 *** | -- | |||||||||
3. MVPA | 0.10 *** | −0.02 | -- | ||||||||
4. Self-reported PA | 0.04 * | 0.01 | 0.15 *** | -- | |||||||
5. Decision making quality | −0.02 | 0.00 | −0.06 ** | −0.00 | -- | ||||||
6. SWM reaction time | −0.06 *** | −0.01 | −0.01 | −0.02 | −0.11 *** | -- | |||||
7. SWM total errors | −0.01 | −0.03 | 0.04 * | −0.00 | −0.17 *** | 0.42 *** | -- | ||||
8. English | 0.01 | 0.09 *** | −0.12 *** | 0.01 | 0.19 *** | −0.19 *** | −0.32 *** | -- | |||
9. Math | 0.03 | 0.05 ** | −0.05 ** | 0.04 * | 0.22 *** | −0.26 *** | −0.40 *** | 0.75 ** | -- | ||
10. Science | 0.02 | 0.07 *** | −0.06 ** | 0.03 | 0.19 *** | −0.22 *** | −0.34 *** | 0.78 ** | 0.80 ** | -- | |
11. PE | 0.12 *** | 0.05 ** | 0.18 *** | 0.26 *** | 0.08 *** | −0.13 *** | −0.17 *** | 0.26 *** | 0.31 *** | 0.30 *** | -- |
Change Statistics | |||||||||
---|---|---|---|---|---|---|---|---|---|
Model | R | R2 | Adjusted R Square | Std. Error of the Estimate | R-Square Change | F Change | df1 | df2 | Sig. F Change |
DV: Decision making quality | |||||||||
Model 1 | 0.14 | 0.02 | 0.02 | 0.16 | 0.02 | 32.66 | 2 | 3185 | <0.001 *** |
Model 2 | 0.14 | 0.02 | 0.02 | 0.16 | 0.00 | 0.75 | 1 | 3184 | 0.388 |
Model 3 | 0.14 | 0.02 | 0.02 | 0.16 | 0.00 | 0.00 | 1 | 3183 | 0.984 |
Model 4 | 0.20 | 0.04 | 0.04 | 0.16 | 0.02 | 20.48 | 3 | 3180 | <0.001 *** |
Model 5 | 0.20 | 0.04 | 0.04 | 0.16 | 0.00 | 4.90 | 1 | 3179 | 0.027 * |
Model 6 | 0.20 | 0.04 | 0.04 | 0.16 | 0.00 | 0.00 | 1 | 3178 | 0.993 |
F (9, 3178) = 14.86, p < 0.001 | |||||||||
DV: SWM reaction time | |||||||||
Model 1 | 0.11 | 0.01 | 0.01 | 6015.16 | 0.01 | 19.54 | 2 | 3185 | <0.001 *** |
Model 2 | 0.13 | 0.02 | 0.02 | 6004.33 | 0.00 | 12.50 | 1 | 3184 | <0.001 *** |
Model 3 | 0.13 | 0.02 | 0.02 | 6005.23 | 0.00 | 0.05 | 1 | 3183 | 0.828 |
Model 4 | 0.25 | 0.06 | 0.06 | 5863.26 | 0.05 | 53.00 | 3 | 3180 | <0.001 *** |
Model 5 | 0.25 | 0.06 | 0.06 | 5863.47 | 0.00 | 0.77 | 1 | 3179 | 0.379 |
Model 6 | 0.25 | 0.06 | 0.06 | 5863.63 | 0.00 | 0.83 | 1 | 3178 | 0.363 |
F (9, 3178) = 23.88, p < 0.001 | |||||||||
DV: SWM total errors | |||||||||
Model 1 | 0.22 | 0.05 | 0.05 | 17.30 | 0.05 | 82.09 | 2 | 3185 | <0.001 *** |
Model 2 | 0.22 | 0.05 | 0.05 | 17.30 | 0.00 | 0.80 | 1 | 3184 | 0.371 |
Model 3 | 0.22 | 0.05 | 0.05 | 17.30 | 0.00 | 0.92 | 1 | 3183 | 0.338 |
Model 4 | 0.34 | 0.11 | 0.11 | 16.72 | 0.06 | 76.82 | 3 | 3180 | <0.001 *** |
Model 5 | 0.34 | 0.11 | 0.11 | 16.72 | 0.00 | 0.63 | 1 | 3179 | 0.429 |
