Walking and Hippocampal Formation Volume Changes: A Systematic Review
Abstract
:1. Introduction
2. Method
2.1. Research Strategy
2.2. Research Framework
2.3. Screening and Inclusion Criteria
2.4. Risk of Bias Assessment
2.5. Data Analysis and Synthesis
3. Results
4. Discussion
4.1. Total Hippocampal Volume Changes Through Walking and Parameters
4.2. Right-Hippocampal Volume Changes Through Walking in Built Environments
4.3. Left-Hippocampal Changes: Current Gaps
4.4. Subiculum Volume Change Through Low-Intensity Walking and Natural Environment
4.5. Parahippocampal Gyrus Volume Change Through Vigorous Walking and High Step Count
4.6. Dentate Gyrus Changes: The Ongoing Gap
4.7. Limitations, Future Research, and Practical Implications
5. Conclusions
Funding
Conflicts of Interest
References
- Chauhan, P.; Jethwa, K.; Rathawa, A.; Chauhan, G.; Mehra, S. The anatomy of the hippocampus. Exon Publ. 2021, 2, 17–30. [Google Scholar]
- Burgess, N.; Maguire, E.A.; O’Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 2002, 35, 625–641. [Google Scholar] [CrossRef]
- Pereira, A.C.; Huddleston, D.E.; Brickman, A.M.; Sosunov, A.A.; Hen, R.; McKhann, G.M.; Sloan, R.; Gage, F.H.; Brown, T.R.; Small, S.A. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA 2007, 104, 5638–5643. [Google Scholar] [CrossRef] [PubMed]
- Bonfanti, L.; La Rosa, C.; Ghibaudi, M.; Sherwood, C.C. Adult neurogenesis and “immature” neurons in mammals: An evolutionary trade-off in plasticity? Brain Struct. Funct. 2024, 229, 1775–1793. [Google Scholar] [CrossRef] [PubMed]
- Altman, J.; Das, G.D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 1965, 124, 319–335. [Google Scholar] [CrossRef]
- Gage, F.H. Mammalian neural stem cells. Science 2000, 287, 1433–1438. [Google Scholar] [CrossRef] [PubMed]
- Clemenson, G.D.; Deng, W.; Gage, F.H. Environmental enrichment and neurogenesis: From mice to humans. Curr. Opin. Behav. Sci. 2015, 4, 56–62. [Google Scholar] [CrossRef]
- Jessberger, S.; Gage, F.H. Adult neurogenesis: Bridging the gap between mice and humans. Trends Cell Biol. 2014, 24, 558–563. [Google Scholar] [CrossRef]
- Eriksson, P.S.; Perfilieva, E.; Björk-Eriksson, T.; Alborn, A.M.; Nordborg, C.; Peterson, D.A.; Gage, F.H. Neurogenesis in the adult human hippocampus. Nat. Med. 1998, 4, 1313–1317. [Google Scholar] [CrossRef]
- Boldrini, M.; Fulmore, C.A.; Tartt, A.N.; Simeon, L.R.; Pavlova, I.; Poposka, V.; Mann, J.J.; Rosoklija, G.B.; Stankov, A.; Arango, V.; et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 2018, 22, 589–599. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Ávila, J.; Llorens-Martín, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 2019, 25, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Jiménez, E.P.; Terreros-Roncal, J.; Flor-García, M.; Rábano, A.; Llorens-Martín, M. Evidences for adult hippocampal neurogenesis in humans. J. Neurosci. 2021, 41, 2541–2553. [Google Scholar] [CrossRef]
- Spalding, K.L.; Bergmann, O.; Alkass, K.; Bernard, S.; Salehpour, M.; Huttner, H.B.; Frisén, J.; Boström, E.; Westerlund, I.; Vial, C.; et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 2013, 153, 1219–1227. [Google Scholar] [CrossRef] [PubMed]
- Tobin, M.K.; Musaraca, K.; Disouky, A.; Shetti, A.; Bheri, A.; Honer, W.G.; Lazarov, O.; Kim, N.; Dawe, R.J.; Bennett, D.A.; et al. Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell 2019, 24, 974–982. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, S.; Ferrer, I.; Aronica, E.; Kovacs, G.G.; Verney, C.; Nardelli, J.; Adle-Biassette, H.; Khung, S.; Delezoide, A.-L.; Milenkovic, I.; et al. Hippocampal radial glial subtypes and their neurogenic potential in human fetuses and healthy and Alzheimer’s disease adults. Cereb. Cortex 2018, 28, 2458–2478. [Google Scholar] [CrossRef]
- Sorrells, S.F.; Paredes, M.F.; Cebrian-Silla, A.; Sandoval, K.; Qi, D.; Kelley, K.W.; Alvarez-Buylla, A.; James, D.; Mayer, S.; Chang, J.; et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 2018, 555, 377–381. [Google Scholar] [CrossRef]
