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Abstract: Background/Objectives: Myokines have been demonstrated to be associated with car-
diovascular diseases; however, they have not been studied as biomarkers for peripheral artery
disease (PAD). We identified interleukin-7 (IL-7) as a prognostic biomarker for PAD from a panel of
myokines and developed predictive models for 2-year major adverse limb events (MALEs) using
clinical features and plasma IL-7 levels. Methods: A prognostic study was conducted with a cohort
of 476 patients (312 with PAD and 164 without PAD) that were recruited prospectively. Their plasma
concentrations of five circulating myokines were measured at recruitment, and the patients were fol-
lowed for two years. The outcome of interest was two-year MALEs (composite of major amputation,
vascular intervention, or acute limb ischemia). Cox proportional hazards analysis was performed to
identify IL-7 as the only myokine that was associated with 2-year MALEs. The data were randomly
divided into training (70%) and test sets (30%). A random forest model was trained using clinical
characteristics (demographics, comorbidities, and medications) and plasma IL-7 levels with 10-fold
cross-validation. The primary model evaluation metric was the F1 score. The prognostic model was
used to classify patients into low vs. high risk of developing adverse limb events based on the Youden
Index. Freedom from MALEs over 2 years was compared between the risk-stratified groups using
Cox proportional hazards analysis. Results: Two-year MALEs occurred in 28 (9%) of patients with
PAD. IL-7 was the only myokine that was statistically significantly correlated with two-year MALE
(HR 1.56 [95% CI 1.12–1.88], p = 0.007). For the prognosis of 2-year MALEs, our model achieved an F1
score of 0.829 using plasma IL-7 levels in combination with clinical features. Patients classified as
high-risk by the predictive model were significantly more likely to develop MALEs over a 2-year
period (HR 1.66 [95% CI 1.22–1.98], p = 0.006). Conclusions: From a panel of myokines, IL-7 was
identified as a prognostic biomarker for PAD. Using a combination of clinical characteristics and
plasma IL-7 levels, we propose an accurate predictive model for 2-year MALEs in patients with PAD.
Our model may support PAD risk stratification, guiding clinical decisions on additional vascular
evaluation, specialist referrals, and medical/surgical management, thereby improving outcomes.

Keywords: myokines; interleukin-7; predictive model; prognosis; peripheral artery disease

1. Introduction

Peripheral artery disease (PAD) is characterized by atherosclerosis in the arteries of
the lower extremities, leading to reduced blood flow and limb ischemia [1]. This condition,
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affecting more than 200 million individuals worldwide, presents with symptoms such as
claudication, rest pain, and tissue damage [2]. Despite its strong correlation with limb
loss and mortality, PAD often receives inadequate treatment [3]. A potential approach to
addressing this issue involves the identification of biomarkers to aid in the prognosis of
PAD patients [4,5].

Myokines refer to cytokines and other peptides produced, expressed, and released
by muscle fibers, exerting autocrine, paracrine, or endocrine effects [6]. Given that PAD
is characterized by muscle ischemia, myokines may act as biomarkers for PAD develop-
ment and progression [6]. Our group has previously identified several biomarkers for
PAD, including fatty acid binding proteins [5,7–10], inflammatory proteins [11], and Cys-
tatin C [12]; however, the investigation of myokines as PAD biomarkers has been limited.
Myokines, including fibroblast growth factor-23 (FGF-23) [13], tumour necrosis factor-
related apoptosis-inducing ligand receptor 2 (TRAIL-R2) [14], interleukin-7 (IL-7) [15], and
monocyte chemoattractant protein-1 (MCP-1) [16], among others, have been implicated in
cardiovascular diseases. In fact, many myokines have been demonstrated to be associated
with cardiovascular diseases such as cerebrovascular disease (CVD), coronary artery disease
(CAD), and PAD [17–21]. The selection of these five specific myokines for analysis in this
study stems from their extensive investigation and robust association with cardiovascular
diseases, suggesting potential relevance to PAD [17–21]. While past research has indicated
correlations between these proteins and cardiovascular conditions, few studies have specif-
ically delved into their prognostic implications for PAD [17–21]. Given the multifactorial
nature of PAD and its chronic development involving diverse metabolic pathways, our
hypothesis posits that an integrated model consisting of clinical features and biomarker
data can enhance prognostic accuracy compared to the analysis of individual proteins or
clinical features alone [22]. Combining myokine biomarker data with demographic and
clinical characteristics associated with PAD outcomes holds potential for developing highly
accurate predictive algorithms for adverse limb events linked to PAD [23–25]. The objective
of this study is to identify PAD-specific prognostic biomarkers from a panel of myokines
and integrate clinical and myokine biomarker data to build prognostic models for PAD that
can guide clinical decision-making.

