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Abstract: Background: Generative Adversarial Networks (GANs) are a class of artificial neural
networks capable of generating content such as images, text, and sound. For several years already,
artificial intelligence algorithms have shown promise as tools in the medical field, particularly in
oncology. Generative Adversarial Networks (GANs) represent a new frontier of innovation, as they
are revolutionizing artificial content generation, opening opportunities in artificial intelligence and
deep learning. Purpose: This systematic review aims to investigate what the stage of development
of such technology is in the field of head and neck surgery, offering a general overview of the
applications of such algorithms, how they work, and the potential limitations to be overcome in
the future. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines were followed in conducting this study, and the PICOS framework was used
to formulate the research question. The following databases were evaluated: MEDLINE, Embase,
Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, ClinicalTrials.gov, ScienceDirect,
and CINAHL. Results: Out of 700 studies, only 9 were included. Eight applications of GANs in the
head and neck region were summarized, including the classification of craniosynostosis, recognition
of the presence of chronic sinusitis, diagnosis of radicular cysts in panoramic X-rays, segmentation
of craniomaxillofacial bones, reconstruction of bone defects, removal of metal artifacts from CT
scans, prediction of the postoperative face, and improvement of the resolution of panoramic X-rays.
Conclusions: Generative Adversarial Networks may represent a new evolutionary step in the study
of pathology, oncological and otherwise, making the approach to the disease much more precise
and personalized.

Keywords: generative adversarial network (GAN); artificial generating content; maxillofacial surgery;
otolaryngology surgery

1. Introduction
1.1. Background

For several years now, artificial intelligence (AI) algorithms have been a topic of strong
interest. Scientific studies in the literature are showing how these algorithms are excellent
and promising tools that can be applied in various fields, particularly in the medical
field. Artificial intelligence models are gaining more and more importance especially in
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oncology. Indeed, through the analysis of histologic, radiomic, genomic, and clinical–
epidemiological data, these algorithms are proving to be potential tools for the detection of
precancerous lesions, for diagnosis, for staging, for predicting response to treatment, and
for the prognostic evaluation of a tumor [1–5].

“Artificial intelligence”, “machine learning”, “deep learning”, and “artificial neural
network” are often used as synonyms, but they refer to different concepts. The widest
semantic area includes AI, which includes machine learning, and, on a further subdivision
level, there are other models, including deep learning and artificial neural networks. ML is
a field of artificial intelligence that focuses on learning through data input, and there are
four kinds of learning methods: reinforcement learning and supervised, semi-supervised,
and unsupervised learning. DL models are inspired by neural networks present in human
beings. They are artificial neural networks that allow multilevel computational models to
learn data representations with different and various levels of abstraction. In fact, there
is an analogy with the cell bodies of a neuron, i.e., the nodes of the neural network, and
axons, i.e., the connections that are generated between different nodes. An ANN, called a
feedforward neural network, consists of an input layer and an output layer, and in between
these are several hidden layers (which, in deep ANNs, can be dozens or hundreds in
number). Information passes from each node in one layer to the next, and during this step
the information is processed and transformed. As the input proceeds through an ANN, it
is transformed so that when it reaches the final layer, it is no longer the same as its initial
state. A particular type of ANN is the convolutional neural network (CNN), which sees
wide application in image processing [6–9]. Figure 1 graphically describes the hierarchical
organization of artificial intelligence networks.
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Figure 1. (A) Hierarchy between machine learning, deep learning, and artificial neural networks.
(B) The composition of an artificial neural network consisting of an input layer (in green), two hidden
layers (in blue), and an output layer (in orange) is shown. Each output within the ANN is used as
input for the next layer. These artificial intelligence models, to perform the task for which they are
trained, require a significant amount of data for the training set, particularly CNNs. In fact, there are
studies in the literature that report the size of the data sample analyzed as a limitation. For example,
the study conducted by Romeo et al. (2020) showed how the application of radiomic ML to primary
tumor lesions has great potential in predicting the lymph node status of patients with oral cavity and
oropharynx lesions, but they report how the small sample size is a problem. This is just one of many
promising studies in the literature that report a similar impediment in evaluating the effectiveness
and accuracy of such artificial intelligence models [10].
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To overcome the problem related to limited sample size, especially when studying rare
diseases for which clinical data are complex, researchers are investigating the capabilities of
Generative Adversarial Networks (GANs) as a tool to generate synthetic data, i.e., created
by the AI model, in order to use them to train deep learning algorithms [11].