- Duque, A.; Spector, R. A balanced evaluation of the evidence for adult neurogenesis in humans: Implication for neuropsychiatric disorders. Brain Struct. Funct. 2019, 224, 2281–2295. [Google Scholar] [CrossRef] [PubMed]
- Snyder, J.S. Recalibrating the relevance of adult neurogenesis. Trends Neurosci. 2019, 42, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Simard, S.; Matosin, N.; Mechawar, N. Adult Hippocampal Neurogenesis in the Human Brain: Updates, Challenges, and Perspectives. Neuroscientist 2024, 10738584241252581. [Google Scholar] [CrossRef] [PubMed]
- Cherednichenko, A.; Miró-Padilla, A.; Adrián-Ventura, J.; Monzonís-Carda, I.; Beltran-Valls, M.R.; Moliner-Urdiales, D.; Ávila, C. Physical activity and hippocampal volume in young adults. Brain Imaging Behav. 2024, 18, 1333–1342. [Google Scholar] [CrossRef]
- O’Keefe, J.; Nadel, L. The Hippocampus as a Cognitive Map; Oxford University Press: Oxford, UK, 1978. [Google Scholar]
- Keresztes, A.; Raffington, L.; Bender, A.R.; Bögl, K.; Heim, C.; Shing, Y.L. Longitudinal developmental trajectories do not follow cross-sectional age associations in hippocampal subfield and memory development. Dev. Cogn. Neurosci. 2022, 54, 101085. [Google Scholar] [CrossRef] [PubMed]
- O’Mara, S. The subiculum: What it does, what it might do, and what neuroanatomy has yet to tell us. J. Anat. 2005, 207, 271–282. [Google Scholar] [CrossRef] [PubMed]
- De Nys, L.; Anderson, K.; Ofosu, E.F.; Ryde, G.C.; Connelly, J.; Whittaker, A.C. The effects of physical activity on cortisol and sleep: A systematic review and meta-analysis. Psychoneuroendocrinology 2022, 143, 105843. [Google Scholar] [CrossRef]
- Goyal, M.; Singh, S.; Sibinga, E.M.; Gould, N.F.; Rowland-Seymour, A.; Sharma, R.; Haythornthwaite, J.A. Meditation programs for psychological stress and well-being: A systematic review and meta-analysis. JAMA Intern. Med. 2014, 174, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Loprinzi, P.D. The effects of physical exercise on parahippocampal function. Physiol. Int. 2019, 106, 114–127. [Google Scholar] [CrossRef]
- Bartsch, T.; Wulff, P. The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience 2015, 309, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Leuner, B.; Gould, E. Structural plasticity and hippocampal function. Annu. Rev. Psychol. 2010, 61, 111–140. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.K.; Wood, S.J.; Doyle, L.W.; Warfield, S.K.; Egan, G.F.; Inder, T.E. MR-determined hippocampal asymmetry in full-term and preterm neonates. Hippocampus 2009, 19, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Feter, N.; Penny, J.C.; Freitas, M.P.; Rombaldi, A.J. Effect of physical exercise on hippocampal volume in adults: Systematic review and meta-analysis. Sci. Sports 2018, 33, 327–338. [Google Scholar] [CrossRef]
- Firth, J.; Stubbs, B.; Vancampfort, D.; Schuch, F.; Lagopoulos, J.; Rosenbaum, S.; Ward, P.B. Effect of aerobic exercise on hippocampal volume in humans: A systematic review and meta-analysis. Neuroimage 2018, 166, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Maasakkers, C.M.; Weijs, R.W.; Dekkers, C.; Gardiner, P.A.; Ottens, R.; Rikkert, M.G.O.; Melis, R.J.; Thijssen, D.H.; Claassen, J.A. Sedentary behaviour and brain health in middle-aged and older adults: A systematic review. Neurosci. Biobehav. Rev. 2022, 140, 104802. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Segundo, V.H.; de Azevedo, K.P.M.; de Medeiros, G.C.B.S.; Mata, Á.N.S.; Piuvezam, G. Association between sedentary behavior and Brain-Derived Neurotrophic Factor (BDNF) in children and adolescents: A protocol for systematic review and meta-analysis. PLoS ONE 2024, 19, e0299024. [Google Scholar] [CrossRef]
- van der Sluys, M.E.; Marhe, R.; van der Laan, P.H.; Popma, A.; Scherder, E.J.A. Brief report: Free-living physical activity levels and cognitive control in multi-problem young adults. Front. Hum. Neurosci. 2022, 16, 994123. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.H. Environmental Affordance for Physical Activity, Neurosustainability, and Brain Health: Quantifying the Built Environment’s Ability to Sustain BDNF Release by Reaching Metabolic Equivalents (METs). Brain Sci. 2024, 14, 1133. [Google Scholar] [CrossRef]