2. Materials and Methods
2.1. Ethics

This study received approval from the research ethics board at Unity Health Toronto,
the University of Toronto, Canada, on 8 February 2017 (REB # 16-365). Before participating,
all individuals provided informed consent, and all the procedures strictly followed the
principles outlined in the Declaration of Helsinki [26].

2.2. Design

This was a prognostic study, with the findings reported in alignment with the Trans-
parent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
+ Artificial Intelligence (TRIPOD+AI) statement [27]. Specifically, PAD-specific prognostic
biomarkers were identified from a pool of circulating myokines, and these biomarkers
were used in combination with relevant clinical features to develop a predictive model for
adverse limb events in patients with PAD.

2.3. Patient Recruitment

This study involved the prospective recruitment of patients, both with and without
PAD, who sought care at ambulatory clinics within our institution from September 2020 to
February 2022. PAD was identified by an Ankle–Brachial Index (ABI) of less than 0.9 or a
Toe–Brachial Index (TBI) of less than 0.67 and a hemodynamically significant stenosis > 50%
in a lower extremity artery on duplex ultrasound, coupled with absent or diminished pedal
pulses [28]. Conversely, non-PAD was defined by an ABI of 0.9 or higher, a TBI of 0.67 or
higher, the absence of a hemodynamically significant stenosis in the lower extremity arteries
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on duplex ultrasound, and normal pedal pulses [28]. The exclusion criteria encompassed
patients with elevated troponin levels, acute coronary syndrome, or acute limb ischemia
within the preceding three months.

2.4. Baseline Characteristics

The baseline characteristics documented in this study encompassed age, gender, hyper-
tension (diastolic blood pressure ≥ 80 mmHg, systolic blood pressure ≥ 130 mmHg, or re-
ceiving blood-pressure-lowering therapy [29,30]), dyslipidemia (triglyceride > 1.7 mmol/L,
total cholesterol > 5.2 mmol/L, or receiving lipid-lowering therapy [29,30]), diabetes
(hemoglobin A1c ≥ 6.5% or receiving an antidiabetic medication [29,30]), current or past
smoking status, the presence of congestive heart failure (CHF), coronary artery disease
(CAD), history of stroke, and the use of cardiovascular risk reduction medications, includ-
ing statins, acetylsalicylic acid (ASA), angiotensin-converting enzyme inhibitors (ACE-
Is) or angiotensin II receptor blockers (ARBs), calcium channel blockers, beta-blockers,
hydrochlorothiazide or furosemide, oral antihyperglycemic agents, and insulin. These
definitions for cardiovascular risk factors and medications were based on guidelines from
the American College of Cardiology [29,30].

2.5. Quantification of Plasma Myokine Levels

Blood samples were obtained from the patients, and their plasma concentrations of
5 circulating myokines were assessed in duplicate using the LUMINEX assay (Bio-Techne,
Minneapolis, MN, USA) [31]. The selection of the following proteins—FGF-23, TRAIL-R2,
IL-7, MCP-1, and leukemia inhibitory factor (LIF)—was based on their involvement in
various metabolic processes linked to atherosclerosis and their significant associations with
cardiovascular diseases. LIF was selected as a potential PAD biomarker because it has been
found to be implicated in cardiovascular diseases secondary to its role in promoting cardiac
hypertrophy [32], involvement in the pathophysiology of heart failure [33], and contribution
to neovascularization [34]. Given that these biological processes are highly relevant to
PAD development and progression, LIF was investigated as a potential PAD biomarker.
The analysis of multiple myokines seeks to identify new biomarkers for PAD. Before the
sample analysis, Fluidics Verification and Calibration bead kits from Luminex Corp [35]
were employed to calibrate the MagPix analyzer (Luminex Corp.; Austin, Texas) [36]. To
minimize inter-assay variability, all the sample analyses were conducted on the same day.
Both intra-assay and inter-assay coefficients of variability were maintained at <10%. At
least 50 beads for each myokine were acquired and analyzed using Luminex xPonent
software version 4.3 [37].