1.2. Generative Adversarial Network (GAN)

Although GANs have become the subject of strong interest only in recent years, these
models were first introduced in 2014 by Ian J. Goodfellow et al. [12] during their doctoral
work at the University of Montréal.

Generative Adversarial Networks are a class of artificial neural network capable of
creating artificial content such as images. Precisely, they consist of two networks: the
generator and the discriminator (Figure 2). These have the task of competing with each
other. Specifically, the generator must learn the data distribution and generate artificial
data by receiving a random vector as input. The discriminator is trained to discriminate
the difference between true data and synthetic data. Specifically, the discriminator receives
synthetic and real data and calculates the probability that the generated data is real or false.
The value of this probability represents a feedback signal that is sent to the discriminator
itself and to the generator. This interactive process between the two networks (generator
and discriminator) results in continuous mutual improvement, resulting in images similar
to the real ones. The goal of a GAN is to generate synthetic images that are indistinguishable
from real ones [11,13].
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From 2014, when GANs were born, to the present, these artificial neural networks have
undergone continuous evolutions that have given birth to new and numerous architectures,
some specific to certain functions (Table 1) [13,14].
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Table 1. GAN functions found in the literature.

Classification Model that can correctly classify input data by only emitting labels. In
this model, the discriminator is a classification network.

Segmentation
It is used to classify voxels in order to identify objects using two GANs:
the first produces synthetic scans, while the second has a segmentation

network (using synthetic and real data) and a discriminator.

Reconstruction GANs trained to reconstruct incomplete objects through a process with
the purpose of acquiring the form and appearance of real objects.

Denoising GANs trained to rebuild the true appearance of the object by removal of
noise, artifacts, and causal data.

Image translation GAN capable of converting an input image into another artificial version
of that image, for example, transforming a CT scan into an MRI image.

General activities GAN capable of generating synthetic data without applying it in a
specific activity.

1.3. Objective of the Study

Already, several studies have shown how GANs are promising tools, especially to
overcome the problem of the scarcity of clinical data for given diseases. For example, the
study conducted by Loey et al. (2020) presented a GAN capable of generating synthetic
data for coronavirus detection in chest X-rays [15], or the study conducted by Fujioka et al.
(2020) reported the use of a GAN to create a computational model capable of detecting
abnormal lesions in breast ultrasound images [16].

These models can represent a useful tool for the work of doctors and healthcare
professionals. For example, the study conducted by Maniaci et al. (2024) [17] reported how
the use of ChatGPT can be a tool capable of providing support in the diagnostic process in
imaging for pathologies of the head and neck region. Furthermore, ChatGPT is proving to
be a potential means to strengthen the relationship between doctor and patient, helping the
latter to better understand their health status.

Considering that GANs have already been applied in different areas of medicine and
in different pathologies, oncological and otherwise, the aim of this study is to propose an
overview of what the applications of generative adversarial networks in pathologies affect-
ing the head and neck region are, to report the reasons why researchers have been studying
these particular artificial neural networks, to describe the types of GAN architectures used,
and to analyze the results obtained from the studies included in this paper. Given that this
is a technology that is gaining ground recently and considering that it is demonstrating
promising applications in the management and study of many pathologies, we believe that
it is interesting to investigate what the current applications and the possible prospects of
such artificial intelligence models are.

2. Materials and Methods

This study was performed according to the Preferred Reporting Items for Systematic
Review and Meta-Analyses (PRISMA) statement [18]. The PRISMA checklist is inserted
in the Supplementary Materials. This review was recorded in the PROSPERO database
(International Prospective Register of Systematic Review), and the ID number is 523954.
The research question of this systematic review was constructed according to the PICOS
framework (Table 2) and can be explained as follows: “Which are the applications of
Generative Adversarial Networks for pathologies affecting the head and neck region?”.
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Table 2. PICOS framework.