- Barch, D.M.; Tillman, R.; Kelly, D.; Whalen, D.; Gilbert, K.; Luby, J.L. Hippocampal volume and depression among young children. Psychiatry Res. Neuroimaging 2019, 288, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Bremner, J.D.; Narayan, M.; Anderson, E.R.; Staib, L.H.; Miller, H.L.; Charney, D.S. Hippocampal volume reduction in major depression. Am. J. Psychiatry 2000, 157, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Videbech, P.; Ravnkilde, B. Hippocampal volume and depression: A meta-analysis of MRI studies. Am. J. Psychiatry 2004, 161, 1957–1966. [Google Scholar] [CrossRef]
- McCormick, B.P.; Brusilovskiy, E.; Snethen, G.; Klein, L.; Townley, G.; Salzer, M.S. Getting out of the house: The relationship of venturing into the community and neurocognition among adults with serious mental illness. Psychiatr. Rehabil. J. 2022, 45, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.H.; Steemers, K. Housing environmental enrichment, lifestyles and public health indicators of neurogenesis in humans: A pilot study. Int. J. Environ. Res. Public Health 2024, 21, 1553. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef]
- Farrugia, P.; Petrisor, B.A.; Farrokhyar, F.; Bhandari, M. Research questions, hypotheses and objectives. Can. J. Surg. 2010, 53, 278–281. [Google Scholar] [PubMed]
- De Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Higgins, J.P. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Sudimac, S.; Kühn, S. Can a nature walk change your brain? Investigating hippocampal brain plasticity after one hour in a forest. Environ. Res. 2024, 262, 119813. [Google Scholar] [CrossRef]
- Rodriguez-Ayllon, M.; Neumann, A.; Hofman, A.; Vernooij, M.W.; Neitzel, J. The bidirectional relationship between brain structure and physical activity: A longitudinal analysis in the UK Biobank. Neurobiol. Aging 2024, 138, 1–9. [Google Scholar] [CrossRef]
- Domingos, C.; Picó-Pérez, M.; Magalhães, R.; Moreira, M.; Sousa, N.; Pêgo, J.M.; Santos, N.C. Free-living physical activity measured with a wearable device is associated with larger hippocampus volume and greater functional connectivity in healthy older adults: An observational, cross-sectional study in northern portugal. Front. Aging Neurosci. 2021, 13, 729060. [Google Scholar] [CrossRef]
- Zabetian-Targhi, F.; Srikanth, V.K.; Beare, R.; Breslin, M.; Moran, C.; Wang, W.; Wu, F.; Smith, K.J.; Callisaya, M.L. The association between physical activity intensity, cognition, and brain structure in people with type 2 diabetes. J. Gerontol. Ser. A 2021, 76, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Sandroff, B.M.; Wylie, G.R.; Baird, J.F.; Jones, C.D.; Diggs, M.D.; Genova, H.; Bamman, M.M.; Cutter, G.R.; DeLuca, J.; Motl, R.W. Effects of walking exercise training on learning and memory and hippocampal neuroimaging outcomes in MS: A targeted, pilot randomized controlled trial. Contemp. Clin. Trials 2021, 110, 106563. [Google Scholar] [CrossRef]
- Bergman, F.; Matsson-Frost, T.; Jonasson, L.; Chorell, E.; Sörlin, A.; Wennberg, P.; Boraxbekk, C.J.; Öhberg, F.; Ryberg, M.; Levine, J.A.; et al. Walking time is associated with hippocampal volume in overweight and obese office workers. Front. Hum. Neurosci. 2020, 14, 307. [Google Scholar] [CrossRef] [PubMed]
- Siddarth, P.; Rahi, B.; Emerson, N.D.; Burggren, A.C.; Miller, K.J.; Bookheimer, S.; Merrill, D.A. Physical activity and hippocampal sub-region structure in older adults with memory complaints. J. Alzheimer’s Dis. 2018, 61, 1089–1096. [Google Scholar] [CrossRef]
- Best, J.R.; Rosano, C.; Aizenstein, H.J.; Tian, Q.; Boudreau, R.M.; Ayonayon, H.N.; Study, B.C.; Satterfield, S.; Simonsick, E.M.; Studenski, S.; et al. Long-term changes in time spent walking and subsequent cognitive and structural brain changes in older adults. Neurobiol. Aging 2017, 57, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Cerin, E.; Rainey-Smith, S.R.; Ames, D.; Lautenschlager, N.T.; Macaulay, S.L.; Fowler, C.; Ellis, K.; Robertson, J.S.; Rowe, C.C.; Maruff, P.; et al. Associations of neighborhood environment with brain imaging outcomes in the Australian Imaging, Biomarkers and Lifestyle cohort. Alzheimer’s Dement. 2017, 13, 388–398. [Google Scholar] [CrossRef]