2.6. Follow-Up and Outcomes

Outpatient clinic visits were scheduled 1 year and 2 years post-baseline assessment.
The primary outcome of interest was the occurrence of major adverse limb events (MALEs)
over the 2-year period. MALEs were defined as the necessity for vascular intervention
(either open or endovascular lower extremity revascularization), major lower extremity
amputation above the ankle, or acute limb ischemia (sudden decrease in limb perfusion
[<14 days] caused by arterial thrombosis or embolism). The initial analysis revealed that all
adverse limb events occurred in patients diagnosed with PAD. Consequently, prognostic
models for predicting MALEs were developed exclusively for the PAD cohort.

2.7. Model Development and Evaluation

The selected predictive model for this study was the random forest, an ensemble
learning technique that operates by utilizing multiple decision trees [38]. Decision trees
partition populations into branch-like segments, and by leveraging various covariates, they
construct prediction algorithms for a target outcome [39]. Due to its non-parametric nature,
random forest can effectively handle large and intricate datasets [39]. This algorithm
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was chosen because of its widespread use in the literature and its demonstrated high
performance in predicting health outcomes [40–42].

The dataset was randomly divided into 70% training and 30% test sets. The random
forest algorithm underwent training using 10-fold cross-validation to predict both primary
and secondary outcomes. The input features included clinical characteristics (age, sex,
hypertension, dyslipidemia, diabetes, past/current smoking, CHF, CAD, previous stroke,
ASA, statins, ACE-Is or ARBs, beta-blockers, calcium channel blockers, hydrochlorothiazide
or furosemide, oral antihyperglycemic agents, and insulin) and plasma IL-7 levels. IL-7
was chosen as the myokine biomarker of interest as it was the only myokine that was
significantly associated with PAD-related adverse events. Once trained, the models were
evaluated on unseen test set data. The prognostic model was assessed only on patients
with PAD given that all the MALE outcomes presented in patients with PAD.

2.8. Statistical Analysis

The demographic and clinical characteristics of our cohort were summarized using
means and standard deviations (SDs) for continuous variables or numbers and proportions
for categorical variables. Baseline differences between groups were assessed using inde-
pendent t-tests for continuous variables and chi-square tests for categorical variables. The
myokine levels were compared between patients with and without PAD using independent
t-tests when the data were normally distributed or Mann–Whitney U tests when the data
were non-normally distributed. The event rates at 2 years were compared between PAD
and non-PAD patients using chi-square tests. Associations between individual myokines
and 2-year MALEs were determined using Cox proportional hazards analysis with adjust-
ment for age, sex, hypertension, dyslipidemia, diabetes, past/current smoking, CHF, CAD,
previous stroke, ASA, statins, ACE-Is or ARBs, beta blockers, calcium channel blockers,
hydrochlorothiazide or furosemide, oral antihyperglycemic agents, and insulin. Myokines
that were associated with 2-year MALEs were used to build the predictive model in com-
bination with clinical features. The predictive ability of the model was assessed for the
prognosis of 2-year MALEs in the PAD cohort. The primary metric utilized to assess the
model performance was the F1 score, which quantifies the harmonic mean of precision and
recall values in predicting adverse limb events based on ST2 levels [43]. The F1 score is
computed using the formula 2 × ([precision × recall]/[precision + recall]) [43]. It ranges
between 0 and 1, with 1 indicating the maximum precision and recall, while 0 indicates
no precision and/or recall [43]. Using the prognostic model, patients were stratified into
being at low or high risk of developing 2-year MALEs using the Youden Index, which opti-
mizes the performance (sensitivity and specificity) of the prediction model through receiver
operating characteristic curve analysis [44]. The analysis of freedom from MALEs over
2 years in low- vs. high-risk patients was conducted using Kaplan–Meier curves. These
curves were then compared utilizing Cox proportional hazards analysis, with adjustment
for the baseline characteristics (sex, age, hypertension, dyslipidemia, diabetes, past/current
smoking, CHF, CAD, previous stroke, ASA, statins, ACE-Is or ARBs, beta blockers, calcium
channel blockers, hydrochlorothiazide or furosemide, oral antihyperglycemic agents, and
insulin). The purpose of this stratified analysis is to understand the potential clinical
significance of the risk predictions made by the prognostic model. Specifically, it helps
clinicians understand how a low- vs. high-risk patient’s trajectory over a 2-year period
differs in terms of MALE risk. Significance was established at a two-tailed p-value < 0.05.
All the analyses were performed using SPSS software version 23 [45].

