Dosimetric Effects of Air Cavities for MRI-Guided Online Adaptive Radiation Therapy (MRgART) of Prostate Bed after Radical Prostatectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dosimetric Impact of Artificial Air Cativities in Prostate Bed Patient Planning CT on a 0.35 T MRgRT System
2.2. Dosimetric Impact of Artificial Cavities Air Cavities in Prostate Bed Patient Daily MRI, with Electron Density Obtained from Deformable Registraion to Simulation CT, on a 0.35 T MRgRT System
2.3. Dosimetric Impact of Real Air Cavities in Prostate Bed Patient Daily MRI, with Electron Density Obtained from Deformable Registraion to Simulation CT, on a 0.35 T MRgRT System
2.4. Dosimetric Evaluation
3. Results
3.1. Dosimetric Impact of Artificial Air Cativities in Prostate Bed Patient Planning CT on a 0.35 T MRgRT System
3.2. Dosimetric Impact of Artificial Cavities Air Cavities in Prostate Bed Patient Daily MRI, with Electron Density Obtained from Deformable Registraion to Simulation CT, on a 0.35 T MRgRT System
3.3. Dosimetric Impact of Real Air Cavities in Prostate Bed Patient daily MRI, with Electron Density Obtained from Deformable Registraion to Simulation CT, on a 0.35 T MRgRT System
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
AP Plan | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Air Cavity Radius (cm) | CTV Max | CTV Mean | PTV Max | PTV Mean | Bladder Max | Bladder Mean | Rectum Max | Rectum Mean | Rectum Wall Max | Rectum Wall Mean |
0.5 | 2% | 0% | 2% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
1 | 2% | 0% | 2% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
1.5 | 0% | 0% | 0% | 0% | 0% | 0% | 5% | 0% | 0% | 0% |
2 | −1% | 0% | −1% | 0% | −1% | 0% | 10% | 0% | 3% | 0% |
2.5 | −1% | 0% | −1% | 0% | −1% | 0% | 17% | −1% | 10% | 0% |
3 | 0% | 0% | 0% | 0% | −1% | 0% | 20% | −1% | 13% | 0% |
AP–PA Plan | ||||||||||
0.5 | 0% | 0% | 0% | 0% | 1% | 0% | 0% | 0% | 0% | 0% |
1 | 1% | 0% | 2% | 0% | 1% | 0% | 2% | 0% | 0% | 0% |
1.5 | 1% | 0% | 1% | 0% | 2% | 1% | 7% | 0% | 0% | 0% |
2 | 4% | 0% | 4% | 0% | 3% | 1% | 11% | 0% | 2% | 0% |
2.5 | 4% | 1% | 5% | 0% | 4% | 1% | 15% | −1% | 8% | 0% |
3 | 4% | 1% | 6% | 1% | 4% | 2% | 17% | −1% | 13% | 0% |
Clinical IMRT Plan | ||||||||||
0.5 | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
1 | −1% | 0% | −1% | 0% | 0% | 0% | 1% | 0% | 1% | 0% |
1.5 | 0% | 0% | 0% | 0% | 1% | 0% | 1% | 1% | 1% | 0% |
2 | 0% | 0% | 0% | 0% | 1% | 0% | 1% | 1% | 1% | 0% |
2.5 | 1% | 0% | 1% | 0% | 1% | 0% | 1% | 0% | 1% | 1% |
3 | 1% | 0% | 1% | 0% | 1% | 0% | 1% | 0% | 0% | 1% |
Patient | PTV V32 (%) | Bladder Max (Gy) | Bladder V35.7 (cc) | Bladder V32.5 (%) | Rectum Wall V24 (%) | ||||||||||
DE | OV | Δ | DE | OV | Δ | DE | OV | Δ | DE | OV | Δ | DE | OV | Δ | |
