In Vitro Pharmacological Modulation of PIEZO1 Channels in Frontal Cortex Neuronal Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation, Cell Culture, and Device Preparation
2.2. Immunocytochemistry
2.3. Extracellular Recording Using Microelectrode Arrays
2.4. Pharmacological Preparation and Exposure
2.4.1. Pharmacological Exposure and Analysis Using Microelectrode Arrays
2.4.2. Calcium Imaging
2.4.3. Whole-Cell Patch Clamp Electrophysiology
3. Results
3.1. PIEZO1 Channels Are Expressed in Murine Frontal Cortical Neurons
3.2. Cortical Neuronal Networks Activity under Control Conditions
3.3. Pharmacological Modulation of Cortical Neuronal Networks
3.3.1. PIEZO1 Agonist, Yoda1, Transiently Increases the Neuronal Networks MFR
3.3.2. GsMTx4 Inhibits Spontaneous and Yoda1-Induced Activity in Cortical Neuronal Networks
3.3.3. Increase in Peak-to-Peak Amplitude of the Spikes with Exposure to Yoda1
3.3.4. Yoda1 Increases the Calcium Transient Frequency in Cortical Neurons
3.3.5. Yoda1 Alters the Reversal Potential of Cortical Neurons
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, L.; He, T.; Chen, S.; Yang, D.; Yi, W.; Cao, H.; Xiao, G. Roles of Mechanosensitive Channel Piezo1/2 Proteins in Skeleton and Other Tissues. Bone Res. 2021, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Haselwandter, C.A.; Guo, Y.R.; Fu, Z.; MacKinnon, R. Quantitative Prediction and Measurement of Piezo’s Membrane Footprint. Proc. Natl. Acad. Sci. USA 2022, 119, e2208027119. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Guo, Y.R.; Miyagi, A.; Levring, J.; MacKinnon, R.; Scheuring, S. Force-Induced Conformational Changes in Piezo1. Nature 2019, 573, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Pathak, M.M.; Nourse, J.L.; Tran, T.; Hwe, J.; Arulmoli, J.; Dai Trang, T.L.; Bernardis, E.; Flanagan, L.A.; Tombola, F. Stretch-Activated Ion Channel Piezo1 Directs Lineage Choice in Human Neural Stem Cells. Proc. Natl. Acad. Sci. USA 2014, 111, 16148–16153. [Google Scholar] [CrossRef] [PubMed]
- Coste, B.; Mathur, J.; Schmidt, M.; Earley, T.J.; Ranade, S.; Petrus, M.J.; Dubin, A.E.; Patapoutian, A. Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels. Science 2010, 330, 55–60. [Google Scholar] [CrossRef]
- Song, Y.; Li, D.; Farrelly, O.; Miles, L.; Li, F.; Kim, S.E.; Lo, T.Y.; Wang, F.; Li, T.; Thompson-Peer, K.L.; et al. The Mechanosensitive Ion Channel Piezo Inhibits Axon Regeneration. Neuron 2019, 102, 373–389.e6. [Google Scholar] [CrossRef]
- Tessier-Lavigne, M.; Goodman, C.S. The Molecular Biology of Axon Guidance. Science 1996, 274, 1123–1133. [Google Scholar] [CrossRef]
- Liu, T.-T.; Du, X.-F.; Zhang, B.-B.; Zi, H.-X.; Yan, Y.; Yin, J.-A.; Hou, H.; Gu, S.-Y.; Chen, Q.; Du, J.-L. Piezo1-Mediated Ca2+ Activities Regulate Brain Vascular Pathfinding During Development. Neuron 2020, 108, 180–192.e5. [Google Scholar] [CrossRef]