- Varma, V.R.; Tang, X.; Carlson, M.C. Hippocampal sub-regional shape and physical activity in older adults. Hippocampus 2016, 26, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Varma, V.R.; Chuang, Y.F.; Harris, G.C.; Tan, E.J.; Carlson, M.C. Low-intensity daily walking activity is associated with hippocampal volume in older adults. Hippocampus 2015, 25, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Lövdén, M.; Schaefer, S.; Noack, H.; Bodammer, N.C.; Kühn, S.; Heinze, H.J.; Lindenberger, U.; Düzel, E.; Bäckman, L. Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiol. Aging 2012, 33, 620-e9. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.H. The BDNF-Interactive Model for Sustainable Hippocampal Neurogenesis in Humans: Synergistic Effects of Environmentally-Mediated Physical Activity, Cognitive Stimulation, and Mindfulness. Int. J. Mol. Sci. 2024, 25, 12924. [Google Scholar] [CrossRef]
- Khalil, M.H. Borderline in a linear city: Urban living brings borderline personality disorder into crisis through neuroplasticity—An urgent call to action. Front. Psychiatry 2025, 15, 1524531. [Google Scholar] [CrossRef]
- Bremner, J.D.; Hoffman, M.; Afzal, N.; Cheema, F.A.; Novik, O.; Ashraf, A.; Brummer, M.; Nazeer, A.; Goldberg, J.; Vaccarino, V. The environment contributes more than genetics to smaller hippocampal volume in Posttraumatic Stress Disorder (PTSD). J. Psychiatr. Res. 2021, 137, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Oyarce, D.A.E.; Shaw, M.E.; Alateeq, K.; Cherbuin, N. Volumetric brain differences in clinical depression in association with anxiety: A systematic review with meta-analysis. J. Psychiatry Neurosci. 2020, 45, 406–429. [Google Scholar] [CrossRef] [PubMed]
- Sato, J.; Hirano, Y.; Hirakawa, N.; Takahashi, J.; Oribe, N.; Kuga, H.; Onitsuka, T.; Nakamura, I.; Hirano, S.; Ueno, T.; et al. Lower hippocampal volume in patients with schizophrenia and bipolar disorder: A quantitative MRI study. J. Pers. Med. 2021, 11, 121. [Google Scholar] [CrossRef]
- Kandola, A.; Hendrikse, J.; Lucassen, P.J.; Yücel, M. Aerobic exercise as a tool to improve hippocampal plasticity and function in humans: Practical implications for mental health treatment. Front. Hum. Neurosci. 2016, 10, 373. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Suh, C.H.; Heo, H.; Shim, W.H.; Kim, S.J. Diagnostic performance of hippocampal volumetry in Alzheimer’s disease or mild cognitive impairment: A meta-analysis. Eur. Radiol. 2022, 32, 6979–6991. [Google Scholar] [CrossRef]
- Rao, G.; Gao, H.; Wang, X.; Zhang, J.; Ye, M.; Rao, L. MRI measurements of brain hippocampus volume in relation to mild cognitive impairment and Alzheimer disease: A systematic review and meta-analysis. Medicine 2023, 102, e34997. [Google Scholar] [CrossRef]
- Kress, G.T.; Popa, E.S.; Merrill, D.A.; Bramen, J.E.; Siddarth, P. The impact of physical exercise on hippocampal atrophy in mild cognitive impairment and Alzheimer’s disease: A meta-analysis. NeuroReport 2024, 35, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, Y.; Wang, K.; Zhang, T.; Luo, J. A study on the impact of acute exercise on cognitive function in Alzheimer’s disease or mild cognitive impairment patients: A narrative review. Geriatr. Nurs. 2024, 59, 215–222. [Google Scholar] [CrossRef]
- Cherbuin, N.; Sargent-Cox, K.; Fraser, M.; Sachdev, P.; Anstey, K.J. Being overweight is associated with hippocampal atrophy: The PATH Through Life Study. Int. J. Obes. 2015, 39, 1509–1514. [Google Scholar] [CrossRef] [PubMed]
- Machida, M.; Takamiya, T.; Amagasa, S.; Murayama, H.; Fujiwara, T.; Odagiri, Y.; Shobugawa, Y. Objectively measured intensity-specific physical activity and hippocampal volume among community-dwelling older adults. J. Epidemiol. 2022, 32, 489–495. [Google Scholar] [CrossRef]