Patient 1 Fraction A | 79.95 | 79.97 | 0.02 | 36.36 | 36.16 | −0.2 | 0.2 | 0.15 | −0.05 | 40.55 | 40.61 | 0.06 | 15.38 | 15.37 | −0.01 |
Patient 1 Fraction B | 87.42 | 86.74 | −0.68 | 35.48 | 35.23 | −0.25 | 0 | 0 | 0 | 13.57 | 14.09 | 0.52 | 25.53 | 24.58 | −0.95 |
Patient 2 Fraction A | 93.2 | 92.45 | −0.75 | 34.87 | 34.68 | −0.19 | 0 | 0 | 0 | 73.71 | 71.92 | −1.79 | 16.26 | 16.27 | 0.01 |
Patient 2 Fraction B | 94.34 | 94.2 | −0.14 | 35.92 | 36.04 | 0.12 | 0.01 | 0.02 | 0.01 | 48.99 | 48.79 | −0.2 | 18.1 | 18.1 | 0 |
Patient 3 Fraction A | 91.94 | 91.72 | −0.22 | 35.48 | 35.8 | 0.32 | 0 | 0.02 | 0.02 | 21.34 | 21.22 | −0.12 | 17.46 | 16.73 | −0.73 |
Patient 3 Fraction B | 92.15 | 91.68 | −0.47 | 35.48 | 35.53 | 0.05 | 0 | 0 | 0 | 21.15 | 21.1 | −0.05 | 17.52 | 17.14 | −0.38 |
Patient 4 Fraction A | 90.75 | 90.74 | −0.01 | 37.52 | 37.35 | −0.17 | 4.27 | 4.25 | −0.02 | 39.63 | 39.63 | 0 | 10.63 | 10.56 | −0.07 |
Patient 4 Fraction B | 94.73 | 94.7 | −0.03 | 36.34 | 36.84 | 0.5 | 0.5 | 0.9 | 0.4 | 24.44 | 24.41 | −0.03 | 21.22 | 21.56 | 0.34 |
Patient 5 Fraction A | 85.91 | 85.57 | −0.34 | 36.5 | 36.41 | −0.09 | 0.18 | 0.26 | 0.08 | 29.54 | 30.14 | 0.6 | 14.61 | 14.16 | −0.45 |
Patient 5 Fraction B | 87.06 | 87.01 | −0.05 | 36.23 | 36.06 | −0.17 | 0.03 | 0.02 | −0.01 | 31.84 | 33.76 | 1.92 | 12.63 | 12.41 | −0.22 |
Patient | Rectum Max (Gy) | Rectum V35.7 (cc) | Rectum V33.75 (%) | Rectum V32.5 (%) | Rectum V27.5 (%) | ||||||||||
DE | OV | Δ | DE | OV | Δ | DE | OV | Δ | DE | OV | Δ | DE | OV | Δ | |
Patient 1 Fraction A | 34.35 | 34.44 | 0.09 | 0 | 0 | 0 | 0.31 | 0.4 | 0.09 | 2.25 | 2.34 | 0.09 | 7.83 | 7.83 | 0 |
Patient 1 Fraction B | 34.85 | 34.92 | 0.07 | 0 | 0 | 0 | 0.66 | 0.61 | −0.05 | 5.85 | 3.64 | −2.21 | 15.5 | 12.03 | −3.47 |
Patient 2 Fraction A | 32.84 | 32.9 | 0.06 | 0 | 0 | 0 | 0 | 0 | 0 | 0.04 | 0.07 | 0.03 | 7.96 | 7.98 | 0.02 |
Patient 2 Fraction B | 33.13 | 33.12 | −0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0.31 | 0.37 | 0.06 | 8.54 | 8.47 | −0.07 |
Patient 3 Fraction A | 34.76 | 34.57 | −0.19 | 0 | 0 | 0 | 0.46 | 0.29 | −0.17 | 2.36 | 1.76 | −0.6 | 8.47 | 7.29 | −1.18 |
Patient 3 Fraction B | 34.76 | 34.65 | −0.11 | 0 | 0 | 0 | 0.46 | 0.28 | −0.18 | 2.36 | 1.75 | −0.61 | 8.45 | 7.35 | −1.1 |
Patient 4 Fraction A | 34.97 | 35.26 | 0.29 | 0 | 0 | 0 | 0.27 | 0.33 | 0.06 | 0.86 | 0.9 | 0.04 | 3.94 | 3.89 | −0.05 |
Patient 4 Fraction B | 35.78 | 36.24 | 0.46 | 0.01 | 0.04 | 0.03 | 3.67 | 2.42 | −1.25 | 5.91 | 5.19 | −0.72 | 12.02 | 11.87 | −0.15 |
Patient 5 Fraction A | 34.85 | 34.94 | 0.09 | 0 | 0 | 0 | 0.09 | 0.1 | 0.01 | 0.67 | 0.5 | −0.17 | 5.49 | 4.75 | −0.74 |
Patient 5 Fraction B | 35.09 | 33.62 | −1.47 | 0 | 0 | 0 | 0.24 | 0 | −0.24 | 0.68 | 0.13 | −0.55 | 5 | 4.52 | −0.48 |
References