- Koser, D.E.; Thompson, A.J.; Foster, S.K.; Dwivedy, A.; Pillai, E.K.; Sheridan, G.K.; Svoboda, H.; Viana, M.; Costa, L.D.F.; Guck, J. Mechanosensing Is Critical for Axon Growth in the Developing Brain. Nat. Neurosci. 2016, 19, 1592–1598. [Google Scholar] [CrossRef]
- Li, Q.Y.; Duan, Y.W.; Zhou, Y.H.; Chen, S.X.; Li, Y.Y.; Zang, Y. Nlrp3-Mediated Piezo1 Upregulation in Acc Inhibitory Parvalbumin-Expressing Interneurons Is Involved in Pain Processing after Peripheral Nerve Injury. Int. J. Mol. Sci. 2022, 23, 13035. [Google Scholar] [CrossRef]
- Velasco-Estevez, M.; Mampay, M.; Boutin, H.; Chaney, A.; Warn, P.; Sharp, A.; Burgess, E.; Moeendarbary, E.; Dev, K.K.; Sheridan, G.K. Infection Augments Expression of Mechanosensing Piezo1 Channels in Amyloid Plaque-Reactive Astrocytes. Front. Aging Neurosci. 2018, 10, 332. [Google Scholar] [CrossRef]
- Velasco-Estevez, M.; Gadalla, K.K.E.; Linan-Barba, N.; Cobb, S.; Dev, K.K.; Sheridan, G.K. Inhibition of Piezo1 Attenuates Demyelination in the Central Nervous System. Glia 2020, 68, 356–375. [Google Scholar] [CrossRef]
- Zhu, J.; Xian, Q.; Hou, X.; Wong, K.F.; Zhu, T.; Chen, Z.; He, D.; Kala, S.; Murugappan, S.; Jing, J.; et al. The Mechanosensitive Ion Channel Piezo1 Contributes to Ultrasound Neuromodulation. Proc. Natl. Acad. Sci. USA 2023, 120, e2300291120. [Google Scholar] [CrossRef]
- Velasco-Estevez, M.; Rolle, S.O.; Mampay, M.; Dev, K.K.; Sheridan, G.K. Piezo1 Regulates Calcium Oscillations and Cytokine Release from Astrocytes. Glia 2020, 68, 145–160. [Google Scholar] [CrossRef]
- Jäntti, H.; Sitnikova, V.; Ishchenko, Y.; Shakirzyanova, A.; Giudice, L.; Ugidos, I.F.; Gómez-Budia, M.; Korvenlaita, N.; Ohtonen, S.; Belaya, I. Microglial Amyloid Beta Clearance Is Driven by Piezo1 Channels. J. Neuroinflammation 2022, 19, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Harraz, O.F.; Klug, N.R.; Senatore, A.J.; Hill-Eubanks, D.C.; Nelson, M.T. Piezo1 Is a Mecha nosensor Channel in Central Nervous System Capillaries. Circ. Res. 2022, 130, 1531–1546. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Estevez, M.; Koch, N.; Klejbor, I.; Caratis, F.; Rutkowska, A. Mechanoreceptor Piezo1 Is Downregulated in Multiple Sclerosis Brain and Is Involved in the Maturation and Migration of Oligodendrocytes in Vitro. Front. Cell. Neurosci. 2022, 16, 914985. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Guo, J.; Kala, S.; Zhu, J.; Xian, Q.; Qiu, W.; Li, G.; Zhu, T.; Meng, L.; Zhang, R. The Mechanosensitive Ion Channel Piezo1 Significantly Mediates in Vitro Ultrasonic Stimulation of Neurons. IScience 2019, 21, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Mittelstein, D.R.; Hurt, R.C.; Lacroix, J.; Shapiro, M.G. Focused Ultrasound Excites Cortical Neurons Via Mechanosensitive Calcium Accumulation and Ion Channel Amplification. Nat. Commun. 2022, 13, 493. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, A.F.M.; Gross, G.W.; Weiss, D.G.; Schroeder, O.H.-U.; Gramowski, A.; Shafer, T.J. Microelectrode Arrays: A Physiologically Based Neurotoxicity Testing Platform for the 21st Century. Neurotoxicology 2010, 31, 331–350. [Google Scholar] [CrossRef] [PubMed]
