A Narrative Review of Current and Emerging Trends in the Treatment of Alcohol Use Disorder
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Benzodiazepines for AWS
3.2. Medications Other than Benzodiazepines for Alcohol Withdrawal Syndrome
3.2.1. GABA-B Receptor Agonists
Baclofen
3.2.2. Barbiturates
Phenobarbital
3.2.3. Anesthetics
Ketamine
Propofol
3.2.4. Anticonvulsants
Gabapentin
Valproate
3.2.5. Alpha-2-Agonists
Dexmedotimidine and Clonidine
3.2.6. Phosphodiesterase-4 Inhibitors
Ibudilast
3.2.7. Antipsychotics
3.2.8. Sodium Oxybate (SMO), Gamma-Hydroxybutyrate (GHB)
3.3. Treatment Modalities for Alcohol Use Disorder
3.3.1. FDA-Approved Medications
Naltrexone
Disulfiram
Acamprosate
3.3.2. Non-FDA Approved Treatment Modalities
Baclofen
ASP8062
Sodium Oxybate (SMO), Gamma-Hydroxybutyrate (GHB)
Topiramate
Gabapentin
Ondansetron
Psychedelics
LSD
Psilocybin
3.4. 4,5-Trimethoxyphenethylamine (Mescaline)
Ketamine
3.5. Phosphodiesterase-4 Inhibitors
3.5.1. Ibudilast, Apremilast
3.5.2. Ghrelin; PF-5190457
3.5.3. GLP-1 Receptor Agonists
3.5.4. Noninvasive Neural-Circuit-Based Interventions
Transcranial Magnetic Stimulation (TMS)
Deep Brain Stimulation (DBS)
Brief Interventions
Cognitive Behavioral Therapy (CBT)
Contingency Management (CM)
Alcoholics Anonymous/12-Step Facilitation (AA/TSF)
Third-Wave Therapies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- SAMHSA, Center for Behavioral Health Statistics and Quality, 2021. National Survey on Drug Use and Health. Table 2.25AdAlcohol Use in Lifetime: Among People Aged 12 or Older; by Age Group and Demographic Characteristics, Numbers in Thousands, 2021. Available online: https://www.samhsa.gov/data/sites/default/files/reports/rpt39441/NSDUHDetailedTabs2021/NSDUHDetailedTabs2021/NSDUHDetTabsSect2pe2021.htm#tab2.25a (accessed on 15 December 2023).
- American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013.
- Pilar, M.R.; Eyler, A.A.; Moreland-Russell, S.; Brownson, R.C. Actual causes of death in relation to media, policy, and funding attention: Examining public health priorities. Front. Public Health 2020, 8, 279. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Status Report on Alcohol and Health; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Hasin, D.S.; Stinson, F.S.; Ogburn, E.; Grant, B.F. Prevalence, correlates, disability, and comorbidity of dsm-iv alcohol abuse and dependence in the United States: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch. Gen. Psychiatry 2007, 64, 830–842. [Google Scholar] [CrossRef] [PubMed]
- Fan, A.Z.; Chou, S.P.; Zhang, H.; Jung, J.; Grant, B.F. Prevalence and Correlates of Past-Year Recovery From DSM-5 Alcohol Use Disorder: Results from National Epidemiologic Survey on Alcohol and Related Conditions-III. Alcohol. Clin. Exp. Res. 2019, 43, 2406–2420. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.C.; Lichstein, P.R.; Peden, J.G., Jr.; Busher, J.T.; Waivers, L.E. Alcohol withdrawal syndromes: A review of pathophysiology, clinical presentation, and treatment. J. Gen. Intern. Med. 1989, 4, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Kosten, T.R.; O’Connor, P.G. Management of Drug and Alcohol Withdrawal. N. Engl. J. Med. 2003, 348, 1786–1795. [Google Scholar] [CrossRef] [PubMed]
- Reus, V.I.; Fochtmann, L.J.; Bukstein, O.; Eyler, A.E.; Hilty, D.M.; Horvitz-Lennon, M.; Mahoney, J.; Pasic, J.; Weaver, M.; Wills, C.D.; et al. The American psychiatric association practice guideline for the pharmacological treatment of patients with alcohol use disorder. Am. J. Psychiatry 2018, 175, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Amato, L.; Minozzi, S.; Vecchi, S.; Davoli, M. Benzodiazepines for alcohol withdrawal. Cochrane Database Syst. Rev. 2010, 3, CD005063. [Google Scholar] [CrossRef] [PubMed]
- Hecksel, K.A.; Bostwick, J.M.; Jaeger, T.M.; Cha, S.S. Inappropriate use of symptom-triggered therapy for alcohol withdrawal in the general hospital. Mayo Clin. Proc. 2008, 83, 274–279. [Google Scholar] [CrossRef]
- Daeppen, J.-B.; Gache, P.; Landry, U.; Sekera, E.; Schweizer, V.; Gloor, S.; Yersin, B. Symptom-Triggered vs Fixed-Schedule Doses of Benzodiazepine for Alcohol Withdrawal. Arch. Intern. Med. 2002, 162, 1117–1121. [Google Scholar] [CrossRef]
- Mayo-Smith, M.F. Pharmacological management of alcohol withdrawal. A meta-analysis and evidence-based practice guideline. American Society of Addiction Medicine Working Group on Pharmacological Management of Alcohol Withdrawal. JAMA 1997, 278, 144–151. [Google Scholar] [CrossRef]