Model 6 | 0.34 | 0.11 | 0.11 | 16.72 | 0.00 | 0.06 | 1 | 3178 | 0.814 |
F (9, 3178) = 45.41, p < 0.001 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|
Family income | −0.08 (0.58) *** | −0.08 (0.58) *** | −0.08 (0.58) *** | −0.05 (0.58) ** | −0.05 (0.58) ** | −0.05 (0.58) * |
Maternal education | −0.05 (64.70) * | −0.05 (64.62) * | −0.05 (64.71) * | −0.02 (64.55) | −0.02 (64.56) | −0.02 (64.57) |
Gross motor skills | −0.06 (94.11) *** | −0.06 (95.51) *** | −0.05 (93.43) ** | −0.05 (93.96) ** | −0.05 (93.99) ** | |
Fine motor skills | 0.00 (136.52) | 0.02 (133.46) | 0.02 (133.52) | 0.02 (133.53) | ||
Naming vocabulary | −0.01 (36.16) | −0.01 (36.19) | −0.01 (36.20) | |||
Picture similarity | −0.03 (33.90) | −0.04 (33.91) | −0.04 (33.91) | |||
Pattern construction | −0.20 (15.15) *** | −0.20 (15.15) *** | −0.20 (15.15) *** | |||
MVPA | −0.02 (4.72) | −0.01 (4.78) | ||||
Self-reported PA | −0.02 (121.70) | |||||
Constant | (292.15) ** | (945.68) *** | (1702.90) *** | (1730.41)*** | (1755.22)*** | (1806.84) *** |
Change Statistics | |||||||||
---|---|---|---|---|---|---|---|---|---|
Model | R | R2 | Adjusted R Square | Std. Error of the Estimate | R-Square Change | F Change | df1 | df2 | Sig. F Change |
DV: English performance | |||||||||
Model 1 | 0.32 | 0.10 | 0.10 | 0.91 | 0.10 | 181.85 | 2 | 3185 | <0.001 *** |
Model 2 | 0.32 | 0.10 | 0.10 | 0.91 | 0.00 | 0.16 | 1 | 3184 | 0.686 |
Model 3 | 0.33 | 0.11 | 0.11 | 0.91 | 0.01 | 20.59 | 1 | 3183 | <0.001 *** |
Model 4 | 0.48 | 0.23 | 0.22 | 0.85 | 0.12 | 160.37 | 3 | 3180 | <0.001 *** |
Model 5 | 0.48 | 0.23 | 0.23 | 0.85 | 0.01 | 28.72 | 1 | 3179 | <0.001 *** |
Model 6 | 0.48 | 0.23 | 0.23 | 0.85 | 0.00 | 0.47 | 1 | 3178 | 0.495 |
Model 7 | 0.52 | 0.27 | 0.27 | 0.82 | 0.04 | 61.13 | 3 | 3175 | <0.001 *** |
F (12, 3175) = 100.07, p < 0.001 | |||||||||
DV: math performance | |||||||||
Model 1 | 0.31 | 0.10 | 0.10 | 0.91 | 0.10 | 174.12 | 2 | 3185 | <0.001 *** |
Model 2 | 0.32 | 0.10 | 0.10 | 0.91 | 0.00 | 3.25 | 1 | 3184 | 0.072 |
Model 3 | 0.32 | 0.10 | 0.10 | 0.91 | 0.00 | 3.62 | 1 | 3183 | 0.057 |
Model 4 | 0.48 | 0.23 | 0.23 | 0.84 | 0.13 | 183.18 | 3 | 3180 | <0.001 *** |
Model 5 | 0.48 | 0.23 | 0.23 | 0.84 | 0.00 | 0.53 | 1 | 3179 | 0.466 |
Model 6 | 0.48 | 0.23 | 0.23 | 0.84 | 0.00 | 4.05 | 1 | 3178 | 0.044 * |
Model 7 | 0.56 | 0.32 | 0.31 | 0.80 | 0.08 | 124.10 | 3 | 3175 | <0.001 *** |