- Bruynzeel, A.M.E.; Tetar, S.U.; Oei, S.S.; Senan, S.; Haasbeek, C.J.A.; Spoelstra, F.O.B.; Piet, A.H.M.; Meijnen, P.; Bakker van der Jagt, M.A.B.; Fraikin, T.; et al. A Prospective Single-Arm Phase 2 Study of Stereotactic Magnetic Resonance Guided Adaptive Radiation Therapy for Prostate Cancer: Early Toxicity Results. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Michalet, M.; Riou, O.; Valdenaire, S.; Debuire, P.; Ailleres, N.; Draghici, R.; Charissoux, M.; Moscardo, C.L.; Farcy-Jacquet, M.P.; Fenoglietto, P.; et al. Magnetic Resonance-Guided Reirradiation for Local Recurrence Within the Prostate or in the Prostate Bed: Preliminary Results of a Prospective Registry Study. Adv. Radiat. Oncol. 2021, 6, 100748. [Google Scholar] [CrossRef]
- Fischer-Valuck, B.W.; Henke, L.; Green, O.; Kashani, R.; Acharya, S.; Bradley, J.D.; Robinson, C.G.; Thomas, M.; Zoberi, I.; Thorstad, W.; et al. Two-and-a-half-year clinical experience with the world’s first magnetic resonance image guided radiation therapy system. Adv. Radiat. Oncol. 2017, 2, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, H.; Nishioka, S.; Iijima, K.; Nakamura, S.; Sakasai, T.; Miura, Y.; Takemori, M.; Nakayama, H.; Morishita, Y.; Shimizu, M.; et al. Monte Carlo modeling of a 60 Co MRI-guided radiotherapy system on Geant4 and experimental verification of dose calculation under a magnetic field of 0.35 T. J. Radiat. Res. 2019, 60, 116–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.M.; Shin, K.H.; Kim, J.-I.; Park, S.-Y.; Jeon, S.H.; Choi, N.; Kim, J.H.; Wu, H.G. Air—Electron stream interactions during magnetic resonance IGRT: Skin irradiation outside the treatment field during accelerated partial breast irradiation. Strahlenther. Onkol. 2018, 194, 50–59. [Google Scholar] [CrossRef]
- Cusumano, D.; Teodoli, S.; Greco, F.; Fidanzio, A.; Boldrini, L.; Massaccesi, M.; Cellini, F.; Valentini, V.; Azario, L.; De Spirito, M. Experimental evaluation of the impact of low tesla transverse magnetic field on dose distribution in presence of tissue interfaces. Phys. Med. 2018, 53, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, A.; O’Brien, D.; Stafford, R.; Sawakuchi, G.; Wen, Z.; Court, L.; Fuller, C.; Followill, D. Investigation of TLD and EBT3 performance under the presence of 1.5T, 0.35T, and 0T magnetic field strengths in MR/CT visible materials. Med. Phys. 2019, 46, 3217–3226. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, A.; Alvarez, P.; Lee, H.; Court, L.; Stafford, R.; Sawakuchi, G.; Wen, Z.; Fuller, C.; Followill, D. MRIgRT dynamic lung motion thorax anthropomorphic QA phantom: Design, development, reproducibility, and feasibility study. Med. Phys. 2019, 46, 5124–5133. [Google Scholar] [CrossRef]