Participant Patients with diseases, oncological and otherwise, of the
head-neck region

Interventions Evaluation of the effects of the application of GANs
Comparators N/A

Outcomes AUC, sensibility, specificity

Study design Research articles, original articles, cohort studies, clinical trials,
randomized clinical trials

2.1. Literature Search

The query used is: ((GAN) OR (generative adversarial network)) AND ((maxillofacial
surgery) OR (otolaryngology surgery) OR (head neck surgery)). The MeSH query used
to improve and extend the search is the following: ((“Artificial Intelligence” [Mesh]) OR
“Neural Networks, Computer” [Mesh]) AND “Orthognathic Surgical Procedures” [Mesh].
Using keyword combinations, the literature search was conducted until 13 March 2024,
searching for studies included in the following databases: MEDLINE, Cochrane Central
Register of Controlled Trials (CENTRAL), ClinicalTrials.gov (accessed on 29 April 2024),
ScienceDirect, Embase, Scopus, CINAHL. The types of included articles are clinical trials,
randomized clinical trials, cohort studies, original articles, research articles, and also
reviews, systematic reviews, and meta-analysis since there are few papers in the literature
concerning this topic.

The articles found in the databases consulted were imported into EndNote21 (Clarivate,
Analytics, Philadelphia, PA, USA). All articles exported to EndNote21 were screened by
two separate investigators (L.M. and A.T.). The primary screening consists of evaluating
first the titles and then the abstracts of the included studies, as reported in the PRISMA
flowchart (Figure 3), and in case of doubt, a third investigator (M.R.) was included in the
evaluation.
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2.2. Data Collection

The data extracted from the studies included in this systematic review are study topic,
reasons that motivated the researchers to study the application of GANs, architecture of
GAN used, type of data used, parameters adopted to measure the functioning of the GANs,
and the results obtained from the individual studies included. The data were manually
exported by the two independent researchers (L.M and A.T.) and collected in a Microsoft
Excel 2019 spreadsheet. These data are displayed in Table 3 of Section 3.

2.3. Inclusion and Exclusion Criteria Applied in the Collected Studies

The two researchers independently (L.M. and A.T.) applied the inclusion and exclusion
criteria below on the collected articles through an initial evaluation on the title and abstract
and then through a thorough analysis of the full text of the articles.

Articles analyzing the application of GANs in any pathology, oncologic or otherwise, of
the head–neck region were considered. Articles dealing with GANs applied in pathologies
not of the head–neck region, articles without the abstract, and systematic reviews and
meta-analyses were excluded. Only studies conducted on the human species and published
in English were included. The articles considered in this study are all papers that have a
publication date between 2014 and 2024, and the types of studies included are clinical trials,
original articles, cohort studies, and research articles.

2.4. Bias Assessment

Five types of bias were assessed: bias arising from the randomization process, bias
due to deviations from the intended interventions, bias due to missing outcome data, bias
in outcome measurement, and bias in reported outcome selection (Figure 4). The Robvis
tool [19] was used to analyze the presence of these biases, and two investigators (L.M. and
A.T.) were involved, who worked independently.
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3. Results

PRISMA guidelines were followed in the search for scientific evidence to be included
in this study. Figure 3 shows the PRISMA flowchart that illustrates the entire process of
article selection. The total number of articles collected from the databases consulted and
exported to EndNote is 700. Of these, 11 were removed because they were dubbed. Of the
689 remaining, 415 were excluded by analyzing the titles of the studies (although some
collected studies did not have the word “GAN” in the title, the abstracts were carefully
analyzed before deciding whether or not to exclude these studies). Screening based on
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abstract analysis resulted in the elimination of 251 reports. Of the remaining 23 studies,
after careful and attentive analysis of the complete texts, 9 studies remained.

Through the use of the Robvis tool [19], the biases of the nine included studies were
analyzed. Figure 4 illustrates the results obtained from this assessment.

3.1. Topics

Eight different types of topics were covered in the studies included in this paper
(Figure 5): classification of craniosynostosis, chronic sinusitis, temporomandibular disor-
ders and malocclusion, reconstruction of bone defects, craniomaxillofacial (CMF) bone
segmentation, radicular cysts, correction of metal artifacts in CT scans, and improvement
of panoramic X-ray resolution.
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3.2. Reasons Why GANs Have Been Applied

One of the most common reasons for researchers to study and apply GANs is the
scarcity of clinical data. As repeated many times, artificial intelligence algorithms, especially
artificial neural networks, need a large amount of data to be trained in order to perform
the task for which they were created. The difficulty in finding clinical data is attributed to
multiple factors that make obtaining such data complex: the presence of a rare disease for
which little information and data are available; the need for experienced radiologists; the
use of scans and images with specific characteristics in terms of format and source; and
privacy issues.