F (12, 3175) = 121.70, p < 0.001 | |||||||||
DV: science performance | |||||||||
Model 1 | 0.33 | 0.11 | 0.11 | 0.78 | 0.11 | 189.73 | 2 | 3185 | <0.001 *** |
Model 2 | 0.33 | 0.11 | 0.11 | 0.78 | 0.00 | 1.04 | 1 | 3184 | 0.308 |
Model 3 | 0.33 | 0.11 | 0.11 | 0.78 | 0.00 | 9.26 | 1 | 3183 | 0.002 ** |
Model 4 | 0.48 | 0.23 | 0.23 | 0.72 | 0.12 | 165.98 | 3 | 3180 | <0.001 *** |
Model 5 | 0.48 | 0.23 | 0.23 | 0.72 | 0.00 | 1.89 | 1 | 3179 | 0.169 |
Model 6 | 0.48 | 0.23 | 0.23 | 0.72 | 0.00 | 1.04 | 1 | 3178 | 0.308 |
Model 7 | 0.53 | 0.28 | 0.28 | 0.70 | 0.05 | 73.15 | 3 | 3175 | <0.001 *** |
F (12, 3175) = 103.85, p < 0.001 | |||||||||
DV: PE performance | |||||||||
Model 1 | 0.19 | 0.04 | 0.04 | 0.76 | 0.04 | 58.35 | 2 | 3185 | <0.001 *** |
Model 2 | 0.22 | 0.05 | 0.05 | 0.76 | 0.01 | 47.44 | 1 | 3184 | <0.001 *** |
Model 3 | 0.22 | 0.05 | 0.05 | 0.76 | 0.00 | 1.95 | 1 | 3183 | 0.162 |
Model 4 | 0.24 | 0.06 | 0.06 | 0.75 | 0.01 | 10.45 | 3 | 3180 | <0.001 *** |
Model 5 | 0.35 | 0.09 | 0.09 | 0.74 | 0.03 | 119.18 | 1 | 3179 | <0.001 *** |
Model 6 | 0.38 | 0.14 | 0.14 | 0.72 | 0.05 | 182.67 | 1 | 3178 | <0.001 *** |
Model 7 | 0.40 | 0.19 | 0.16 | 0.71 | 0.02 | 19.39 | 3 | 3175 | <0.001 *** |
F (12, 3175) = 49.67, p < 0.001 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
---|---|---|---|---|---|---|---|
Family income | 0.13 (0.00) *** | 0.13 (0.00) *** | 0.13 (0.00) *** | 0.12 (0.00) *** | 0.12 (0.00) *** | 0.11 (0.00) *** | 0.10 (0.00) *** |
Maternal education | 0.09 (0.01) *** | 0.09 (0.01) *** | 0.09 (0.01) *** | 0.07 (0.01) *** | 0.08 (0.01) *** | 0.08 (0.01) *** | 0.08 (0.01) *** |
Gross motor skills | 0.12 (0.01) *** | 0.12 (0.01) *** | 0.11 (0.01) *** | 0.09 (0.01) *** | 0.08 (0.01) *** | 0.08 (0.01) *** | |
Fine motor skills | 0.03 (0.02) | 0.02 (0.02) | 0.03 (0.02) | 0.02 (0.02) | 0.03 (0.02) | ||
Naming vocabulary | −0.01 (0.01) | 0.00 (0.01) | −0.01 (0.00) | −0.01 (0.00) | |||
Picture similarity | 0.02 (0.00) | 0.02 (0.00) | 0.03 (0.00) | 0.02 (0.00) | |||
Pattern construction | 0.09 (0.00) *** | 0.10 (0.00) *** | 0.10 (0.00) *** | 0.06 (0.00) * | |||
MVPA | 0.19 (0.00) *** | 0.15 (0.00) *** | 0.15 (0.00) *** | ||||
Self-reported PA | 0.23 (0.02) *** | 0.23 (0.01) *** | |||||
Decision making quality | 0.04 (0.08) * | ||||||
SWM reaction time | −0.04 (0.00) * | ||||||
SWM total errors | −0.10 (0.00) *** | ||||||
Constant | (0.04) ** | (0.12) *** | (0.22) *** | (0.22) *** | (0.22) *** | (0.22) *** | (0.24) *** |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