- Novellino, A.; Scelfo, B.; Palosaari, T.; Price, A.; Sobanski, T.; Shafer, T.J.; Johnstone, A.F.M.; Gross, G.W.; Gramowski, A.; Schroeder, O. Development of Micro-Electrode Array Based Tests for Neurotoxicity: Assessment of Interlaboratory Reproducibility with Neuroactive Chemicals. Front. Neuroeng. 2011, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Parenti, C.; Turnaturi, R.; Aricò, G.; Gramowski-Voß, A.; Schroeder, O.H.-U.; Marrazzo, A.; Prezzavento, O.; Ronsisvalle, S.; Scoto, G.M.; Ronsisvalle, G. The Multitarget Opioid Ligand Lp1’s Effects in Persistent Pain and in Primary Cell Neuronal Cultures. Neuropharmacology 2013, 71, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Accardi, M.V.; Pugsley, M.K.; Forster, R.; Troncy, E.; Huang, H.; Authier, S. The Emerging Role of in Vitro Electrophysiological Methods in Cns Safety Pharmacology. J. Pharmacol. Toxicol. Methods 2016, 81, 47–59. [Google Scholar] [CrossRef]
- Charkhkar, H.; Frewin, C.; Nezafati, M.; Knaack, G.L.; Peixoto, N.; Saddow, S.E.; Pancrazio, J.J. Use of Cortical Neuronal Networks for in Vitro Material Biocompatibility Testing. Biosens. Bioelectron. 2014, 53, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Atmaramani, R.; Chakraborty, B.; Rihani, R.T.; Usoro, J.; Hammack, A.; Abbott, J.; Nnoromele, P.; Black, B.J.; Pancrazio, J.J.; Cogan, S.F. Ruthenium Oxide Based Microelectrode Arrays for in Vitro and in Vivo Neural Recording and Stimulation. Acta Biomater. 2020, 101, 565–574. [Google Scholar] [CrossRef]
- Gross, G.W.; Wen, W.Y.; Lin, J.W. Transparent Indium-Tin Oxide Electrode Patterns for Extracellular, Multisite Recording in Neuronal Cultures. J. Neurosci. Methods 1985, 15, 243–252. [Google Scholar] [CrossRef]
- Gross, G.W.; Rhoades, B.K.; Azzazy, H.M.E.; Wu, M.-C. The Use of Neuronal Networks on Multielectrode Arrays as Biosensors. Biosens. Bioelectron. 1995, 10, 553–567. [Google Scholar] [CrossRef]
- Gnanasambandam, R.; Ghatak, C.; Yasmann, A.; Nishizawa, K.; Sachs, F.; Ladokhin, A.S.; Sukharev, S.I.; Suchyna, T.M. Gsmtx4: Mechanism of Inhibiting Mechanosensitive Ion Channels. Biophys. J. 2017, 112, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Syeda, R.; Xu, J.; Dubin, A.E.; Coste, B.; Mathur, J.; Huynh, T.; Matzen, J.; Lao, J.; Tully, D.C.; Engels, I.H.; et al. Chemical Activation of the Mechanotransduction Channel Piezo1. eLife 2015, 4, e07369. [Google Scholar] [CrossRef] [PubMed]
- Botello-Smith, W.M.; Jiang, W.; Zhang, H.; Ozkan, A.D.; Lin, Y.C.; Pham, C.N.; Lacroix, J.J.; Luo, Y. A Mechanism for the Activation of the Mechanosensitive Piezo1 Channel by the Small Molecule Yoda1. Nat. Commun. 2019, 10, 4503. [Google Scholar] [CrossRef] [PubMed]