- Cooney, G.; Heydtmann, M.; Smith, I.D. Baclofen and the Alcohol Withdrawal Syndrome—A Short Review. Front. Psychiatry 2019, 9, 773. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.N. Baclofen for alcohol withdrawal. Cochrane Database Syst. Rev. 2015, 4, CD008502. [Google Scholar] [CrossRef]
- Crunelle, C.L.; Jegham, S.; Vanderbruggen, N.; Matthys, F. Baclofen during alcohol detoxification reduces the need for additional diazepam: A randomized placebo-controlled trial. Alcohol Alcohol. 2023, 58, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Karapetyan, K. Evaluation of Gabapentin and Baclofen Combination for Inpatient Management of Alcohol Withdrawal Syndrome. Fed. Pract. 2023, 40, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Suddock, J.T.; Cain, M.D. Barbiturate Toxicity; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Mo, Y.; Thomas, M.C.; Karras, G.E. Barbiturates for the treatment of alcohol withdrawal syndrome: A systematic review of clinical trials. J. Crit. Care 2016, 32, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Rosenson, J.; Clements, C.; Simon, B.; Vieaux, J.; Graffman, S.; Vahidnia, F.; Cisse, B.; Lam, J.; Alter, H. Phenobarbital for acute alcohol withdrawal: A prospective randomized double-blind placebo-controlled study. J. Emerg. Med. 2013, 44, 592–598.e2. [Google Scholar] [CrossRef] [PubMed]
- Pourmand, A.; AlRemeithi, R.; Kartiko, S.; Bronstein, D.; Tran, Q.K. Evaluation of phenobarbital based approach in treating patient with alcohol withdrawal syndrome: A systematic review and meta-analysis. Am. J. Emerg. Med. 2023, 69, 65–75. [Google Scholar] [CrossRef]
- Filewod, N.; Hwang, S.; Turner, C.J.; Rizvi, L.; Gray, S.; Klaiman, M.; Buell, D.; Ailon, J.; Caudarella, A.; Ginocchio, G.F.; et al. Phenobarbital for the management of severe acute alcohol withdrawal (the PHENOMANAL trial): A pilot randomized controlled trial. Pilot Feasibility Stud. 2022, 8, 1–7. [Google Scholar] [CrossRef]
- Li, L.; Vlisides, P.E. Ketamine: 50 Years of Modulating the Mind. Front. Hum. Neurosci. 2016, 10, 612. [Google Scholar] [CrossRef]
- Pizon, A.F.; Lynch, M.J.; Benedict, N.J.; Yanta, J.H.; Frisch, A.; Menke, N.B.; Swartzentruber, G.S.; King, A.M.; Abesamis, M.G.; Kane-Gill, S.L. Adjunct Ketamine Use in the Management of Severe Ethanol Withdrawal. Crit. Care Med. 2018, 46, e768–e771. [Google Scholar] [CrossRef]
- Shah, P.; McDowell, M.; Ebisu, R.; Hanif, T.; Toerne, T. Adjunctive Use of Ketamine for Benzodiazepine-Resistant Severe Alcohol Withdrawal: A Retrospective Evaluation. J. Med. Toxicol. 2018, 14, 229–236. [Google Scholar] [CrossRef]
- Brotherton, A.L.; Hamilton, E.P.; Kloss, H.G.; Hammond, D.A. Propofol for Treatment of Refractory Alcohol Withdrawal Syndrome: A Review of the Literature. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2016, 36, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Love, K.; Zimmermann, A.E. Use of Propofol Plus Dexmedetomidine in Patients Experiencing Severe Alcohol Withdrawal in the Intensive Care Unit. J. Clin. Pharmacol. 2020, 60, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Mason, B.J.; Quello, S.; Shadan, F. Gabapentin for the treatment of alcohol use disorder. Expert Opin. Investig. Drugs 2018, 27, 113–124. [Google Scholar] [CrossRef] [PubMed]
- DeFoster, R.E.; Morgan, R.J.; Leung, J.G.; Schenzel, H.; Vijapura, P.; Kashiwagi, D.T.; Fischer, K.M.; Philbrick, K.L.; Kung, S. Use of Gabapentin for Alcohol Withdrawal Syndrome in the Hospital Setting: A Randomized Open-Label Controlled Trial. Subst. Use Misuse 2023, 58, 1643–1650. [Google Scholar] [CrossRef]
- Mattle, A.G.; McGrath, P.; Sanu, A.; Kunadharaju, R.; Kersten, B.; Zammit, K.; Mammen, M.J. Gabapentin to treat acute alcohol withdrawal in hospitalized patients: A systematic review and meta-analysis. Drug Alcohol Depend. 2022, 241, 109671. [Google Scholar] [CrossRef]
- Myrick, H.; Malcolm, R.; Randall, P.K.; Boyle, E.; Anton, R.F.; Becker, H.C.; Randall, C.L. A double-blind trial of gabapentin versus lorazepam in the treatment of alcohol withdrawal. Alcohol. Clin. Exp. Res. 2009, 33, 1582–1588. [Google Scholar] [CrossRef]
- Lambie, D.G.; Johnson, R.H.; Vijayasenan, M.E.; Whiteside, E.A. Sodium valproate in the treatment of the alcohol withdrawal syndrome. Aust. N. Z. J. Psychiatry 1980, 14, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Hillbom, M.; Tokola, R.; Kuusela, V.; Kärkkäinen, P.; Källi-Lemma, L.; Pilke, A.; Kaste, M. Prevention of alcohol withdrawal seizures with carbamazepine and valproic acid. Alcohol 1989, 6, 223–226. [Google Scholar] [CrossRef]
- Available online: https://clinicaltrials.gov/study/NCT03235531?id=NCT03235531&rank=1 (accessed on 15 December 2023).