3. Results
3.1. Patients

Overall, 476 patients were enrolled in the study, with 312 diagnosed with PAD and
164 without PAD. The patients with PAD tended to be older (mean age 71 [SD 10] vs.
65 [SD 12] years, p < 0.001) and had a higher prevalence of dyslipidemia (84% vs. 61%,
p < 0.001), hypertension (82% vs. 59%, p < 0.001), CAD (38% vs. 21%, p < 0.001), diabetes
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(42% vs. 21%, p < 0.001), and a history of stroke (16% vs. 8%, p = 0.011). Additionally, they
were more likely to be past or current smokers (80% vs. 64%, p = 0.002). Furthermore, they
had a higher rate of taking risk reduction medications, including statins (73% vs. 57%,
p < 0.001), ASA (80% vs. 60%, p < 0.001), ACE-Is/ARBs (66% vs. 45%, p = 0.001), and beta
blockers (41% vs. 30%, p = 0.001) (Table 1).

Table 1. Baseline characteristics of individuals with and without peripheral artery disease.

Non-PAD
(n = 164)

PAD
(n = 312) p

Age, mean (SD) 65 (12) 71 (10) <0.001

Female sex 67 (41) 109 (35) 0.204

Hypertension 96 (59) 257 (82) <0.001

Dyslipidemia 100 (61) 263 (84) <0.001

Diabetes 34 (21) 131 (42) <0.001

Past smoking 71 (43) 171 (55) 0.001

Current smoking 35 (21) 78 (25) 0.002

Congestive heart failure 4 (2) 11 (4) 0.519

Coronary artery disease 34 (21) 118 (38) <0.001

Previous stroke 13 (8) 51 (16) 0.011

Acetylsalicylic acid 99 (60) 251 (80) <0.001

Statin 93 (57) 229 (73) <0.001

ACE-Is/ARBs 74 (45) 216 (66) 0.001

Beta blockers 50 (30) 134 (41) 0.001

Calcium channel blockers 34 (21) 82 (25) 0.079

Hydrochlorothiazide or furosemide 17 (10) 41 (13) 0.190

Oral antihyperglycemic agents 8 (5) 24 (8) 0.201

Insulin 6 (4) 22 (7) 0.255
Values are reported as numbers (%) unless stated otherwise. Abbreviations: SD (standard deviation), PAD (pe-
ripheral artery disease), ARB (angiotensin II receptor blocker), ACE-I (angiotensin-converting enzyme inhibitor).

3.2. Plasma Concentrations of Myokines

Of the five myokines tested, four were significantly elevated in patients with PAD
compared to those without PAD based on their median [IQR] plasma concentrations:
FGF-23 (15.33 [IQR 10.43–23.67] vs. 12.19 [IQR 9.41–17.39] pg/ml, p < 0.001), TRAIL-R2
(32.76 [IQR 24.37–45.84] vs. 25.65 [IQR 19.40–35.12] pg/ml, p < 0.001), IL-7 (3.78 [IQR
3.14–5.05] vs. 3.41 [IQR 2.88–4.21] pg/ml, p = 0.001), and MCP-1 (98.66 [IQR 69.15–124.90]
vs. 88.27 [IQR 67.44–115.88], p = 0.031) (Table 2). There were no statistically significant
differences in the plasma myokine concentrations between patients with and without CAD,
demonstrating the specificity of the myokine biomarkers for PAD (Table 3).