In addition to obviating the problem of clinical data retrieval by generating synthetic
data identical to real data, GANs have also been applied for other reasons, including
the ability to overcome the limitations of current methods of reconstructing midfacial
bone defects, translation of a CT scan into an MRI image, removal of metal artifacts, and
improvement of the resolution of panoramic X-rays by exploiting the denoising function.
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3.3. GAN Architectures Used

In the included studies, we have reported several types of GAN architectures, includ-
ing cDC-WGAN-GP (Conditional Deep Convolutional Wasserstein GAN with Gradient
Penalty), AC-GAN (Auxiliary Classifier GAN), Cycle-GAN, DDA-GAN (Diverse Data
Augmentation Generative Adversarial Network), CD-GAN (Cyclic Discriminative GAN),
MAR-GAN (metal artifact reduction GAN), Pix2pix-GAN, and SR-GAN (Super-Resolution
GAN). Their functioning is briefly illustrated in Table 3.

Table 3. Functioning of the GAN architectures of the included studies.

cDC-WGAN-GP

It is a model that combines the Wasserstein GAN (WGAN) and the
Gradient Penalty (GP). The former can produce better quality samples,

the latter introduces a penalty on gradients preventing them from
vanishing or exploding further enhancing stability. In addition, being a

conditional model, it can generate specific images, resulting in an
advanced model for synthetic image generation.

AC-GAN [20]

It is an extension of conditional GAN (cGAN), which in turn is an
extension of the GAN architecture. The cGAN can predict the class label

of an image received as input. The AC-GAN has a discriminator that
predicts the class label of an image.

Cycle-GAN [21]
It is an image–image translation model without the need to have paired
examples. By image–image translation, we mean the creation of a new

artificial version of an image with specific modifications.

DDA-GAN [22]
It is a model that can segment bone structures and exploit synthetic data

generated from an annotated domain to improve the quality of
segmentation of images from an unannotated domain.

CD-GAN [23]

It is a model for image-to-image transformation, transforming an image
from one domain to another. It is based on a Cycle-GAN architecture, but
unlike the latter, it evaluates the quality of synthetic images by additional

cyclic discriminators, making them more realistic.
MAR-GAN GAN model capable of removing metal artifacts present in CT scans.

Pix2pix-GAN [24]

It is a model of cGAN (conditional generative adversarial network) used
for image-to-image translation. It features a generator that is based on

the U-Net architecture and a discriminator represented by a
PatchGAN classifier.

SR-GAN [25] It is a model used for super-resolution imaging. It has the function of
generating high-definition images from low-resolution images.

3.4. Type of Data Analyzed

The data that were used were exclusively imaging data. In terms of percentages, in
44.4% of the included studies panoramic X-rays were used, 55.5% used CT scans, and 11.1%
used MRI images.

Some studies are not limited in using only one type of imaging data. The study
conducted by Kong et al., 2022 [26] exploits both CT and paranasal RX scans, the study
conducted by Andlauer et al., 2021 [27] crosses both 2D images and postoperative 3D
simulated images obtained from processing CT scans, and the study conducted by Chen
et al. [28] analyzes both CT and MRI scans.

3.5. Parameters Adopted to Evaluate GANs

In the included studies, the parameters used to evaluate the results obtained are
F1 score, AUC (area under the curve), sensibility, specificity, PSNR (peak signal-to-noise
ratio), Euclidean distance, DSC (coefficient of symmetry), average symmetric superficial
distance, SSIM (structural similarity index measurements), MSE (mean square error), PPV
(positive predictive value), NPV (negative predictive value), and MOS (mean for expert
opinion score).
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3.6. Results Obtained for the Single Studies Included

In the study conducted by Schaufelberger et al., 2023 [29] a CNN (convolutional neural
network) was trained to classify the different types of craniosynostosis using only synthetic
data generated by different generative models, including GANs. The CNN was able to
grade four different types of deformity.

The study conducted by Kong et al., 2022 [26] also demonstrated how GANs are
an effective source of data that can be exploited to train artificial intelligence models to
perform the job for which they were created. Through a particular type of GAN, synthetic
data were generated to train a deep learning model created to diagnose the presence of
sinus pathology by studying panoramic RX images and CT scans. It was shown that the
deep learning model had better diagnostic performance when trained with original data
and synthetic data generated GAN data.