- Muzyk, A.J.; A Fowler, J.; Norwood, D.K.; Chilipko, A. Role of α2-agonists in the treatment of acute alcohol withdrawal. Ann. Pharmacother. 2011, 45, 649–657. [Google Scholar] [CrossRef]
- Woods, A.D.; Giometti, R.; Weeks, S.M. The use of dexmedetomidine as an adjuvant to benzodiazepine-based therapy to decrease the severity of delirium in alcohol withdrawal in adult intensive care unit patients: A systematic review. JBI Database Syst. Rev. Implement Rep. 2015, 13, 224–252. [Google Scholar] [CrossRef] [PubMed]
- Tolonen, J.; Rossinen, J.; Alho, H.; Harjola, V.-P. Dexmedetomidine in addition to benzodiazepine-based sedation in patients with alcohol withdrawal delirium. Eur. J. Emerg. Med. 2013, 20, 425–427. [Google Scholar] [CrossRef] [PubMed]
- Enătescuv, V.R.; Kalinovic, R.; Dehelean, C.A.; Giurgi-Oncu, C.; Hogea, L.M.; Ifteni, P.; Vlad, G.; Neda-Stepan, O.; Simu, M.; Bedreag, O.H.; et al. The efficacy of clonidine in the pharmacological management of alcohol withdrawal syndrome: Preliminary results. Farmácia 2020, 68, 1069–1074. [Google Scholar]
- Mayfield, J.; Harris, R.A. The Neuroimmune Basis of Excessive Alcohol Consumption. Neuropsychopharmacology 2017, 42, 376. [Google Scholar] [CrossRef]
- Johnson, K.W.; Matsuda, K.; Iwaki, Y. Ibudilast for the treatment of drug addiction and other neurological conditions. Clin. Investig. 2014, 4, 269–279. [Google Scholar] [CrossRef]
- Meredith, L.R.; Grodin, E.N.; Montoya, A.K.; Miranda, R.; Squeglia, L.M.; Towns, B.; Evans, C.; Ray, L.A. The effect of neuroimmune modulation on subjective response to alcohol in the natural environment. Alcohol. Clin. Exp. Res. 2022, 46, 876–890. [Google Scholar] [CrossRef]
- Faustmann, T.J.; Paschali, M.; Kojda, G.; Schilbach, L.; Kamp, D. Systematische Übersichtsarbeit Antipsychotische Behandlung des Alkoholentzugssyndroms: Fokus Delirium Tremens [Antipsychotic Treatment of Alcohol Withdrawal Syndrome with Focus on Delirium Tremens: A Systematic Review]. Fortschr. Neurol. Psychiatr. 2023. [Google Scholar] [CrossRef]
- Blum, K.; Eubanks, J.D.; Wallace, J.E.; Hamilton, H. Enhancement of alcohol withdrawal convulsions in mice by haloperidol. Clin. Toxicol. 1976, 9, 427–434. [Google Scholar] [CrossRef]
- Caputo, F.; Vignoli, T.; Maremmani, I.; Bernardi, M.; Zoli, G. Gamma hydroxybutyric acid (ghb) for the treatment of alcohol dependence: A review. Int. J. Environ. Res. Public Health 2009, 6, 1917–1929. [Google Scholar] [CrossRef]
- Leone, M.A.; Vigna-Taglianti, F.; Avanzi, G.; Brambilla, R.; Faggiano, F. Gamma-hydroxybutyrate (GHB) for treatment of alcohol withdrawal and prevention of relapses. Cochrane Database Syst. Rev. 2010, 2, CD006266. [Google Scholar] [CrossRef] [PubMed]
- Caputo, F.; Skala, K.; Mirijello, A.; Ferrulli, A.; Walter, H.; Lesch, O.; Addolorato, G. Sodium oxybate in the treatment of alcohol withdrawal syndrome: A randomized double-blind comparative study versus oxazepam. The GATE 1 Trial. CNS Drugs 2014, 28, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Department of Veterans Affairs and Department of Defense: VA/DoD Clinical Practice Guideline for the Management of Substance Use Disorders 2021. 2023. Available online: https://www.healthquality.va.gov/guidelines/mh/sud (accessed on 25 December 2023).
- Srivastava, A.B.; Gold, M.S. Naltrexone: A History and Future Directions. Cerebrum 2018, 2018, cer-13-18. [Google Scholar] [PubMed]
- Leighty, A.E.; Ansara, E.D. Treatment outcomes of long-acting injectable naltrexone versus oral naltrexone in alcohol use disorder in veterans. Ment. Health Clin. 2019, 9, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.M.; O’neil, J.P.; Janabi, M.; Marks, S.M.; Jagust, W.J.; Fields, H.L. Alcohol consumption induces endogenous opioid release in the human orbitofrontal cortex and nucleus accumbens. Sci. Transl. Med. 2012, 4, 116ra6. [Google Scholar] [CrossRef] [PubMed]
- Jonas, D.E.; Amick, H.R.; Feltner, C.; Bobashev, G.; Thomas, K.; Wines, R.; Kim, M.M.; Shanahan, E.; Gass, C.E.; Rowe, C.J.; et al. Pharmacotherapy for adults with alcohol use disorders in outpatient settings: A systematic review and meta-analysis. JAMA 2014, 311, 1889–1900. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.D.; Lahmek, P.; Pham, H.; Aubin, H.-J. Disulfiram efficacy in the treatment of alcohol dependence: A meta-analysis. PLoS ONE 2014, 9, e87366. [Google Scholar] [CrossRef]
- Kranzler, H.R.; Soyka, M. Diagnosis and Pharmacotherapy of Alcohol Use Disorder. JAMA 2018, 320, 815–824. [Google Scholar] [CrossRef]
- Blednov, Y.A.; Harris, R.A. Metabotropic glutamate receptor 5 (mGluR5) regulation of ethanol sedation, dependence and consumption: Relationship to acamprosate actions. Int. J. Neuropsychopharmacol. 2008, 11, 775–793. [Google Scholar] [CrossRef]
- Rösner, S.; Hackl-Herrwerth, A.; Leucht, S.; Lehert, P.; Vecchi, S.; Soyka, M. Acamprosate for alcohol dependence. Cochrane Database Syst. Rev. 2010, 9, CD004332. [Google Scholar] [CrossRef]