- Steinmann, A.; Alvarez, P.; Lee, H.; Court, L.; Stafford, R.; Sawakuchi, G.; Wen, Z.; Fuller, C.D.; Followill, D. MRIgRT head and neck anthropomorphic QA phantom: Design, development, reproducibility, and feasibility study. Med. Phys. 2020, 47, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Pappas, E.; Kalaitzakis, G.; Boursianis, T.; Zoros, E.; Zourari, K.; Pappas, E.P.; Makris, D.; Seimenis, I.; Efstathopoulos, E.; Maris, T.G. Dosimetric performance of the Elekta Unity MR-linac system: 2D and 3D dosimetry in anthropomorphic inhomogeneous geometry. Phys. Med. Biol. 2019, 64, 225009. [Google Scholar] [CrossRef] [Green Version]
- Shortall, J.; Vasquez Osorio, E.; Aitkenhead, A.; Berresford, J.; Agnew, J.; Budgell, G.; Chuter, R.; McWilliam, A.; Kirkby, K.; Mackay, R.; et al. Experimental verification the electron return effect around spherical air cavities for the MR-Linac using Monte Carlo calculation. Med. Phys. 2020, 47, 2506–2515. [Google Scholar] [CrossRef] [PubMed]
- Bol, G.H.; Lagendijk, J.J.W.; Raaymakers, B.W. Compensating for the impact of non-stationary spherical air cavities on IMRT dose delivery in transverse magnetic fields. Phys. Med. Biol. 2015, 60, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Shortall, J.; Vasquez Osorio, E.; Chuter, R.; McWilliam, A.; Choudhury, A.; Kirkby, K.; Mackay, R.; van Herk, M. Assessing localized dosimetric effects due to unplanned gas cavities during pelvic MR-guided radiotherapy using Monte Carlo simulations. Med. Phys. 2019, 46, 5807–5815. [Google Scholar] [CrossRef] [PubMed]
- Shortall, J.; Vasquez Osorio, E.; Cree, A.; Song, Y.; Dubec, M.; Chuter, R.; Price, G.; McWilliam, A.; Kirkby, K.; Mackay, R.; et al. Inter- and intra-fractional stability of rectal gas in pelvic cancer patients during MRIgRT. Med. Phys. 2021, 48, 414–426. [Google Scholar] [CrossRef]
- Uilkema, S.; Van Der Heide, U.; Sonke, J.J.; Moreau, M.; Van Triest, B.; Nijkamp, J. A 1.5 T transverse magnetic field in radiotherapy of rectal cancer: Impact on the dose distribution. Med. Phys. 2015, 42, 7182–7189. [Google Scholar] [CrossRef]
- Godoy Scripes, P.; Subashi, E.; Burleson, S.; Liang, J.; Romesser, P.; Crane, C.; Mechalakos, J.; Hunt, M.; Tyagi, N. Impact of varying air cavity on planning dosimetry for rectum patients treated on a 1.5 T hybrid MR-linac system. J. Appl. Clin. Med. Phys. 2020, 21, 144–152. [Google Scholar] [CrossRef]
- Winkel, D.; Bol, G.H.; Kroon, P.S.; van Asselen, B.; Hackett, S.S.; Werensteijn-Honingh, A.M.; Intven, M.P.W.; Eppinga, W.S.C.; Tijssen, R.H.N.; Kerkmeijer, L.G.W.; et al. Adaptive radiotherapy: The Elekta Unity MR-linac concept. Clin. Transl. Radiat. Oncol. 2019, 18, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.H.; Zawisza, I.; O’Grady, K.; Peng, Q.; Tomé, W.A. Towards abdominal MRI-based treatment planning using population-based Hounsfield units for bulk density assignment. Phys. Med. Biol. 2018, 63, 155003. [Google Scholar] [CrossRef]