- Shin, N.; Rodrigue, K.M.; Yuan, M.; Kennedy, K.M. Geospatial environmental complexity, spatial brain volume, and spatial behavior across the Alzheimer’s disease spectrum. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2024, 16, e12551. [Google Scholar] [CrossRef]
- Yuan, M.; Kennedy, K.M. Utility of environmental complexity as a predictor of alzheimer’s disease diagnosis: A big-data machine learning approach. J. Prev. Alzheimer’s Dis. 2023, 10, 223–235. [Google Scholar] [CrossRef]
- Khalil, M.H. Environmental enrichment: A systematic review on the effect of a changing spatial complexity on hippocampal neurogenesis and plasticity in rodents, with considerations for translation to urban and built environments for humans. Front. Neurosci. 2024, 18, 1368411. [Google Scholar] [CrossRef] [PubMed]
- Maguire, E.A.; Gadian, D.G.; Johnsrude, I.S.; Good, C.D.; Ashburner, J.; Frackowiak, R.S.; Frith, C.D. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. USA 2000, 97, 4398–4403. [Google Scholar] [CrossRef] [PubMed]
- Maguire, E.A.; Woollett, K.; Spiers, H.J. London taxi drivers and bus drivers: A structural MRI and neuropsychological analysis. Hippocampus 2006, 16, 1091–1101. [Google Scholar] [CrossRef]
- Patel, V.; Liu, M.; Worsham, C.M.; Jena, A.B. Alzheimer’s disease mortality among taxi and ambulance drivers: Population based cross sectional study. BMJ 2024, 387, e082194. [Google Scholar] [CrossRef]
- Banai, R. A methodology for The Image of the City. Environ. Plan. B Plan. Des. 1999, 26, 133–144. [Google Scholar] [CrossRef]
- Lynch, K. The image of the environment. Image City 1960, 11, 1–13. [Google Scholar]
- Boeing, G. OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 2017, 65, 126–139. [Google Scholar] [CrossRef]
- Herman, J.P.; Mueller, N.K. Role of the ventral subiculum in stress integration. Behav. Brain Res. 2006, 174, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Sudimac, S.; Sale, V.; Kühn, S. How nature nurtures: Amygdala activity decreases as the result of a one-hour walk in nature. Mol. Psychiatry 2022, 27, 4446–4452. [Google Scholar] [CrossRef] [PubMed]
- Salingaros, N.A. The biophilic healing index predicts effects of the built environment on our wellbeing. JBU—J. Biourbanism 2019, 8, 1. [Google Scholar]
- Huntsman, D.D.; Bulaj, G. Healthy dwelling: Design of biophilic interior environments fostering self-care practices for people living with migraines, chronic pain, and depression. Int. J. Environ. Res. Public Health 2022, 19, 2248. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Schröder, T.; Bekkering, J. Biophilic design in architecture and its contributions to health, well-being, and sustainability: A critical review. Front. Archit. Res. 2022, 11, 114–141. [Google Scholar] [CrossRef]
- Gray, J.A. Précis of The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Behav. Brain Sci. 1982, 5, 469–484. [Google Scholar] [CrossRef]
- Naber, P.A.; Witter, M.P.; Lopes da Silva, F.H. Networks of the Hippocampal Memory System of the Rat: The Pivotal Role of the Subiculum. Ann. N. Y. Acad. Sci. 2000, 911, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Sudimac, S.; Kühn, S. A one-hour walk in nature reduces amygdala activity in women, but not in men. Front. Psychol. 2022, 13, 931905. [Google Scholar] [CrossRef] [PubMed]
- Kühn, S.; Düzel, S.; Eibich, P.; Krekel, C.; Wüstemann, H.; Kolbe, J.; Lindenberger, U.; Martensson, J.; Goebel, J.; Gallinat, J.; et al. In search of features that constitute an “enriched environment” in humans: Associations between geographical properties and brain structure. Sci. Rep. 2017, 7, 11920. [Google Scholar] [CrossRef]
- Raslau, F.D.; Mark, I.T.; Klein, A.P.; Ulmer, J.L.; Mathews, V.; Mark, L.P. Memory part 2: The role of the medial temporal lobe. Am. J. Neuroradiol. 2015, 36, 846–849. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Z.; Du, Z.; Qi, X.; Shu, H.; Liu, D.; Zhang, Z.; Su, F.; Ye, Q.; Liu, X.; et al. Impaired Parahippocampal Gyrus–Orbitofrontal Cortex Circuit Associated with Visuospatial Memory Deficit as a Potential Biomarker and Interventional Approach for Alzheimer Disease. Neurosci. Bull. 2020, 36, 831–844. [Google Scholar] [CrossRef] [PubMed]