- Garbutt, J.C.; Kampov-Polevoy, A.B.; Pedersen, C.; Stansbury, M.; Jordan, R.; Willing, L.; Gallop, R.J. Efficacy and tolerability of baclofen in a U.S. community population with alcohol use disorder: A dose-response, randomized, controlled trial. Neuropsychopharmacology 2021, 46, 2250–2256. [Google Scholar] [CrossRef]
- Minozzi, S.; Saulle, R.; Rösner, S. Baclofen for alcohol use disorder. Emergencias 2018, 2018, CD012557. [Google Scholar] [CrossRef]
- Maccioni, P.; Colombo, G. Potential of GABAB Receptor Positive Allosteric Modulators in the Treatment of Alcohol Use Disorder. CNS Drugs 2019, 33, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Murai, N.; Kondo, Y.; Akuzawa, S.; Mihara, T.; Shiraishi, N.; Kakimoto, S.; Matsumoto, M. A novel GABAB receptor positive allosteric modulator, ASP8062, exerts analgesic effects in a rat model of fibromyalgia. Eur. J. Pharmacol. 2019, 865, 172750. [Google Scholar] [CrossRef]
- Walzer, M.; Marek, G.J.; Wu, R.; Nagata, M.; Han, D. Single- and Multiple-Dose Safety, Tolerability, and Pharmacokinetic Profiles of ASP8062: Results From 2 Phase 1 Studies. Clin. Pharmacol. Drug Dev. 2020, 9, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Guiraud, J.; Addolorato, G.; Aubin, H.-J.; Batel, P.; de Bejczy, A.; Caputo, F.; Goudriaan, A.E.; Gual, A.; Lesch, O.; Maremmani, I.; et al. Treating alcohol dependence with an abuse and misuse deterrent formulation of sodium oxybate: Results of a randomised, double-blind, placebo-controlled study. Eur. Neuropsychopharmacol. 2021, 52, 18–30. [Google Scholar] [CrossRef] [PubMed]
- A Johnson, B.; Ait-Daoud, N.; Bowden, C.L.; DiClemente, C.C.; Roache, J.D.; Lawson, K.; A Javors, M.; Ma, J.Z. Oral topiramate for treatment of alcohol dependence: A randomised controlled trial. Lancet 2003, 361, 1677–1685. [Google Scholar] [CrossRef]
- Johnson, B.A.; Rosenthal, N.; Capece, J.A.; Wiegand, F.; Mao, L.; Beyers, K.; McKay, A.; Ait-Daoud, N.; Anton, R.F.; Ciraulo, D.A.; et al. Topiramate for treating alcohol dependencea randomized controlled trial. JAMA 2007, 298, 1641–1651. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, A.; Jose, N.; Yadav, P.; Mahla, V.P. Comparison between baclofen and topiramate in alcohol dependence: A prospective study. Ind. Psychiatry J. 2019, 28, 44–50. [Google Scholar] [CrossRef]
- Fluyau, D.; Kailasam, V.K.; Pierre, C.G. A Bayesian meta-analysis of topiramate’s effectiveness for individuals with alcohol use disorder. J. Psychopharmacol. 2023, 37, 155–163. [Google Scholar] [CrossRef]
- Anton, R.F.; Latham, P.; Voronin, K.; Book, S.; Hoffman, M.; Prisciandaro, J.; Bristol, E. Efficacy of Gabapentin for the Treatment of Alcohol Use Disorder in Patients with Alcohol Withdrawal Symptoms: A Randomized Clinical Trial. JAMA Intern. Med. 2020, 180, 728–736. [Google Scholar] [CrossRef]
- Falk, D.E.; Ryan, M.L.; Fertig, J.B.; Devine, E.G.; Cruz, R.; Brown, E.S.; Burns, H.; Salloum, I.M.; Newport, D.J.; Mendelson, J.; et al. Gabapentin Enacarbil Extended-Release for Alcohol Use Disorder: A Randomized, Double-Blind, Placebo-Controlled, Multisite Trial Assessing Efficacy and Safety. Alcohol. Clin. Exp. Res. 2019, 43, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Kranzler, H.R.; Feinn, R.; Morris, P.; Hartwell, E.E. A meta-analysis of the efficacy of gabapentin for treating alcohol use disorder. Addiction 2019, 114, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.V.; Havens, J.R.; Walsh, S.L. Gabapentin misuse, abuse and diversion: A systematic review. Addiction 2016, 111, 1160–1174. [Google Scholar] [CrossRef] [PubMed]
- Kenna, G.A.; Zywiak, W.H.; Swift, R.M.; McGeary, J.E.; Clifford, J.S.; Shoaff, J.R.; Fricchione, S.; Brickley, M.; Beaucage, K.; Haass-Koffler, C.L.; et al. Ondansetron and sertraline may interact with 5-HTTLPR and DRD4 polymorphisms to reduce drinking in non-treatment seeking alcohol-dependent women: Exploratory findings. Alcohol 2014, 48, 515–522. [Google Scholar] [CrossRef]
- Myrick, H.; Anton, R.F.; Li, X.; Henderson, S.; Randall, P.K.; Voronin, K. Effect of naltrexone and ondansetron on alcohol cue–induced activation of the ventral striatum in alcohol-dependent people. Arch. Gen. Psychiatry 2008, 65, 466–475. [Google Scholar] [CrossRef]
- Filho, J.M.C.; Baltieri, D.A. A pilot study of full-dose ondansetron to treat heavy-drinking men withdrawing from alcohol in Brazil. Addict. Behav. 2013, 38, 2044–2051. [Google Scholar] [CrossRef] [PubMed]
- Siegel, A.N.; Meshkat, S.; Benitah, K.; Lipsitz, O.; Gill, H.; Lui, L.M.; Teopiz, K.M.; McIntyre, R.S.; Rosenblat, J.D. Registered clinical studies investigating psychedelic drugs for psychiatric disorders. J. Psychiatr. Res. 2021, 139, 71–81. [Google Scholar] [CrossRef]
- Bogenschutz, M.P. Studying the Effects of Classic Hallucinogens in the treatment of alcoholism: Rationale, methodology, and current research with psilocybin. Curr. Drug Abus. Rev. 2013, 6, 17–29. [Google Scholar] [CrossRef]
- Krebs, T.S.; Johansen, P. Lysergic acid diethylamide (LSD) for alcoholism: Meta-analysis of randomized controlled trials. J. Psychopharmacol. 2012, 26, 994–1002. [Google Scholar] [CrossRef]