- Hoogcarspel, S.J.; Van der Velden, J.M.; Lagendijk, J.J.W.; van Vulpen, M.; Raaymakers, B.W. The feasibility of utilizing pseudo CT-data for online MRI based treatment plan adaptation for a stereotactic radiotherapy treatment of spinal bone metastases. Phys. Med. Biol. 2014, 59, 7383–7391. [Google Scholar] [CrossRef]
- Nicosia, L.; Sicignano, G.; Rigo, M.; Figlia, V.; Cuccia, F.; De Simone, A.; Giaj-Levra, N.; Mazzola, R.; Naccarato, S.; Ricchetti, F.; et al. Daily dosimetric variation between image-guided volumetric modulated arc radiotherapy and MR-guided daily adaptive radiotherapy for prostate cancer stereotactic body radiotherapy. Acta Oncol. 2021, 60, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wu, X.; Wang, Z.; Pei, X.; Xu, X.G. End-to-end unsupervised cycle-consistent fully convolutional network for 3D pelvic CT-MR deformable registration. J. Appl. Clin. Med. Phys. 2020, 21, 193–200. [Google Scholar] [CrossRef]
- Khan, A.U.; Simiele, E.A.; Lotey, R.; DeWerd, L.A.; Yadav, P. Development and evaluation of a GEANT4-based Monte Carlo Model of a 0.35 T MR-guided radiation therapy (MRgRT) linear accelerator. Med. Phys. 2021, 48, 1967–1982. [Google Scholar] [CrossRef]
Constraint | |
---|---|
PTV V32 | ≥95% |
Bladder Max | ≤35.7 Gy |
Bladder V35.7 | ≤0.03 cc |
Bladder V32.5 | ≤35% |
Rectum Wall V24 | ≤50% |
Rectum Max | ≤35.7 Gy |
Rectum V35.7 | ≤0.03 cc |
Rectum V33.75 | ≤25% |
Rectum V32.5 | ≤30% |
Rectum V27.5 | ≤45% |
Constraint | Change |
---|---|
PTV V32 | −0.27 ± 0.27% |
Bladder Max | −0.01 ± 0.24 Gy |
Bladder V35.7 | 0.04 ± 0.12 cc |
Bladder V32.5 | 0.09 ± 0.87% |
Rectum Wall V24 | −0.25 ± 0.37% |
Rectum Max | −0.07 ± 0.50 Gy |
Rectum V35.7 | 0.00 ± 0.01 cc |
Rectum V33.75 | −0.17 ± 0.37% |
Rectum V32.5 | −0.46 ± 0.66% |
Rectum V27.5 | −0.72 ± 1.01% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, J.; Cao, M.; Yoon, S.M.; Gao, Y.; Kishan, A.U.; Yang, Y. Dosimetric Effects of Air Cavities for MRI-Guided Online Adaptive Radiation Therapy (MRgART) of Prostate Bed after Radical Prostatectomy. J. Clin. Med. 2022, 11, 364. https://doi.org/10.3390/jcm11020364
Pham J, Cao M, Yoon SM, Gao Y, Kishan AU, Yang Y. Dosimetric Effects of Air Cavities for MRI-Guided Online Adaptive Radiation Therapy (MRgART) of Prostate Bed after Radical Prostatectomy. Journal of Clinical Medicine. 2022; 11(2):364. https://doi.org/10.3390/jcm11020364
Chicago/Turabian StylePham, Jonathan, Minsong Cao, Stephanie M. Yoon, Yu Gao, Amar U. Kishan, and Yingli Yang. 2022. "Dosimetric Effects of Air Cavities for MRI-Guided Online Adaptive Radiation Therapy (MRgART) of Prostate Bed after Radical Prostatectomy" Journal of Clinical Medicine 11, no. 2: 364. https://doi.org/10.3390/jcm11020364