Table 2. Plasma concentrations of myokines in individuals with vs. without peripheral artery disease.

Non-PAD
(n = 164)

PAD
(n = 312) p

Median (25%, 75% IQR) Median (25%, 75% IQR)

FGF-23 12.19 (9.41, 17.39) 15.33 (10.43, 23.67) <0.001

TRAIL R2 25.65 (19.40, 35.12) 32.76 (24.37, 45.84) <0.001
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Table 2. Cont.

Non-PAD
(n = 164)

PAD
(n = 312) p

Median (25%, 75% IQR) Median (25%, 75% IQR)

IL-7 3.41 (2.88, 4.21) 3.78 (3.14, 5.05) 0.001

MCP-1 88.27 (67.44, 115.88) 98.66 (69.15, 124.90) 0.031

LIF 10.54 (7.19, 14.40) 10.89 (7.92, 14.58) 0.246
Protein concentrations reported in pg/mL. Abbreviations: fibroblast growth factor-23 (FGF-23), interleukin-7
(IL-7), tumour necrosis factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2), leukemia inhibitory factor
(LIF), monocyte chemoattractant protein-1 (MCP-1), PAD (peripheral artery disease), IQR (interquartile range).

Table 3. Plasma concentrations of myokines in individuals with vs. without coronary artery disease.

No CAD
(n = 324)

CAD
(n = 152) p

Median (25%, 75% IQR) Median (25%, 75% IQR)

FGF-23 13.54 (9.46, 20.58) 15.79 (10.42, 23.43) 0.958

TRAIL R2 28.19 (20.57, 40.15) 33.38 (24.94, 46.22) 0.440

IL-7 3.63 (2.88, 4.60) 3.69 (3.16, 4.66) 0.593

MCP-1 94.00 (67.18, 123.16) 97.34 (70.18, 123.03) 0.559

LIF 10.89 (7.92, 14.19) 11.21 (8.12, 14.88) 0.876
Protein concentrations reported in pg/mL. Abbreviations: fibroblast growth factor-23 (FGF-23), interleukin-7
(IL-7), tumour necrosis factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2), leukemia inhibitory factor
(LIF), monocyte chemoattractant protein-1 (MCP-1), CAD (coronary artery disease), IQR (interquartile range).

3.3. Adverse Limb Events

All adverse limb events occurred in PAD patients over a follow-up period of 2 years:
MALEs (n = 28, 9%), vascular intervention (n = 19, 6%), major amputation (n = 17, 5%), and
worsening PAD status (n = 56, 18%). No patients developed acute limb ischemia (Table 4).
When the proteins were analyzed individually, there were significant associations between
IL-7 and 2-year MALEs (HR 1.56 [95% CI 1.12–1.88], p = 0.007), major amputation (HR
1.02 [95% CI 1.01–1.88], p = 0.042), and vascular intervention (HR 1.10 [95% CI 1.05–2.98],
p = 0.019). There were no statistically significant associations between TRAIL-R2, MCP-1,
or FGF-23 and 2-year MALEs, vascular intervention, or major amputation. Therefore, IL-7
was chosen as the PAD-specific prognostic biomarker and used in further analyses (Table 5).
Although FGF-23 and TRAIL-R2 achieved lower p-values (< 0.001) in the PAD vs. non-PAD
comparison relative to IL-7 (p = 0.001), there was no statistically significant association
between FGF-23 and TRAIL-R2 and 2-year MALEs in the HR analysis (p values of 0.484
and 0.635, respectively), while there was a statistically significant association between IL-7
and 2-year MALEs (p = 0.007). Since the goal was to identify a prognostic biomarker that
could predict 2-year MALEs in patients with PAD, IL-7 was deemed to be a more suitable
candidate as a PAD prognostic biomarker given its strong association with 2-year MALEs
(HR 1.56 [95% CI 1.12–1.88]).

Table 4. Adverse events over 2 years in individuals with vs. without peripheral artery disease.