- Alper, K.; Dong, B.; Shah, R.; Sershen, H.; Vinod, K.Y. LSD Administered as a Single Dose Reduces Alcohol Consumption in C57BL/6J Mice. Front. Pharmacol. 2018, 9, 994. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, M.W.; Güngör, C.; Skorodumov, I.; Mertens, L.J.; Spanagel, R. Psilocybin and LSD have no long-lasting effects in an animal model of alcohol relapse. Neuropsychopharmacology 2020, 45, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Bogenschutz, M.P.; Ross, S.; Bhatt, S.; Baron, T.; Forcehimes, A.A.; Laska, E.; Mennenga, S.E.; O’donnell, K.; Owens, L.T.; Podrebarac, S.; et al. Percentage of Heavy Drinking Days Following Psilocybin-Assisted Psychotherapy vs Placebo in the Treatment of Adult Patients with Alcohol Use Disorder: A Randomized Clinical Trial [published correction appears in JAMA Psychiatry. JAMA Psychiatry 2022, 79, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Bruhn, J.G.; De Smet, P.A.; El-Seedi, H.R.; Beck, O. Mescaline use for 5700 years. Lancet 2002, 359, 1866. [Google Scholar] [CrossRef]
- Albaugh, B.J.; Anderson, P.O. Peyote in the Treatment of Alcoholism Among American Indians. Am. J. Psychiatry 1974, 131, 1247–1250. [Google Scholar] [CrossRef] [PubMed]
- Agin-Liebes, G.; Haas, T.F.; Lancelotta, R.; Uthaug, M.V.; Ramaekers, J.G.; Davis, A.K. Naturalistic Use of Mescaline Is Associated with Self-Reported Psychiatric Improvements and Enduring Positive Life Changes. ACS Pharmacol. Transl. Sci. 2021, 4, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Krupitsky, E.M.; Grineko, A.Y.; Berkaliev, T.N.; Paley, A.I.; Tetrov, U.N.; Mushkov, K.A.; Borodikin, Y.S. The combination of psychedelic and aversive approaches in alcoholism treatment: The affective contra-attribution method. Alcohol. Treat. Q. 1992, 9, 99–105. [Google Scholar] [CrossRef]
- Kolp, E.; Friedman, H.L.; Young, M.S.; Krupitsky, E. Ketamine Enhanced Psychotherapy: Preliminary Clinical Observations on Its Effectiveness in Treating Alcoholism. Humanist. Psychol. 2006, 34, 399–422. [Google Scholar] [CrossRef]
- Dakwar, E.; Levin, F.; Hart, C.L.; Basaraba, C.; Choi, J.; Pavlicova, M.; Nunes, E.V. A Single Ketamine Infusion Combined with Motivational Enhancement Therapy for Alcohol Use Disorder: A Randomized Midazolam-Controlled Pilot Trial. Am. J. Psychiatry 2020, 177, 125–133. [Google Scholar] [CrossRef]
- Grabski, M.; McAndrew, A.; Lawn, W.; Marsh, B.; Raymen, L.; Stevens, T.; Hardy, L.; Warren, F.; Bloomfield, M.; Borissova, A.; et al. Adjunctive Ketamine with Relapse Prevention–Based Psychological Therapy in the Treatment of Alcohol Use Disorder. Am. J. Psychiatry 2022, 179, 152–162. [Google Scholar] [CrossRef]
- A Ray, L.; Bujarski, S.; Shoptaw, S.; Roche, D.J.; Heinzerling, K.; Miotto, K. Development of the Neuroimmune Modulator Ibudilast for the Treatment of Alcoholism: A Randomized, Placebo-Controlled, Human Laboratory Trial. Neuropsychopharmacology 2017, 42, 1776–1788. [Google Scholar] [CrossRef]
- Grodin, E.N.; Nieto, S.J.; Meredith, L.R.; Burnette, E.; O’Neill, J.; Alger, J.; London, E.D.; Miotto, K.; Evans, C.J.; Irwin, M.R.; et al. Effects of ibudilast on central and peripheral markers of inflammation in alcohol use disorder: A randomized clinical trial. Addict. Biol. 2022, 27, e13182. [Google Scholar] [CrossRef]
- Grigsby, K.B.; Mangieri, R.A.; Roberts, A.J.; Lopez, M.F.; Firsick, E.J.; Townsley, K.G.; Beneze, A.; Bess, J.; Eisenstein, T.K.; Meissler, J.J.; et al. Preclinical and clinical evidence for suppression of alcohol intake by apremilast. J. Clin. Investig. 2023, 133, e159103. [Google Scholar] [CrossRef]
- Davis, J.F.; Schurdak, J.D.; Magrisso, I.J.; Mul, J.D.; Grayson, B.E.; Pfluger, P.T.; Tschöp, M.H.; Seeley, R.J.; Benoit, S.C. Gastric bypass surgery attenuates ethanol consumption in ethanol-preferring rats. Biol. Psychiatry 2012, 72, 354–360. [Google Scholar] [CrossRef]
- Stievenard, A.; Méquinion, M.; Andrews, Z.B.; Destée, A.; Chartier-Harlin, M.-C.; Viltart, O.; Vanbesien-Mailliot, C.C. Is there a role for ghrelin in central dopaminergic systems? Focus on nigrostriatal and mesocorticolimbic pathways. Neurosci. Biobehav. Rev. 2017, 73, 255–275. [Google Scholar] [CrossRef]
- Bhattacharya, S.K.; Andrews, K.; Beveridge, R.; Cameron, K.O.; Chen, C.; Dunn, M.; Fernando, D.; Gao, H.; Hepworth, D.; Jackson, V.M.; et al. Discovery of PF-5190457, a Potent, Selective, and Orally Bioavailable Ghrelin Receptor Inverse Agonist Clinical Candidate. ACS Med. Chem. Lett. 2014, 5, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Q.; Du, X.; Li, Y.; Gong, B.; Shi, L.; Tang, T.; Jiang, H. The neurological effects of ghrelin in brain diseases: Beyond metabolic functions. Neurosci. Biobehav. Rev. 2017, 73, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.; Tapocik, J.D.; Ghareeb, M.; Schwandt, M.L.; Dias, A.A.; Le, A.N.; Cobbina, E.; Farinelli, L.A.; Bouhlal, S.; Farokhnia, M.; et al. The novel ghrelin receptor inverse agonist PF-5190457 administered with alcohol: Preclinical safety experiments and a phase 1b human laboratory study. Mol. Psychiatry 2020, 25, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Wang, G.; Tomasi, D.; Baler, R.D. Obesity and addiction: Neurobiological overlaps. Obes. Rev. 2013, 14, 2–18. [Google Scholar] [CrossRef]