---|---|---|---|---|---|---|---|
Family income | 0.14 (0.00) *** | 0.14 (0.00) *** | 0.14 (0.00) *** | 0.07 (0.00) *** | 0.07 (0.00) *** | 0.07 (0.00) *** | 0.04 (0.00) * |
Maternal education | 0.23 (0.01) *** | 0.23 (0.01) *** | 0.22 (0.01) *** | 0.15 (0.01) *** | 0.15 (0.01) *** | 0.15 (0.01) *** | 0.13 (0.01) *** |
Gross motor skills | 0.01 (0.01) | −0.01 (0.01) | −0.02 (0.01) | −0.01 (0.01) | −0.01 (0.01) | −0.01 (0.01) | |
Fine motor skills | 0.08 (0.02) *** | 0.06 (0.02) *** | 0.06 (0.02) *** | 0.06 (0.02) *** | 0.06 (0.02) *** | ||
Naming vocabulary | 0.21 (0.01) *** | 0.21 (0.01) *** | 0.28 (0.01) *** | 0.20 (0.01) *** | |||
Picture similarity | 0.09 (0.01) *** | 0.09 (0.01) *** | 0.09 (0.01) *** | 0.07 (0.01) *** | |||
Pattern construction | 0.18 (0.00) *** | 0.18 (0.00) *** | 0.18 (0.00) *** | 0.12 (0.00) *** | |||
MVPA | −0.08 (0.00) *** | −0.09 (0.00) *** | −0.08 (0.00) *** | ||||
Self-reported PA | 0.01 (0.02) | 0.01 (0.02) | |||||
Decision making quality | 0.08 (0.09) *** | ||||||
SWM reaction time | −0.03 (0.00) | ||||||
SWM total errors | −0.18 (0.00) *** | ||||||
Constant | (0.04) ** | (0.14) *** | (0.26) *** | (0.25) * | (0.25) ** | (0.26) ** | (0.28) *** |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
---|---|---|---|---|---|---|---|
Family income | 0.14 (0.00) *** | 0.14 (0.00) *** | 0.14 (0.00) *** | 0.07 (0.00) *** | 0.07 (0.00) ** | 0.07 (0.00) *** | 0.04 (0.00) * |
Maternal education | 0.23 (0.01) *** | 0.23 (0.01) *** | 0.23 (0.01) *** | 0.15 (0.01) *** | 0.15 (0.01) ** | 0.15 (0.01) *** | 0.13 (0.01) *** |
Gross motor skills | 0.02 (0.01) | 0.01 (0.01) | −0.01 (0.01) | −0.01 (0.01) | −0.01 (0.01) | −0.01 (0.01) | |
Fine motor skills | 0.05 (0.02) ** | 0.04 (0.02) * | 0.04 (0.02) * | 0.04 (0.02) * | 0.04 (0.02) * | ||
Naming vocabulary | 0.21 (0.00) *** | 0.20 (0.00) *** | 0.20 (0.00) *** | 0.20 (0.00) *** | |||
Picture similarity | 0.09 (0.00) *** | 0.09 (0.00) *** | 0.09 (0.00) *** | 0.07 (0.00) *** | |||
Pattern construction | 0.19 (0.00) *** | 0.19 (0.00) *** | 0.19 (0.00) *** | 0.13 (0.00) *** | |||
MVPA | -0.02 (0.00) | -0.02 (0.00) | −0.02 (0.00) | ||||
Self-reported PA | 0.02 (0.02) | 0.02 (0.01) | |||||
Decision making quality | 0.08 (0.08) *** | ||||||
SWM reaction time | −0.06 (0.00) *** | ||||||
SWM total errors | −0.19 (.00) *** | ||||||