The study conducted by Mehandru et al., 2021 [30] also demonstrated how GANs can
generate useful data to train a CNN to recognize the presence of root cysts by studying
panoramic X-rays. Analyzing the ROC curve, the CNN trained without synthetic images
had lower accuracy than the CNN trained with synthetic images created by GANs (89.3%
vs. 95.1%, respectively). The study conducted by Andlauer et al., 2022 [27] used a Cycle-
GAN to predict the postoperative face of a patient with class II and III malocclusion to
undergo bimaxillary surgery. Using 2D images and a 3D simulation of the surgery, the
GAN was able to predict the outcome of the surgery. The Cycle-GAN was shown to predict
realistic chin and nose changes on selected examples.

The study conducted by Xiong et al., 2022 [31] used a GAN to reconstruct midfacial
bone defects. On the real and normal CT scans, spherical, cuboid, and semi-cylindrical
artificial defects were manually inserted in five structural regions to simulate the bone
defects. To train GANs, scans with corresponding artificially created defects were important.
By analyzing the cosine similarity, this was about 0.97 in the reconstruction of artificially
created defects and 0.96 in the reconstruction of unilateral clinical defects.

GANs also show promise for segmentation of craniomaxillofacial bones, as shown in
the study conducted by Chen et al., 2021. [28] The GAN architecture used in the study is
the DDA-GAN, which was compared to other segmentation tools, including PnP-AdaNet,
SIFA, and SynSeg-Net. The DDA-GAN outperformed SynSeg-Net by 2.68 in terms of Dice
symmetry coefficient (DCS) and 0.13 in terms of average surface symmetric distance (ASSD).

The study conducted by Xu et al., 2022 [32] applied a particular type of GAN, a
MAR-GAN, to eliminate metal artifacts present in CT scans. The MAR-GAN performed
better, demonstrating excellent abilities in restoring the original structures near metals and
removing metal artifacts.

The two included studies that applied GANs to improve the resolution of panoramic
X-rays, Kim et al., 2023 and Mohammad-Rahimi et al., 2023 [33,34] showed promising per-
formance. The first study used a Pix2Pix-GAN model, demonstrating good performance on
images with blurring in the anterior tooth region, while the second study used an SR-GAN
model, demonstrating in terms of MOS (mean opinion score) significant improvements in
resolution compared to the other tools used and compared.

Table 4 provides a comprehensive overview of papers selected for this systematic
review.
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Table 4. Data extracted by the included studies.

Topics Reason for Applying
GANs

Architecture GAN
Used Data Used Method Results

Schaufelberger
et al., 2023 [29]

Craniosynostosis
classification

Generation of synthetic
data to train a CNN to

classify craniosynostosis,
given the paucity of

clinical data

cDC-WGAN-GP

75% of the clinical data were
used to train GANs to

generate synthetic data on
which CNN was trained,
while the remaining 25%
was used for the test set

for CNN.

A CNN was trained with
purely synthetic data to

classify craniosynostosis. The
synthetic data were generated
from three different generative
models: GAN, SSM, and PCA.

Classification of craniosynostosis
with a synthetic data set has been

shown to have similar
performance to that of a classifier

trained on clinical data.

Kong et al.,
2022 [26]

Imaging data
generation for

paranasal pathology
(chronic sinusitis)

Synthetic data
generation to improve

the diagnostic
performance of a DL

model given the
presence of possible

problems in procuring
clinical data, including:
poor availability, need

for experienced
radiologists, and

privacy issues

AC-GAN

Patients diagnosed with
chronic sinusitis and

undergoing X-ray
examination were included.
Included only patients who
underwent both RX and CT

with time distance of less
than 14 days.

The 389 paranasal RXs of the
internal data set (212 images

with sinusitis and 177
normal) were divided: 80%
training set, 10% validation

set, 20% test set).

All conventional radiographs
were labeled as “sinusitis” or

“normal” by experienced
rhinologists by studying CT

scans.
One DL model, ChexNet, was

trained in several ways,
among them only with the

original training data and with
data obtained through GANs.

Of the various models analyzed in
this study, the GBC + OMGDA

model performed better in terms
of AUC, accuracy, sensitivity,

specificity, F1 score, PPV, and NPV.
It was shown that the DL model

had better diagnostic performance
when trained with original data

and synthetic data generated
GAN data.
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Table 4. Cont.