- Cork, S.C.; Richards, J.E.; Holt, M.K.; Gribble, F.M.; Reimann, F.; Trapp, S. Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol. Metab. 2015, 4, 718–731. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.J. The Physiology of Glucagon-like Peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef] [PubMed]
- Suchankova, P.; Yan, J.; Schwandt, M.L.; Stangl, B.L.; Caparelli, E.C.; Momenan, R.; Jerlhag, E.; A Engel, J.; A Hodgkinson, C.; Egli, M.; et al. The glucagon-like peptide-1 receptor as a potential treatment target in alcohol use disorder: Evidence from human genetic association studies and a mouse model of alcohol dependence. Transl. Psychiatry 2015, 5, e583. [Google Scholar] [CrossRef]
- Farokhnia, M.; Browning, B.D.; Crozier, M.E.; Sun, H.; Akhlaghi, F.; Leggio, L. The glucagon-like peptide-1 system is modulated by acute and chronic alcohol exposure: Findings from human laboratory experiments and a post-mortem brain study. Addict. Biol. 2022, 27, e13211. [Google Scholar] [CrossRef]
- Vallöf, D.; Kalafateli, A.L.; Jerlhag, E. Long-term treatment with a glucagon-like peptide-1 receptor agonist reduces ethanol intake in male and female rats. Transl. Psychiatry 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Egecioglu, E.; Steensland, P.; Fredriksson, I.; Feltmann, K.; Engel, J.A.; Jerlhag, E. The glucagon-like peptide 1 analogue Exendin-4 attenuates alcohol mediated behaviors in rodents. Psychoneuroendocrinology 2013, 38, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Chuong, V.; Farokhnia, M.; Khom, S.; Pince, C.L.; Elvig, S.K.; Vlkolinsky, R.; Marchette, R.C.; Koob, G.F.; Roberto, M.; Vendruscolo, L.F.; et al. The glucagon-like peptide-1 (GLP-1) analogue semaglutide reduces alcohol drinking and modulates central GABA neurotransmission. J. Clin. Investig. 2023, 8, e170671. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.R.; Dorand, M.F.; Royal, K.; Mnajjed, L.; Paszkowiak, M.; Simmons, W.K. Significant Decrease in Alcohol Use Disorder Symptoms Secondary to Semaglutide Therapy for Weight Loss. J. Clin. Psychiatry 2023, 85, 50515. [Google Scholar] [CrossRef] [PubMed]
- Wium-Andersen, I.K.; Wium-Andersen, M.K.; Fink-Jensen, A.; Rungby, J.; Jørgensen, M.B.; Osler, M. Use of GLP-1 receptor agonists and subsequent risk of alcohol-related events. A nationwide register-based cohort and self-controlled case series study. Basic Clin. Pharmacol. Toxicol. 2022, 131, 372–379. [Google Scholar] [CrossRef]
- Klausen, M.K.; Jensen, M.E.; Møller, M.; Le Dous, N.; Jensen, A.-M.; Zeeman, V.A.; Johannsen, C.-F.; Lee, A.M.; Thomsen, G.K.; Macoveanu, J.; et al. Exenatide once weekly for alcohol use disorder investigated in a randomized, placebo-controlled clinical trial. J. Clin. Investig. 2022, 7, e159863. [Google Scholar] [CrossRef]
- Goldstein, R.Z.; Volkow, N.D. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 2011, 12, 652–669. [Google Scholar] [CrossRef]
- Strafella, A.P.; Paus, T.; Barrett, J.; Dagher, A. Repetitive Transcranial Magnetic Stimulation of the Human Prefrontal Cortex Induces Dopamine Release in the Caudate Nucleus. J. Neurosci. 2001, 21, RC157. [Google Scholar] [CrossRef]
- Zangen, A.; Hyodo, K. Transcranial magnetic stimulation induces increases in extracellular levels of dopamine and glutamate in the nucleus accumbens. NeuroReport 2002, 13, 2401–2405. [Google Scholar] [CrossRef]
- Kearney-Ramos, T.E.; Dowdle, L.T.; Lench, D.H.; Mithoefer, O.J.; Devries, W.H.; George, M.S.; Anton, R.F.; Hanlon, C.A. Transdiagnostic Effects of Ventromedial Prefrontal Cortex Transcranial Magnetic Stimulation on Cue Reactivity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 599–609. [Google Scholar] [CrossRef]
- Harel, M.; Perini, I.; Kämpe, R.; Alyagon, U.; Shalev, H.; Besser, I.; Sommer, W.H.; Heilig, M.; Zangen, A. Repetitive Transcranial Magnetic Stimulation in Alcohol Dependence: A Randomized, Double-Blind, Sham-Controlled Proof-of-Concept Trial Targeting the Medial Prefrontal and Anterior Cingulate Cortices. Biol. Psychiatry 2022, 91, 1061–1069. [Google Scholar] [CrossRef]
- McCalley, D.M.; Kaur, N.; Wolf, J.P.; Contreras, I.E.; Book, S.W.; Smith, J.P.; Hanlon, C.A. Medial Prefrontal Cortex Theta Burst Stimulation Improves Treatment Outcomes in Alcohol Use Disorder: A Double-Blind, Sham-Controlled Neuroimaging Study. Biol. Psychiatry Glob. Open Sci. 2022, 3, 301–310. [Google Scholar] [CrossRef]
- Volkow, N.D.; Koob, G.F.; McLellan, A.T. Neurobiologic Advances from the Brain Disease Model of Addiction. N. Engl. J. Med. 2016, 374, 363–371. [Google Scholar] [CrossRef]