- Xiang, G.; Pan, L.; Huang, L.; Yu, Z.; Song, X.; Cheng, J.; Xing, W.; Zhou, Y. Microelectrode Array-Based System for Neuropharmacological Applications with Cortical Neurons Cultured in Vitro. Biosens. Bioelectron. 2007, 22, 2478–2484. [Google Scholar] [CrossRef]
- Buzsáki, G.; Mizuseki, K. The Log-Dynamic Brain: How Skewed Distributions Affect Network Operations. Nat. Rev. Neurosci. 2014, 15, 264–278. [Google Scholar] [CrossRef]
- Valsky, D.; Grosberg, S.H.; Israel, Z.; Boraud, T.; Bergman, H.; Deffains, M. What Is the True Discharge Rate and Pattern of the Striatal Projection Neurons in Parkinson’s Disease and Dystonia? eLife 2020, 9, e57445. [Google Scholar] [CrossRef]
- Moaddab, M.; Ray, M.H.; McDannald, M.A. Ventral Pallidum Neurons Dynamically Signal Relative Threat. Commun. Biol. 2021, 4, 43. [Google Scholar] [CrossRef]
- Paulk, A.C.; Yang, J.C.; Cleary, D.R.; Soper, D.J.; Halgren, M.; O’donnell, A.R.; Lee, S.H.; Ganji, M.; Ro, Y.G.; Oh, H.; et al. Microscale Physiological Events on the Human Cortical Surface. Cereb. Cortex 2021, 31, 3678–3700. [Google Scholar] [CrossRef] [PubMed]
- Li, D.L.; Ma, Z.Y.; Fu, Z.J.; Ling, M.Y.; Yan, C.Z.; Zhang, Y. Glibenclamide Decreases Atp-Induced Intracellular Calcium Transient Elevation Via Inhibiting Reactive Oxygen Species and Mitochondrial Activity in Macrophages. PLoS ONE 2014, 9, e89083. [Google Scholar] [CrossRef]
- Lackovic, J.; Jeevakumar, V.; Burton, M.; Price, T.J.; Dussor, G. Peroxynitrite Contributes to Behavioral Responses, Increased Trigeminal Excitability, and Changes in Mitochondrial Function in a Preclinical Model of Migraine. J. Neurosci. 2023, 43, 1627–1642. [Google Scholar] [CrossRef] [PubMed]
- Rotordam, M.G.; Fermo, E.; Becker, N.; Barcellini, W.; Brüggemann, A.; Fertig, N.; Egée, S.; Rapedius, M.; Bianchi, P.; Kaestner, L. A Novel Gain-of-Function Mutation of Piezo1 Is Functionally Affirmed in Red Blood Cells by High-Throughput Patch Clamp. Haematologica 2019, 104, e179–e183. [Google Scholar] [CrossRef]
- Wagenaar, D.A.; Madhavan, R.; Pine, J.; Potter, S.M. Controlling Bursting in Cortical Cultures with Closed-Loop Multi-Electrode Stimulation. J. Neurosci. 2005, 25, 680–688. [Google Scholar] [CrossRef]
- Bowman, C.L.; Gottlieb, P.A.; Suchyna, T.M.; Murphy, Y.K.; Sachs, F. Mechanosensitive Ion Channels and the Peptide Inhibitor Gsmtx-4: History, Properties, Mechanisms and Pharmacology. Toxicon 2007, 49, 249–270. [Google Scholar] [CrossRef] [PubMed]
- Henze, D.A.; Borhegyi, Z.; Csicsvari, J.; Mamiya, A.; Harris, K.D.; Buzsaki, G. Intracellular Features Predicted by Extracellular Recordings in the Hippocampus in Vivo. J. Neurophysiol. 2000, 84, 390–400.e41. [Google Scholar] [CrossRef] [PubMed]
- Etzlaff, C.; Okujeni, S.; Egert, U.; Wörgötter, F.; Butz, M. Self-Organized Criticality in Developing Neuronal Networks. PLoS Comput. Biol. 2010, 6, e1001013. [Google Scholar]