Author/s and Publication Year | Walking Factor | Sample | Relevant Aim/s and Measurements | Results | Author/s’ Remarks on Potential Effects |
---|---|---|---|---|---|
Sudimac and Kühn [46] | Environment (forest vs. urban) | 60 participants (27.31 ± 6.74 years old). | Explore the impact of a 1 h walk in nature (forest) versus an urban environment (street) on hippocampal formation. | Walking in nature increased the subiculum volume. | The observed effect could potentially be influenced by factors such as the higher oxygen levels or to specific natural variables (green color, odours, sounds, etc.). |
Rodriguez-Ayllon et al. [47] | Physical activity | 3027 participants (62.45 ± 7.27 years old). | Explore the bidirectional relationship between leisure-time physical activity (self-reported duration, frequency, and type of leisure activity) and brain structures (2-year gap). | Walking (2.45 ± 3.05 h per week) at baseline and (2.58 ± 3.25 h per week) at follow-up was not significantly associated with hippocampal volume. | Walking enrichment (e.g., green vs. urban spaces, different vs. same route, solitary vs. group walk) and walking speed. |
Domingos et al. [48] | Physical activity | 110 participants (68.42 ± 3.12 years old). | Explore the association between physical activity (objectively measured using the Xiaomi Mi Band 2® for 15 consecutive days) and brain function and structure. | Higher time spent in vigorous walking (≥120 steps/min) was associated with larger left parahippocampal gyrus and right hippocampus volumes. | There was a greater functional connectivity (FC) between the frontal gyrus, cingulate gyrus, and occipital inferior lobe for physical activity. Sedentary time had a relationship with lower FC in the exact networks. |
Zabetian-Targhi et al. [49] | Physical activity | 165 participants (68.3 ± 6.6 years old). | Determine the association between physical activity intensity and step count (using an accelerometer to quantify step count and physical activity intensity over 7 days) with brain structure. | Higher step count had a significant relationship with greater hippocampal volume (β = 0.028, 95% CI = 0.005, 0.051). | The association between each extra 500 daily steps and 0.028 mL of the hippocampal volume was consistent with the previous literature, adding that individuals with type 2 diabetes (T2D) with lower hippocampal volume needed an additional 15,000 steps per day. |
Sandroff et al. [50] | Physical activity | 11 participants in a pilot study (46.3 ± 11 years old). | Investigate the impact of treadmill walking, starting with 15–20 min at light-to-moderate intensity and gradually increasing to 40 min at vigorous intensity by the 12th week on the hippocampus. | A 12-week treadmill walking program (3 days per week) was linked to the maintenance of normalized hippocampal volume in people with multiple sclerosis (MS). | The intervention condition resulted in significant reductions in connectivity between the hippocampus and other regions of the DMN, representing a beneficial adaptation. |
Bergman et al. [51] | Physical activity | 80 participants (40–67 years old). | Examine the long-term impact on brain function following the installation of treadmill workstations in offices over a 13-month period using activPAL3 devices. | High walking time and light-intensity walking physical activity (201–2689 counts per minute) associated with hippocampal volume changes not mediated by changes in BDNF. | The impact on BDNF may vary depending on the intensity level of physical activity, warranting further investigation. |
Siddarth et al. [52] | Physical activity | 26 participants (72.7 ± 8.1 years old). | Examine the association between physical activity (for 7 days by accelerometers) with hippocampal and neighboring cortical sub-regions. | Higher activity (>4000 steps/day) associated with thicker parahippocampal cortex (median difference = 0.12 m, ES = 0.93, p = 0.04). | A higher step count was linked to improved performance in attention, information-processing speed, and executive functioning but not with memory recall. |