- Volkow, N.D.; Fowler, J.S.; Wang, G.-J.; Swanson, J.M.; Telang, F. Dopamine in drug abuse and addiction: Results of imaging studies and treatment implications. Arch. Neurol. 2007, 64, 1575–1579. [Google Scholar] [CrossRef] [PubMed]
- Schacht, J.P.; Anton, R.F.; Myrick, H. Functional neuroimaging studies of alcohol cue reactivity: A quantitative meta-analysis and systematic review. Addict. Biol. 2013, 18, 121–133. [Google Scholar] [CrossRef]
- Davidson, B.; Giacobbe, P.; George, T.P.; Nestor, S.M.; Rabin, J.S.; Goubran, M.; Nyman, A.J.; Baskaran, A.; Meng, Y.; Pople, C.B.; et al. Deep brain stimulation of the nucleus accumbens in the treatment of severe alcohol use disorder: A phase I pilot trial. Mol. Psychiatry 2022, 27, 3992–4000. [Google Scholar] [CrossRef] [PubMed]
- Bach, P.; Luderer, M.; Müller, U.J.; Jakobs, M.; Baldermann, J.C.; Voges, J.; Kiening, K.; Lux, A.; Visser-Vandewalle, V.; Klosterkötter, J.; et al. Deep brain stimulation of the nucleus accumbens in treatment-resistant alcohol use disorder: A double-blind randomized controlled multi-center trial. Transl. Psychiatry 2023, 13, 1–11. [Google Scholar] [CrossRef]
- O’Donnell, A.; Anderson, P.; Newbury-Birch, D.; Schulte, B.; Schmidt, C.; Reimer, J.; Kaner, E. The impact of brief alcohol interventions in primary healthcare: A systematic review of reviews. Alcohol Alcohol. 2014, 49, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Jonas, D.E.; Garbutt, J.C.; Amick, H.R.; Brown, J.M.; Brownley, K.A.; Council, C.L.; Viera, A.J.; Wilkins, T.M.; Schwartz, C.J.; Richmond, E.M.; et al. Behavioral counseling after screening for alcohol misuse in primary care: A systematic review and meta-analysis for the u.s. preventive services task force. Ann. Intern. Med. 2012, 157, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Schwenker, R.; Dietrich, C.E.; Hirpa, S.; Nothacker, M.; Smedslund, G.; Frese, T.; Unverzagt, S. Motivational interviewing for substance use reduction. Cochrane Database Syst. Rev. 2023, 12, CD008063. [Google Scholar] [CrossRef] [PubMed]
- Harder, V.S.; Musau, A.M.; Musyimi, C.W.; Ndetei, D.M.; Mutiso, V.N. A randomized clinical trial of mobile phone motivational interviewing for alcohol use problems in Kenya. Addiction 2020, 115, 1050–1060. [Google Scholar] [CrossRef] [PubMed]
- Magill, M.; Ray, L.; Kiluk, B.; Hoadley, A.; Bernstein, M.; Tonigan, J.S.; Carroll, K. A meta-analysis of cognitive-behavioral therapy for alcohol or other drug use disorders: Treatment efficacy by contrast condition. J. Consult. Clin. Psychol. 2019, 87, 1093–1105. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, D.M.; Lake, S.L.; Hill-Kapturczak, N.; Liang, Y.; Karns, T.E.; Mullen, J.; Roache, J.D. Using contingency management procedures to reduce at-risk drinking in heavy drinkers. Alcohol. Clin. Exp. Res. 2015, 39, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Barnett, N.P.; Celio, M.A.; Tidey, J.W.; Murphy, J.G.; Colby, S.M.; Swift, R.M. A preliminary randomized controlled trial of contingency management for alcohol use reduction using a transdermal alcohol sensor. Addiction 2017, 112, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Yalom, I.D.; Leszcz, M. The Theory and Practice of Group Psychotherapy, 5th ed.; Basic Books: New York, NY, USA, 2008. [Google Scholar]
- Kelly, J.F.; Humphreys, K.; Ferri, M. Alcoholics Anonymous and other 12-step programs for alcohol use disorder. Cochrane Database Syst. Rev. 2020, 3, CD012880. [Google Scholar] [CrossRef]
- Kabat-Zinn, J. Full Catastrophe Living, Revised Edition: How to Cope with Stress, Pain and Illness Using Mindfulness Meditation; Hachette: London, UK, 2013. [Google Scholar]
- Harvey, S.T.; Henricksen, A.; Bimler, D.; Dickson, D. Addressing anger, stress and alcohol-related difficulties in the military: An ACT intervention. Mil. Psychol. 2017, 2, 1–13. [Google Scholar] [CrossRef]
- Kamboj, S.K.; Irez, D.; Serfaty, S.; Thomas, E.; Das, R.K.; Freeman, T.P. Ultra-Brief Mindfulness Training Reduces Alcohol Consumption in At-Risk Drinkers: A Randomized Double-Blind Active-Controlled Experiment. Int. J. Neuropsychopharmacol. 2017, 20, 936–947. [Google Scholar] [CrossRef]
- McLellan, A.T.; Koob, G.F.; Volkow, N.D. Preaddiction—A Missing Concept for Treating Substance Use Disorders. JAMA Psychiatry 2022, 79, 749–751. [Google Scholar] [CrossRef] [PubMed]
Treatment Modality | Mechanism of Action | Results |
---|---|---|
GABA-A receptor agonists (Benzodiazepines) | Stimulation of GABA-A receptors | Gold standard for AWS; ↓ withdrawal severity; ↓ DTs |
GABA-B receptor agonists (Baclofen) | ↓ Excitatory neurotransmitter release; stimulation of GABA-B receptors | Effective as a benzodiazepine sparing agent; ↓ length of hospital stay |
Barbiturates (Phenobarbital) | ↑ duration chloride ion channel opening; ↓ glutamate signaling | No sufficient evidence for monotherapy; ↓ ICU admission and intubation rates when used with benzodiazepines |
Anesthetics (Ketamine, propofol) | NMDA antagonism; GABA-A receptor agonism | No sufficient evidence for monotherapy; ↓ Intubation rates when used with benzodiazepines; useful in refractory DTs |