Constant | (0.04) ** | (0.12) *** | (0.22) *** | (0.21) *** | (0.22) *** | (0.22) *** | (0.24) *** |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
---|---|---|---|---|---|---|---|
Family income | 0.16 (0.00) *** | 0.16 (0.00) *** | 0.16 (0.00) *** | 0.10 (0.00) *** | 0.10 (0.00) *** | 0.10 (0.00) *** | 0.06 (0.00) *** |
Maternal education | 0.20 (0.01) *** | 0.20 (0.01) *** | 0.20 (0.01) *** | 0.13 (0.01) *** | 0.13 (0.01) *** | 0.13 (0.01) *** | 0.10 (0.01) *** |
Gross motor skills | 0.03 (0.01) | 0.03 (0.01) | 0.01 (0.01) | 0.01 (0.01) | 0.01 (0.01) | 0.01 (0.01) | |
Fine motor skills | 0.03 (0.02) | 0.02 (0.02) | 0.02 (0.02) | 0.02 (0.02) | 0.02 (0.02) | ||
Naming vocabulary | 0.15 (0.01) *** | 0.14 (0.01) *** | 0.14 (0.01) *** | 0.14 (0.01) *** | |||
Picture similarity | 0.09 (0.01) *** | 0.09 (0.01) *** | 0.09 (0.01) *** | 0.07 (0.01) *** | |||
Pattern construction | 0.26 (0.00) *** | 0.26 (0.00) *** | 0.26 (0.00) *** | 0.18 (0.00) *** | |||
MVPA | −0.01 (0.00) | −0.02 (0.00) | −0.01 (0.00) | ||||
Self-reported PA | 0.03 (0.02) * | 0.03 (0.02) * | |||||
Decision making quality | 0.10 (0.09) *** | ||||||
SWM reaction time | −0.06 (0.00) *** | ||||||
SWM total errors | −0.24 (0.00) *** | ||||||
Constant | (0.04) ** | (0.14) *** | (0.26) *** | (0.25) *** | (0.25) *** | (0.26) *** | (0.27) *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Tolmie, A. Associations between Gross and Fine Motor Skills, Physical Activity, Executive Function, and Academic Achievement: Longitudinal Findings from the UK Millennium Cohort Study. Brain Sci. 2024, 14, 121. https://doi.org/10.3390/brainsci14020121
Zhou Y, Tolmie A. Associations between Gross and Fine Motor Skills, Physical Activity, Executive Function, and Academic Achievement: Longitudinal Findings from the UK Millennium Cohort Study. Brain Sciences. 2024; 14(2):121. https://doi.org/10.3390/brainsci14020121
Chicago/Turabian StyleZhou, Yuxi, and Andrew Tolmie. 2024. "Associations between Gross and Fine Motor Skills, Physical Activity, Executive Function, and Academic Achievement: Longitudinal Findings from the UK Millennium Cohort Study" Brain Sciences 14, no. 2: 121. https://doi.org/10.3390/brainsci14020121
APA StyleZhou, Y., & Tolmie, A. (2024). Associations between Gross and Fine Motor Skills, Physical Activity, Executive Function, and Academic Achievement: Longitudinal Findings from the UK Millennium Cohort Study. Brain Sciences, 14(2), 121. https://doi.org/10.3390/brainsci14020121