Topics Reason for Applying
GANs

Architecture GAN
Used Data Used Method Results

Andlauer et al.,
2021 [27]

Postoperative
prediction for

temporomandibular
disorders and
malocclusion

Predicting the
postoperative face using
preoperative 2D images

and 3D simulation of
postoperative soft tissue,

without the need for
difficult-to-acquire

preoperative 3D images,
for patients to undergo
bimaxillary surgery for

class II and class III
malocclusion

Cycle-GAN

Used preoperative 2D
images and a postoperative

3D simulation using
preoperative facial CT

images of four patients with
malocclusion

CT scans were used to
simulate bimaxillary surgery,

and bone and soft tissue
segmentations were applied

on being. These 3D
simulations, along with
preoperative 2D images,

were used to train the GAN.

Cycle-GAN was shown to predict
realistic chin and nose changes on
selected examples. The accuracy of
the predictions was evaluated by

the Euclidean distance of the facial
landmarks. Unfortunately, some

prediction errors were found
concerning the nose region, while
there appeared to be no errors for
the chin region. According to the

authors, this is probably due to the
need for more detailed plots for the
study of the nose that change based

on different head poses.
Nevertheless, it seems to be a
promising tool for predicting

postoperative outcome.

Xiong et al.,
2022 [31]

Reconstruction of
midfacial

bone defects

Training a GAN to
reconstruct midfacial

defects. There are
reconstruction methods

such as mirror
technology, but it cannot

be used for I midspan
and bilateral defects. In

addition, training the DL
model requires a large

amount of data, which is
not always achievable

with clinical data alone.

GAN

CT scans with different
defects: median and

unilateral were used in
this study

For GAN training, spherical,
cuboid and half-cylindrical

artificial defects were
manually inserted on the

real and normal CT scans in
5 structural regions to

simulate bone defects. To
evaluate the performance of
GAN, cosine similarity (an

indicator to assess the
similarity of two objects)

was calculated. The
reconstructed images were

compared with the real ones,
and the obtained effect of

the rebuilt area was
evaluated by surgeons.

To evaluate the performance of the
GAN used, cosine similarity was
assessed. The study obtained a

result of 0.97 in terms of
reconstruction of artificial defects

and 0.96 in terms of reconstruction
of unilateral defects.
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Table 4. Cont.

Topics Reason for Applying
GANs

Architecture GAN
Used Data Used Method Results

Chen et al.,
2021 [28]

Craniomaxillofacial
bone segmentation

Synthetic data
generation to train DL

model to segment
craniomaxillofacial CT

scan. The paucity of
available clinical data is

a problem for having
reliable segmentation

models. In addition, we
want to investigate

whether from CT scans
can be used to train

segmentation models
for MRI.

DDA-GAN Use 50 CT scans as a training
set and 50 MRI scans.

MRI-CT data were used to
train the GAN to perform
segmentations, and MRI

scans were used for
validation. The performance
of the GAN was evaluated

using DSC and ASSD,
compared with different

image segmentation
methods, including

PnP-AdaNet, SIFA, and
SynSeg-Net.

The GAN analyzed by the study
(DDA-GAN), outperforms

SynSeg-Net, a Cycle-GAN used to
train segmentation models. The

DDA-GAN was shown to be
superior because it avoids

geometric distortions and improves
segmentation performance.

Mehandru et al.
2021 [30]

Pathology detection
in panoramic RX

(root cysts)

Synthetic data
generation to train a

CNN to recognize root
cysts in panoramic

X-rays

CD-GAN

34 panoramic RXs of root
cysts and 34 normal ones

were divided into training
and test sets (75% and 25%
respectively). In addition to

these, synthetic images
generated by GAN

were added.

Two CNNs were compared
for the purpose of

recognizing root cysts from
panoramic X-rays: the first
uses non-GAN-generated

data, while the second also
takes advantage of synthetic

images. Both CNNs were
then evaluated in terms

of AUC.

The proposed model has
demonstrated better performance in

terms of area under the curve
(AUC), sensitivity, and specificity.
Comparing the receiver operating

characteristic (ROC) curves, the
performance of the convolutional

neural network (CNN) trained with
synthetic images was superior to

that of the CNN trained with
non-artificial images (95.1%

vs. 89.3%).