Non-PAD
(n = 164)

PAD
(n = 312) p

Major adverse limb event 0 (0) 28 (9) 0.001

Vascular intervention 0 (0) 19 (6) 0.001

Major amputation 0 (0) 17 (5) 0.002

Acute limb ischemia 0 (0) 0 (0) N/A
Values are documented as numbers (%) unless stated otherwise. PAD (peripheral artery disease).
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Table 5. Adjusted hazard ratios for associations between myokines and 2-year major adverse limb
events in individuals with peripheral artery disease.

Hazard Ratio [95% CI] p-Value

IL-7

MALEs 1.56 [1.12–1.88] 0.007

Vascular intervention 1.10 [1.05–2.98] 0.019

Major amputation 1.02 [1.01–1.88] 0.042

TRAIL-R2

MALEs 1.00 [0.87–1.33] 0.635

Vascular intervention 1.01 [0.99–1.43] 0.884

Major amputation 1.01 [0.98–4.32] 0.932

MCP-1

MALEs 1.04 [0.68–1.59] 0.277

Vascular intervention 1.11 [0.83–3.29] 0.550

Major amputation 1.00 [0.99–1.12] 0.980

FGF-23

MALEs 1.06 [0.99–1.22] 0.484

Vascular intervention 1.02 [0.91–1.31] 0.832

Major amputation 1.01 [0.90–3.22] 0.742
Adjusted for sex, age, dyslipidemia, hypertension, past/current smoking, diabetes, coronary artery disease,
congestive heart failure, previous stroke, statin, acetylsalicylic acid, angiotensin converting enzyme inhibitors or
angiotensin II receptor blockers, calcium channel blockers, beta blockers, hydrochlorothiazide or furosemide, oral
antihyperglycemic agents, and insulin. Hazard ratios were calculated for patients with PAD only, as all adverse
limb events presented in patients with PAD. Abbreviations: monocyte chemoattractant protein-1 (MCP-1), tumour
necrosis factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2), interleukin-7 (IL-7), fibroblast growth
factor-23 (FGF-23), MALE (major adverse limb event), and CI (confidence interval).

3.4. Model Performance

IL-7 was selected as the biomarker of interest to build the prognostic model because it
was the only myokine that demonstrated a statistically significant association with 2-year
MALEs with an HR of 1.56 [95% CI 1.12–1.88], p = 0.007. The purpose of correlating IL-7
with 2-year MALEs was to demonstrate the association of this biomarker with adverse
limb events in patients with PAD. The reason for using HRs to demonstrate the association
between IL-7 and 2-year MALEs was to control for confounding variables to assess the
independent relationship between IL-7 and 2-year MALEs. Using a combination of clinical
features and plasma IL-7 levels, the random forest model achieved an F1 score of 0.829 for
predicting 2-year MALEs, indicating excellent precision and recall. Calculation of Youden’s
Index demonstrated that the best cut-off threshold for the prediction of 2-year MALEs
using the model combining clinical features and plasma IL-7 levels was 0.60. This threshold
score was used to stratify our cohort into patients predicted to be at high vs. low risk of
adverse limb events. Over a 2-year period, patients predicted to be at high risk had a lower
freedom from MALEs compared to patients predicted to be at low risk (HR 1.66 [95% CI
1.22–1.98], p = 0.006) (Figure 1).
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Figure 1. Kaplan–Meier analysis of freedom from major adverse limb events in patients predicted to
be at low vs. high risk by random forest model. The threshold used to classify patients into low- vs.
high-risk was 0.60 based on the Youden Index, which optimizes model performance (sensitivity and
specificity) using receiver operating characteristic curve analysis. Cox proportional hazards analysis
adjusted for sex, age, dyslipidemia, hypertension, past/current smoking, diabetes, coronary artery
disease, congestive heart failure, previous stroke, statin, acetylsalicylic acid, angiotensin converting
enzyme inhibitors or angiotensin II receptor blockers, calcium channel blockers, beta blockers, calcium
channel blockers, hydrochlorothiazide or furosemide, oral antihyperglycemic agents, and insulin.
Abbreviations: HR (hazard ratio), CI (confidence interval).