- Massobrio, P.; Pasquale, V.; Martinoia, S. Self-Organized Criticality in Cortical Assemblies Occurs in Concurrent Scale-Free and Small-World Networks. Sci. Rep. 2015, 5, 10578. [Google Scholar] [CrossRef] [PubMed]
- DeMarse, T.; Cadotte, A.; Douglas, P.; He, P.; Trinh, V. Computation within Cultured Neural Networks. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 2. [Google Scholar]
- Pancrazio, J.J.; Gopal, K.; Keefer, E.W.; Gross, G.W. Botulinum Toxin Suppression of Cns Network Activity in Vitro. J. Toxicol. 2014, 2014, 732913. [Google Scholar] [CrossRef] [PubMed]
- Morefield, S.I.; Keefer, E.W.; Chapman, K.D.; Gross, G.W. Drug Evaluations Using Neuronal Networks Cultured on Microelectrode Arrays. Biosens. Bioelectron. 2000, 15, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, J.J.; Botello-Smith, W.M.; Luo, Y. Probing the Gating Mechanism of the Mechanosensitive Channel Piezo1 with the Small Molecule Yoda1. Nat. Commun. 2018, 9, 2029. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.-Z.; Zhou, T.; Xu, J.-Q.; Wang, Y.-X.; Sun, M.-M.; He, Y.-J.; Pan, S.-W.; Xiong, W.; Peng, Z.-K.; Gao, X.-H.; et al. Structure, Kinetic Properties and Biological Function of Mechanosensitive Piezo Channels. Cell Biosci. 2021, 11, 13. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Zhang, H.; Ma, T.; Lu, Y.; Xie, H.Y.; Wang, W.; Ma, Y.H.; Li, G.H.; Li, Y.W. Piezo1 Mediates Neuron Oxygen-Glucose Deprivation/Reoxygenation Injury Via Ca(2+)/Calpain Signaling. Biochem. Biophys. Res. Commun. 2019, 513, 147–153. [Google Scholar] [CrossRef]
- Zhang, Q.-Y.; Zhang, Y.-Y.; Xie, J.; Li, C.-X.; Chen, W.-Y.; Liu, B.-L.; Wu, X.-A.; Li, S.-N.; Huo, B.; Jiang, L.-H. Stiff Substrates Enhance Cultured Neuronal Network Activity. Sci. Rep. 2014, 4, 6215. [Google Scholar] [CrossRef]
- Bray, D. Mechanical Tension Produced by Nerve Cells in Tissue Culture. J. Cell Sci. 1979, 37, 391–410. [Google Scholar] [CrossRef]
- Franze, K.; Gerdelmann, J.; Weick, M.; Betz, T.; Pawlizak, S.; Lakadamyali, M.; Bayer, J.; Rillich, K.; Gögler, M.; Lu, Y.-B. Neurite Branch Retraction Is Caused by a Threshold-Dependent Mechanical Impact. Biophys. J. 2009, 97, 1883–1890. [Google Scholar] [CrossRef] [PubMed]
- Kerstein, P.C.; Jacques-Fricke, B.T.; Rengifo, J.; Mogen, B.J.; Williams, J.C.; Gottlieb, P.A.; Sachs, F.; Gomez, T.M. Mechanosensitive Trpc1 Channels Promote Calpain Proteolysis of Talin to Regulate Spinal Axon Outgrowth. J. Neurosci. 2013, 33, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Saccher, M.; Kawasaki, S.; Onori, M.P.; van Woerden, G.M.; Giagka, V.; Dekker, R. Focused Ultrasound Neuromodulation on a Multiwell Mea. Bioelectron. Med. 2022, 8, 2. [Google Scholar] [CrossRef]
- Lewis, A.H.; Cui, A.F.; McDonald, M.F.; Grandl, J. Transduction of Repetitive Mechanical Stimuli by Piezo1 and Piezo2 Ion Channels. Cell Rep. 2017, 19, 2572–2585. [Google Scholar] [CrossRef] [PubMed]