Xu et al., 2022
[32]

Reduction of metal
artifacts in oral

maxillofacial CT

Build a GAN-based
model to reduce artifacts

and improve
image quality

MAR-GAN

For this study, CT scans
were used on which metal

artifacts were artificially
simulated.

The parameters used to
evaluate the performance of
the studied GAN are RMSE

and SSIM.

The used GAN in this study has
high performance, demonstrainting

its ability to effictibely reduce the
metallic artifacts that were

artificially inserted.
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Table 4. Cont.

Topics Reason for Applying
GANs

Architecture GAN
Used Data Used Method Results

Kim et al., 2023
[33]

Image resolution
refinement of
panoramic RX

Create a GAN model
that can improve image

quality
Pix2Pix-GAN

In this study, panoramic
X-rays were used. From
these, images with poor

quality were obtained to test
the Pix2Pix-GAN’s ability to

improve image quality.

The quality of the generated
images was evaluated by
radiologist experienced in
maxillofacial pathology.

The proposed model performed
very well on images with blur in the
anterior tooth region, while it was
less effective in improving image

quality with blur and noise.

Mohammad-
Rahimi et al.,

2023 [34]

Image resolution
refinement of
panoramic RX

Compare different
DL-based super

resolution (SR) models to
improve the resolution

of panoramic RXs

SR-GAN 888 Dental panoramic X-rays

Five super-resolution
models were compared,

including SRCNN, SRGAN,
U-Net, Swinlr, and LTE. The
results were compared with
each other by conventional
bicubic interpolation. The
parameters of MSE, PNSR,

SSIM, and MOS were
evaluated.

The GAN included in this study
(SR-GAN) has demonstrated

significant performance in
improving the resolution of

panoramic X-rays in termins of
mean opinion score (MOS).

Legends: AC-GAN—auxiliary classifier; ASSD—average symmetric superficial distance; AUC—area under the curve; CD-GAN—Cyclic Discriminative GAN; cDC-WGAN-GP—
Wasserstein GAN and the Gradient Penalty; CNN—convolutional neural network; CT—computed tomography; DDA-GAN—Diverse Data Augmentation Generative Adversarial
Network); DSC—Dice’s coefficient of symmetry; DL—deep learning; GAN—Generative Adversarial Network; LTE—local texture estimator; MAR-GAN—metal artifact reduction
GAN; ML—machine learning; MOS—mean opinion score; MRI: magnetic resonance imaging; MSE: mean square error; NPV—negative predictive value; PCA—principal component
analysis; PPV—positive predictive value; PSNR—peak signal-to-noise ratio; ROC—receiver operating characteristic; RMSE—root mean square error; RX—X-rays; SR—super-resolution;
SRCNN—SR convolutional neural network; SSIM—structural similarity index measure; SSM—Statistical Shape Model; Swinlr—Swin for image restoration.
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4. Discussion

As announced earlier in the introduction, this systematic review aims to present
what the applications of GANs (Generative Adversarial Networks) in pathologies are,
oncological and otherwise, affecting the head and neck region. GANs are proving to be
very promising tools in the field of medicine and with multiple functions. One of the most
important functions is the generation of synthetic images. In fact, the creation of artificial
data is solving a problem that many studies have raised, namely the scarcity of clinical data
to be used to train deep learning models developed to perform the different functions for
which they were created. As we have also seen in this paper, to train a deep learning model
requires a significant amount of clinical data, and often this is not always possible, for
various reasons, including the need for experienced radiologists, issues related to patient
privacy, and use of data with particular properties that are often not always the same,
especially in multicenter studies that analyze data from multiple different centers using
different modalities to obtain CT or MRI scans.

In this paper, we have reported eight applications of GANs for pathologies affecting
the head and neck region: classification of craniosynostosis, recognition of the presence
of chronic sinusitis, diagnosis of radicular cysts in panoramic X-rays, segmentation of
craniomaxillofacial bones, reconstruction of bone defects, removal of metal artifacts from CT
scans, prediction of the postoperative face, and improvement of the resolution of panoramic
X-rays. In these areas, GANs have proven essential for their ability to generate large
amounts of synthetic data and more. In fact, depending on the type of architecture, GANs
can acquire multiple functions, including denoising, image translation, reconstruction,
segmentation, and classification.