4. Discussion
4.1. Summary of Findings

In this study, we identified IL-7 as a prognostic biomarker for PAD and developed a
robust model using a combination of clinical characteristics and plasma IL-7 levels that
accurately predicts PAD prognosis. Several key findings emerged from our analysis. First,
from the five circulating myokines analyzed, we found that IL-7 was the only myokine
that was significantly associated with PAD-related adverse limb events, including 2-year
MALEs, vascular intervention, and major amputation. Second, we developed a predictive
model using clinical features and plasma IL-7 levels that achieved excellent performance
for predicting 2-year MALEs in patients with PAD. Given the significance of IL-7 in PAD
prognosis, further basic science and translational research is warranted to elucidate the
biological relationships between these proteins and PAD development/progression, with
the goal of informing targeted therapeutics. Third, we used our prognostic model including
clinical features and plasma IL-7 levels to classify patients into being at low vs. high
risk of developing adverse events. Using Kaplan–Meier analysis, we demonstrated that
patients classified as high-risk by our model were more likely to develop MALEs over a
2-year period compared to low-risk patients. This demonstrates the clinical relevance of
our IL-7-based model in helping clinicians understand the future trajectory of their PAD
patients in terms of the risk of adverse limb events.
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4.2. Comparison to Existing Literature

Ross et al. (2019) developed a model to predict Major Adverse Cardiac and Cere-
brovascular Events (MACCE) in PAD patients using data extracted from electronic health
records [46]. In their study, the authors developed models based on retrospectively collected
information, including International Classification of Diseases (ICD)-9 codes, Common
Procedural Terminology (CPT) codes, prescriptions, and other clinical data [46]. However,
a limitation of their study was the lack of biomarker-based data as input features, despite
the demonstrated impact of such information on PAD prognosis, as evidenced by our study
and others [47–50]. Our study addressed this limitation by considering myokine biomarker
data (plasma IL-7 levels) as an input feature in our ML models. We achieved excellent per-
formance metrics for PAD prognosis, with an F1 score of 0.829 for predicting 2-year MALEs.
Therefore, we demonstrate the value of building ML models using biomarker information,
which can improve predictive performance compared to clinical characteristics alone.

4.3. Explanation of Findings

There are several potential explanations for our findings. IL-7 was found to be an
important predictor of PAD prognosis, as it may be involved in various mechanistic path-
ways important for cardiovascular disease development and progression [15]. IL-7 is a
25 kDa soluble globular protein produced by stromal cells in the bone marrow, thymus,
and other epithelial cells [51]. The IL-7 receptor is a heterodimeric complex consisting
of the α-chain CD127 and the common cytokine receptor γ-chain, shared with receptors
for several other interleukins [51]. Hence, IL-7 exerts multiple biological effects and im-
pacts various cell types by binding to its receptor [51]. Insufficiencies in IL-7 can result
in significantly compromised immune cell development [51]. Ultimately, IL-7 serves as a
crucial factor in the development and preservation of the immune system [51]. In relation
to cardiovascular diseases, IL-7 acts as a regulator of T cell homeostasis with involvement
in inflammatory processes and has been demonstrated to drive atherogenesis and pro-
mote plaque instability [15]. CD8 T cells that express the memory antigen CD95 have
demonstrated pro-atherogenic effects and are associated with cardiovascular disease de-
velopment in humans [48]. Yan et al. (2021) showed that IL-7 aggravates myocardial
ischemia–reperfusion injury by promoting cardiomyocyte apoptosis through its regulation
of macrophage infiltration and polarization [52]. Elsewhere, Mihailovic and colleagues
(2019) showed that IL-7 receptor blockade reduced post-myocardial infarction-induced
atherosclerotic plaque inflammation in murine models [53]. Taken together, these findings
explain the potential mechanisms by which IL-7 is involved in PAD development and
progression. Second, our study unveiled a noteworthy incidence of adverse limb-related
complications among patients with PAD, with nearly 10% of the cohort encountering
MALEs over the span of 2 years. These findings underscore the urgent need for proactive
strategies to mitigate complications in this high-risk population, emphasizing the devel-
opment of more effective prognostic tools. Third, our predictive model exhibited robust
performance for several reasons. Unlike conventional statistical methods like logistic regres-
sion, which assume linear correlations between independent variables and the logit of the
dependent variable, advanced modeling techniques are not bound by this assumption and
can adeptly capture complex non-linear relationships between inputs and outputs [54,55].
This adaptability is particularly advantageous in healthcare data, where patient outcomes
are influenced by numerous factors [56]. Given the benefits of machine learning, including
automation, the comprehension of non-linear relationships, and precise predictions, this
technology is poised to surpass traditional statistical methods in risk prediction [54,55].
This is especially pertinent in biomarker-based models, where various proteins partake in
distinct biological pathways and may interact in intricate ways to contribute to a disease
process [57]. In our study, the random forest model likely achieved excellent performance
due to its ensemble learning approach, which amalgamates numerous decision trees [58].
This approach not only reduces variance but also efficiently handles large datasets and
minimizes overfitting [58]. In summary, our findings emphasize the advantages of em-
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ploying a predictive model that integrates biomarkers, resulting in improved performance
compared to relying solely on clinical information. Considering that PAD is a chronic
and multifactorial condition involving diverse biological pathways, previous research has
emphasized the significance of an integrated approach to enhancing PAD prognoses [59].
Our study confirms that by utilizing advanced predictive modeling techniques to analyze
clinical data alongside circulating biomarkers, highly precise risk prediction tools for PAD
can be developed.