- Coste, B.; Xiao, B.; Santos, J.S.; Syeda, R.; Grandl, J.; Spencer, K.S.; Kim, S.E.; Schmidt, M.; Mathur, J.; Dubin, A.E.; et al. Piezo Proteins Are Pore-Forming Subunits of Mechanically Activated Channels. Nature 2012, 483, 176–181. [Google Scholar] [CrossRef]
- Gold, C.; Henze, D.A.; Koch, C. Using Extracellular Action Potential Recordings to Constrain Compartmental Models. J. Comput. Neurosci. 2007, 23, 39–58. [Google Scholar] [CrossRef]
- Boada, M.D.; Ririe, D.G.; Eisenach, J.C. Post-Discharge Hyperpolarization Is an Endogenous Modulatory Factor Limiting Input from Fast-Conducting Nociceptors (Ahtmrs). Mol. Pain 2017, 13, 1744806917726255. [Google Scholar] [CrossRef]
- Mulica, P.; Grunewald, A.; Pereira, S.L. Astrocyte-Neuron Metabolic Crosstalk in Neurodegeneration: A Mitochondrial Perspective. Front. Endocrinol. 2021, 12, 668517. [Google Scholar] [CrossRef]
- Yang, Y.; Vidensky, S.; Jin, L.; Jie, C.; Lorenzini, I.; Frankl, M.; Rothstein, J.D. Molecular Comparison of Glt1+ and Aldh1l1+ Astrocytes in Vivo in Astroglial Reporter Mice. Glia 2011, 59, 200–207. [Google Scholar] [CrossRef] [PubMed]
Electrode/Well | Electrode Diameter | Nominal Impedance |
---|---|---|
16 electrodes in a 4 × 4 configuration | 50 µm | 8–12 KΩ measured at 41.5 kHz |
Treatment Groups | Baseline MFR | +Yoda1 MFR |
---|---|---|
Yoda1 Concentration (µM) | ||
1 | 6.5 ± 0.4 | 6.8 ± 0.2 |
5 | 5.7 ± 1.0 | 6.0 ± 1.0 |
10 | 2.4 ± 0.3 | 4.6 ± 0.6 * |
30 | 3.4 ± 0.5 | 14.3 ± 1.4 * |
50 | 2.4 ± 1.0 | 16.4 ± 2.5 * |
100 | 5.7 ± 1.0 | 15.0 ± 2.0 * |
DMSO (0.5%) | 3.3 ± 0.8 | 3.4 ± 0.5 |
Baseline | Post-Exposure | |
---|---|---|
MFR(Hz) | 8.0 ± 0.1 | 2.0 ± 0.1 * |
Burst Rate (Hz) | 0.5 ± 0.1 | 0.05 ± 0.1 * |
Burst Duration (s) | 0.14 ± 0.1 | 0.09 ± 0.1 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haghighi, P.; Schaub, M.K.; Shebindu, A.H.; Vijayakumar, G.; Sood, A.; Granja-Vazquez, R.; Patnaik, S.S.; Jones, C.N.; Dussor, G.O.; Pancrazio, J.J. In Vitro Pharmacological Modulation of PIEZO1 Channels in Frontal Cortex Neuronal Networks. Brain Sci. 2024, 14, 223. https://doi.org/10.3390/brainsci14030223
Haghighi P, Schaub MK, Shebindu AH, Vijayakumar G, Sood A, Granja-Vazquez R, Patnaik SS, Jones CN, Dussor GO, Pancrazio JJ. In Vitro Pharmacological Modulation of PIEZO1 Channels in Frontal Cortex Neuronal Networks. Brain Sciences. 2024; 14(3):223. https://doi.org/10.3390/brainsci14030223
Chicago/Turabian StyleHaghighi, Pegah, Mandee K. Schaub, Adam H. Shebindu, Gayathri Vijayakumar, Armaan Sood, Rafael Granja-Vazquez, Sourav S. Patnaik, Caroline N. Jones, Gregory O. Dussor, and Joseph J. Pancrazio. 2024. "In Vitro Pharmacological Modulation of PIEZO1 Channels in Frontal Cortex Neuronal Networks" Brain Sciences 14, no. 3: 223. https://doi.org/10.3390/brainsci14030223