Best et al. [53] | Physical activity | 141 participants (70–79 years old). | Examine the effects of maintaining physical activity (self-reported walking time) over 13 years on brain structure. | A 1 SD increase in the walking slope score showed a 4.5% decrease in hippocampal volume compared to a 6.2% decrease on average. | Physical activity levels throughout ageing can be an effective contributor to neural and cognitive protection. |
Cerin et al. [54] | Physical activity | Integrated samples with a mean age of 75 years. | Assess neighborhood walkability (the International Physical Activity Questionnaire— Long Form (IPAQ-LF)) with brain volume. | Each increase in walkability (unit/1 km radius) was associated with a 0.038 to 0.043 cm3 increase in the right hippocampus. | The multifaceted aspects of physical activity accounted for the associations with the right hippocampus due to spatial information retention and location memory [2]. |
Varma et al. [55] | Physical activity | 132 participants (60 years and older). | Explore hippocampal sub-regional specificity of physical activity by measuring walking through an accelerometer. | Daily walking was linked to a larger subiculum surface area in women, even after controlling for self-reported exercise. | Physical activity below the threshold of moderate-intensity exercise may be linked to specific hippocampal subregions not commonly associated with exercise. |
Varma et al. [56] | Physical activity | 92 participants (67.3 ± 6.1 years old). | Examine whether higher levels of objectively measured daily walking activity, tracked using a step activity monitor, are associated with increased hippocampal volume. | Higher amounts, durations, and frequencies of daily walking each correlated with larger hippocampal volumes, with effect sizes of 0.2–1.4%, compared to annual atrophy rates of 0.8–2.0% in healthy elders. | Modest increases in low-intensity lifestyle activities may support memory and reduce dementia risk. |
Lövdén et al. [57] | Navigation (cognitively demanding walking) | 56 (20–30 years old), and 62 (60–70 years old). | Explore the effect of treadmill walking at a modest and not physically demanding pace with navigation training using VR compared to walking only. | Hippocampal barrier density increased after training and returned to baseline in the right hippocampus but declined in controls and the left hippocampus. | Low demands of the slow walking speed used in this study are unlikely to cause any major effects on physical fitness. Spatial demands help protect hippocampal integrity from age-related decline. |
Study | PEDro Scale Items | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total Score | |
Sudimac and Kühn [46] | Y | N | Y | N | N | N | Y | Y | Y | Y | 6 |
Sandroff et al. [50] | Y | N | Y | N | N | Y | Y | Y | Y | Y | 7 |
Bergman et al. [51] | Y | N | Y | N | N | N | Y | Y | Y | Y | 6 |
Lövdén et al. [57] | Y | N | Y | N | N | Y | Y | Y | Y | Y | 7 |
Study | ROBINS-I Tool | |||||||
---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | D5 | D6 | D7 | Overall | |
Rodriguez-Ayllon et al. [47] | + | ? | x | + | ? | + | + | x |
Domingos et al. [48] | + | ? | + | + | ? | + | + | ? |
Zabetian-Targhi et al. [49] | + | ? | + | + | ? | x | + | x |
Siddarth et al. [52] | + | ? | + | + | ? | + | + | ? |
Best et al. [53] | + | ? | x | + | ? | + | + | x |
Cerin et al. [54] | + | ? | ? | + | ? | + | + | ? |
Varma et al. [55] | + | ? | + | + | ? | + | + | ? |
Varma et al. [56] | + | ? | + | + | ? | + | + | ? |
Author/s and Publication Year | Participants’ Age in Years | Walking Parameters | Effective Parameter | Sig. | Hippocampal Formation Volume Change |
---|---|---|---|---|---|
Sudimac and Kühn [46] | 27.31 ± 6.74 | 1 h walk in two environments | Natural environment | p = 0.034 | Increased bilateral subiculum volume |