4.4. Implications

Our predictive model based on IL-7 presents practical implications for guiding clinical
decision-making across different scenarios. Initially, our tool can be employed to screen
asymptomatic PAD patients, especially beneficial in family practice settings. General prac-
titioners can incorporate the predictive model into their clinical evaluations by assessing
plasma IL-7 levels and noting routine clinical features to determine a patient's PAD risk us-
ing our automated algorithm [60]. Patients identified as at high risk of PAD-related adverse
events can then undergo further vascular assessment, such as arterial duplex ultrasound,
to evaluate blood flow and confirm the presence of PAD [61]. Patients classified as low-risk
can maintain their care under the supervision of their family physician. The focus of this
care can be on optimizing risk factors through management options such as statins, ASA,
and lifestyle changes [62]. On the contrary, patients identified as at high risk of MALEs
should be directed to a vascular surgeon for further evaluation and management [63]. Once
referred to a vascular surgeon, they can use the model in conjunction with clinical judgment
to identify individuals with a high risk of developing adverse limb events who may benefit
from (1) additional vascular imaging to delineate the anatomy and severity of disease [64],
(2) low-dose rivaroxaban [65], and/or (3) surgical limb salvage in patients at the highest
risk of adverse limb outcomes [66,67]. In summary, our automated IL-7 based tool has
the potential to improve care for PAD patients in both generalist and specialist settings.
It streamlines PAD screening, risk stratification, and early identification of individuals at
high risk of adverse limb events. Consequently, this may decrease unnecessary specialist
referrals, improve PAD outcomes, and concurrently reduce healthcare costs [68].

4.5. Limitations

Our study has a few limitations. First, it was conducted at a single center, necessitating
further validation at other institutions to confirm the generalizability of our model. Second,
the reported outcomes were based on a 2-year follow-up period, highlighting the need
for longer-term observation to fully comprehend the prognostic value of our algorithm,
especially given the chronic nature of PAD. Lastly, the measurement of plasma IL-7 levels
is primarily utilized in research settings, underscoring the requirement for additional
translational research and implementation science to demonstrate the clinical utility and
feasibility of incorporating IL-7 measurement into routine care for PAD patients.

5. Conclusions

In this study, we identified IL-7 as a prognostic biomarker for PAD prognosis and used
this circulating myokine in addition to clinical characteristics to develop a model that accu-
rately predicted 2-year MALEs in patients with PAD. Our IL-7 myokine biomarker-based
model holds promise for PAD risk stratification, offering improvements in the targeted
management of PAD. Specifically, high-risk patients identified by the model can be referred
for further vascular evaluation and may benefit from more aggressive medical interven-
tions. Furthermore, our findings highlight the necessity for basic and translational studies
delving into the mechanistic connections between IL-7 and the development/progression
of PAD, which may strengthen our understanding of the underlying pathogenesis and
inform targeted therapeutic strategies.
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