Unfortunately, we did not find any studies dealing with GANs applied in the field of
head and neck cancers, although there are several papers in the literature analyzing the
application of GANs for functions that are certainly useful in oncology, such as gene expres-
sion analysis, segmentation, tumor detection, and diagnosis. There are several examples of
how GANs can be implemented in the study of cancer pathology. A recent study by Waters
et al., 2024 [11] investigated the use of GANs for augmented gene expression analysis and
demonstrated how this technology can reliably discover gene expression in a limited num-
ber of samples, proving to be extremely useful, especially for rare diseases for which little
clinical data are available. Also, in the field of oncology, the study conducted by Park et al.,
2021 [35] applied a GAN to generate synthetic images in order to observe morphological
changes in glioblastomas to improve the diagnostic performance of this pathology.

Since there are already several studies applying such technology in the oncological
setting, we invite future research to investigate what the potential of GANs might be in
head and neck cancer, particularly in oral cancer. Artificial intelligence applied to head-neck
cancer pathology has been a subject of strong interest for several years already. It has been
successful in demonstrating how machine learning and deep learning models are promising
tools in various areas of oncology, including diagnosis, segmentation, staging, and even
prognostic evaluation of cancer, as also shown by the systematic review conducted by
Michelutti et al., 2023 [36] and the study by Chinnery et al., 2021 [37].

Although GANs are proving to be innovative tools, some limitations may exist, as
the study conducted by Chen et al., 2021 [38] points out. Some of the problems concern
mode collapse, i.e., when the generator is no longer capable of producing a large amount of
artificial data; nonconvergence, i.e., when the generator produces more and more realistic
data and the discriminator is no longer able to follow this evolution as the latter’s feedback
becomes increasingly meaningless; diminished gradient, which is when the generator
cannot improve its performance as fast as the discriminator; overfitting, which is when the
amount of data is very limited; and imperfection, which is when no evaluation function
can mimic human judgment.

These tools are showing great promise, but one must also consider that these tools,
particularly ChatGPT, need to be evaluated and it is necessary to understand whether the
performance is reliable. In this regard, the study conducted by Lechien et al. (2024) [39]
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applied an instrument, the Artificial Intelligence Performance Instrument (AIPI), to eval-
uate the performance of ChatGPT in the management of ENT patients. Although it has
demonstrated good performance, which has also been validated by ENT surgeons, the
authors highlight the need for further future studies to investigate the usefulness of such
an instrument in medicine and surgery.

While we are aware that GANs applied in the medical field are an innovative and
recently popularized topic, we must reiterate the absence of articles related to the study
of this technology applied to head and neck oncology. We understand the reason why
there are few reports on this subject in the literature, and precisely because the study of
these artificial intelligence models is recent, we urge future research to conduct multicenter
studies and protocols to standardize the application of GANs. We urge the study of such
technology applied in the context of head and neck cancers. As mentioned above, many
studies applying deep learning models in radiomics unfortunately have small patient
samples and insufficiently large data sets. This technology could solve these limitations
encountered. It is essential to investigate the impact that GANs can have in radiomics and
in the study of CT and MRI scans of head and neck cancers so that we can have a useful
tool in the study of oncological pathology through artificial intelligence algorithms. We
believe that GANs can represent an important evolutionary step in the study of cancer,
succeeding in overcoming the obstacles presented by deep learning models and making
the transition to increasingly cutting-edge precision medicine faster and faster.

5. Conclusions

Generative Adversarial Networks (GANs) are artificial neural networks capable of
performing many functions, particularly the generation of synthetic data. These artificial
data are proving to be useful and essential for training deep learning algorithms, especially
when dealing with a rare disease for which little clinical data are available. With regard to
the application of GANs in the head and neck district, we found several areas where they
are proving to be useful and promising tools, including classification of craniosynostosis,
recognition of the presence of chronic sinusitis, diagnosis of radicular cysts in panoramic
X-rays, segmentation of craniomaxillofacial bones, reconstruction of bone defects, removal
of metal artifacts from CT scans, prediction of the postoperative face, and improvement
of the resolution of panoramic X-rays. Unfortunately, no articles were found dealing with
GAN applied in the specific study of head and neck cancer, although we believe that future
research will be able to fill this hole. In conclusion, we believe that Generative Adversarial
Networks may represent a new evolutionary step in the study of pathology, oncological
and otherwise, making the approach to the disease much more precise and personalized.
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