Rodriguez-Ayllon et al. [47] | 62.45 ± 7.27 | Mean 3.05 h/week walk for 2 years | - | p = 0.502 | - |
Domingos et al. [48] | 68.42 ± 3.12 | 15 days walking at various intensities | Vigorous (≥120 steps/min) | t = 3.42 and t = 4.43 | Larger left-parahippocampal gyrus and right-hippocampal volumes |
Zabetian-Targhi et al. [49] | 68.3 ± 6.6 | Step count and MVPA for 7 days | Increased step count | p = 0.019 | Greater hippocampal volume |
Sandroff et al. [50] | 46.3 ± 11 | From low to vigorous, 3 days/week, for 12 weeks | Increased intensity | p = 0.05 | Sustained hippocampal volume |
Bergman et al. [51] | 40–67 | Light-intensity walking for 13 months | Increased time of light walking (201–2689 activity count/min), not intense | p = 0.027 (changes in walking time) | Increased hippocampal volume |
Siddarth et al. [52] | 72.7 ± 8.1 | Step count tracked for 7 days | >4000 steps/day | p = 0.04 | Thicker parahippocampal cortex |
Best et al. [53] | 70–79 | Maintain walking for 13 years | Maintain walking time | p = 0.03 | Lower reduction in hippocampal volume |
Cerin et al. [54] | Mean = 75 | Neighborhood walkability | Increase in walkability/1 km home buffer | p < 0.05 | Increased right-hippocampal volume |
Varma et al. [55] | ≥60 | Tracked daily walking for 3–7 days | Low intensity (>0 steps/min and <100 steps/min) | p < 0.05 | Larger surface area of the subiculum |
Varma et al. [56] | 67.3 ± 6.1 | Tracked daily walking for 3–7 days | Greater amount, duration, and frequency | p < 0.01 | Larger hippocampal volume |
Lövdén et al. [57] | 20–30 and 60–70 | Low-intensity walking and navigation | Navigational training | p < 0.05 | Adaptive right-hippocampal volume |
Author/s and Publication Year | Walking Factor | Walking Measure | Walking Parameters (Duration, Intensity, Step Count, or Activity Count) |
---|---|---|---|
Sudimac and Kühn [46] | Environment | - | - |
Rodriguez-Ayllon et al. [47] | Physical activity | Time | Results (hour/week) = 2.58 ± 3.25 |
Domingos et al. [48] | Physical activity | Light, moderate, and vigorous intensities | Steps/min: -Sedentary = 0–19 -Light = 60–99 -Moderate = 100–119 -Vigorous = ≥120 Steps/day: -Light = 3180.82 ± 4651.32 -Moderate = 1883. 34 ± 1988.94 -Vigorous = 1263.68 ± 2311.07 min/day: -Light = 40.06 ± 57.54 -Moderate = 17.24 ± 18.32 -Vigorous = 9.31 ± 16.56 |
Zabetian-Targhi et al. [49] | Physical activity | Step count and moderate-to-vigorous intensity (combined) | Steps/day: 5755 ± 2548 min/day: 21.8 ± 21.7 (mostly moderate, whereas vigorous = 0.13 ± 0.6) |
Sandroff et al. [50] | Physical activity | Incremental intensity | min/day: -Light-to-moderate = 15–20 -Vigorous = 40 |
Bergman et al. [51] | Physical activity | Time and light and moderate-to-vigorous intensities | Activity count/min: -Light = 201–2689 -Moderate-to-vigorous = ≥2690 |
Siddarth et al. [52] | Physical activity | Step count | Steps/day: -Lower physical activity = ≤4000 -Higher physical activity = >4000 (5488–6942) |
Best et al. [53] | Physical activity | Time | - |
Cerin et al. [54] | Physical activity | Spatial walkability | - |
Varma et al. [55] | Physical activity | Low and moderate-to-vigorous intensities | Steps/min: -Low = >0 and <100 -Moderate-to-vigorous = ≥100 |
Varma et al. [56] | Physical activity | Low and moderate-to-vigorous intensities | Steps/min: -Low = >0 and <100 -Moderate-to-vigorous = ≥100 |
Lövdén et al. [57] | Navigation | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, M.H. Walking and Hippocampal Formation Volume Changes: A Systematic Review. Brain Sci. 2025, 15, 52. https://doi.org/10.3390/brainsci15010052
Khalil MH. Walking and Hippocampal Formation Volume Changes: A Systematic Review. Brain Sciences. 2025; 15(1):52. https://doi.org/10.3390/brainsci15010052
Chicago/Turabian StyleKhalil, Mohamed Hesham. 2025. "Walking and Hippocampal Formation Volume Changes: A Systematic Review" Brain Sciences 15, no. 1: 52. https://doi.org/10.3390/brainsci15010052
APA StyleKhalil, M. H. (2025). Walking and Hippocampal Formation Volume Changes: A Systematic Review. Brain Sciences, 15(1), 52. https://doi.org/10.3390/brainsci15010052