Gabapentin | ↓ GABA receptor mediated inhibitory post synaptic currents (IPSCS); voltage gated calcium channel blockage | No sufficient evidence for monotherapy; As an adjunctive in inpatient settings and outpatient management of AWS |
GHB | GABA-B partial agonist | No recent studies; Some effectiveness in uncomplicated AWS |
Alpha-2-agonists | ↑ central presynaptic a2-autoreceptor stimulation; ↓ autonomic hyperactivity | Could be useful as adjunctive medications; ↓ delirium severity and intubation in ICU settings |
Phosphodiesterase-4 inhibitors | ↓ proinflammatory cytokines; Selective phosphodiesterase inhibition | No sufficient evidence; ↓ alcohol craving; positive mood effects |
Antipsychotics | Dopamine antagonism | No recent studies; Useful in uncontrolled agitation, hallucinations |
Treatment Modality | Mechanism of Action | Results |
---|---|---|
Naltrexone | Mu-opioid receptor antagonism | ↓ cravings, reinforcing effects of alcohol, binge drinking; ↓ relapse |
Disulfiram | ALDH inhibition resulting in acetaldehyde accumulation | ↑ abstinence; questionable efficacy as monotherapy |
Acamprosate | NMDA receptor antagonist; mGluR5 receptor modulation | ↑ abstinence; not effective in heavy drinking |
Treatment Modality | Mechanism of Action | Results |
---|---|---|
Baclofen | ↓ Excitatory neurotransmitter release; stimulation of GABA-B receptors | Conflicting clinical results ↓ heavy drinking days ↑ abstinent days |
Asp8062 | Allosteric modulator of GABA-B | ↓ alcohol consumption in animal studies Good safety and tolerability in human studies |
GHB | Partial agonist for GABA-B receptors; ↑ production of GABA from GHB | ↑ abstinent days ↓ daily alcohol consumption ↓ withdrawal symptoms |
Topiramate | Inhibits voltage-dependent sodium channels; ↑ inhibitory activity of GAB | ↓ percentage of heavy drinking days ↑ increased percent days abstinent ↓ alcohol craving |
Gabapentin | ↓ GABA receptor mediated inhibitory post synaptic currents (IPSCS); blocks voltage gated calcium channels | Conflicting results ↑ non-heavy drinking days ↑ abstinent days Failed effectiveness in extended-release gabapentin (GE-XR) |
Ondansetron | 5-HT3 receptor blockage | ↓ alcohol craving (in combination with naltrexone) ↓ percentage of heavy drinking days |
LSD | Interaction with the 5-HT2A receptors | Old clinical trials from 70s Conflicting animal studies; ↓ alcohol intake and preference in rats |
Psilocybin | Interaction with the 5-HT2A receptors | Psychotherapy, psilocybin combination: ↓ percentage of heavy drinking days Failed recent psilocybin/LSD microdosing in rats |
Mescaline | Interaction with the 5-HT2A receptors | No RCTs Self-reported cathartic experiences leading to AUD alleviation ↓ self-reported daily alcohol consumption |
Ketamine | NMDA antagonism | Psychotherapy, ketamine combination; ↓ percentage of heavy drinking days ↑ increased percent days abstinent No difference in relapse rates |
Ibudilast; apremilast | ↓ proinflammatory cytokines; Selective phosphodiesterase inhibition | ↓ alcohol craving ↓ neural cue-reactivity ↓ daily alcohol consumption |
Pf-5190457 | Ghrelin receptor inverse agonism | ↓ alcohol craving ↓ neural cue-reactivity |
Dulaglutide, Exendin-4 (Ex4), exenatide, Semaglutide | GLP-1 receptor agonism | ↓ alcohol intake and preference, locomotor stimulation and dopamine release in rats ↓ alcohol cue reactivity, heavy drinking and total alcohol intake in obese patients |
TMS, DBS | Electrical current induction to depolarize neurons | ↓ alcohol craving ↓ daily alcohol consumption ↓ neural cue-reactivity No difference in continuous abstinence |
Brief interventions | Behavioral modification | ↓ self-reported daily alcohol consumption ↓ self-reported heavy drinking episodes |
CBT | Behavioral modification | ↓ consumption frequency and quantity Not superior compared to MI and CM |
AA | Behavioral modification | ↑ abstinent days Cost effective Superior compared to CBT |
Contingency management | Behavioral modification | ↓ self-reported daily alcohol consumption ↓ self-reported heavy drinking days ↑abstinent days |
Third-wave therapies | Behavioral modification | ↓ self-reported daily alcohol consumption ↓ self-reported past week alcohol consumption |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celik, M.; Gold, M.S.; Fuehrlein, B. A Narrative Review of Current and Emerging Trends in the Treatment of Alcohol Use Disorder. Brain Sci. 2024, 14, 294. https://doi.org/10.3390/brainsci14030294
Celik M, Gold MS, Fuehrlein B. A Narrative Review of Current and Emerging Trends in the Treatment of Alcohol Use Disorder. Brain Sciences. 2024; 14(3):294. https://doi.org/10.3390/brainsci14030294
Chicago/Turabian StyleCelik, Muhammet, Mark S. Gold, and Brian Fuehrlein. 2024. "A Narrative Review of Current and Emerging Trends in the Treatment of Alcohol Use Disorder" Brain Sciences 14, no. 3: 294. https://doi.org/10.3390/brainsci14030294