Association between Atherogenic Dyslipidemia and Subclinical Myocardial Injury in the General Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Electrocardiographic Subclinical Myocardial Injury
2.3. Atherogenic Dyslipidemia
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, E.S.; Giles, W.H.; Dietz, W.H. Prevalence of the metabolic syndrome among US adults: Findings from the third National Health and Nutrition Examination Survey. JAMA 2002, 287, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Merz, C.N.; Brewer, H.B., Jr.; Clark, L.T.; Hunninghake, D.B.; Pasternak, R.C.; Smith, S.C., Jr.; Stone, N.J. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004, 110, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Musani, S.K.; Sims, M.; Pearson, T.A.; DeBoer, M.D.; Gurka, M.J. Assessing the added predictive ability of a metabolic syndrome severity score in predicting incident cardiovascular disease and type 2 diabetes: The Atherosclerosis Risk in Communities Study and Jackson Heart Study. Diabetol. Metab. Syndr. 2018, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- McNeill, A.M.; Katz, R.; Girman, C.J.; Rosamond, W.D.; Wagenknecht, L.E.; Barzilay, J.I.; Tracy, R.P.; Savage, P.J.; Jackson, S.A. Metabolic syndrome and cardiovascular disease in older people: The cardiovascular health study. J. Am. Geriatr. Soc. 2006, 54, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Philip, S.; Granowitz, C.; Toth, P.P.; Wong, N.D. Prevalence of US Adults with Triglycerides ≥ 150 mg/dL: NHANES 2007–2014. Cardiol. Ther. 2020, 9, 207–213. [Google Scholar] [CrossRef]
- Lorenzatti, A.J.; Toth, P.P. New Perspectives on Atherogenic Dyslipidaemia and Cardiovascular Disease. Eur. Cardiol. Rev. 2020, 15, e04. [Google Scholar] [CrossRef]
- Valensi, P.; Avignon, A.; Sultan, A.; Chanu, B.; Nguyen, M.T.; Cosson, E. Atherogenic dyslipidemia and risk of silent coronary artery disease in asymptomatic patients with type 2 diabetes: A cross-sectional study. Cardiovasc. Diabetol. 2016, 15, 104. [Google Scholar] [CrossRef]
- Bale, B.F.; Doneen, A.L.; Leimgruber, P.P.; Vigerust, D.J. The critical issue linking lipids and inflammation: Clinical utility of stopping oxidative stress. Front. Cardiovasc. Med. 2022, 9, 1042729. [Google Scholar] [CrossRef]
- Khosravi, M.; Poursaleh, A.; Ghasempour, G.; Farhad, S.; Najafi, M. The effects of oxidative stress on the development of atherosclerosis. Biol. Chem. 2019, 400, 711–732. [Google Scholar] [CrossRef]
- Rautaharju, P.M.; Warren, J.W.; Jain, U.; Wolf, H.K.; Nielsen, C.L. Cardiac infarction injury score: An electrocardiographic coding scheme for ischemic heart disease. Circulation 1981, 64, 249–256. [Google Scholar] [CrossRef]
- O’Neal, W.T.; Shah, A.J.; Efird, J.T.; Rautaharju, P.M.; Soliman, E.Z. Subclinical myocardial injury identified by cardiac infarction/injury score and the risk of mortality in men and women free of cardiovascular disease. Am. J. Cardiol. 2014, 114, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Vasim, I.; Ahmad, M.I.; Mongraw-Chaffin, M.; Soliman, E.Z. Association of Obesity Phenotypes with Electrocardiographic Subclinical Myocardial Injury in the General Population. Clin. Cardiol. 2019, 42, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, M.; Xu, J.; Sha, D.; Xu, B.; Kang, L. Association Between Triglyceride and Glycose (TyG) Index and Subclinical Myocardial Injury. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 2072–2076. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. Plan and Operation of the Third National Health and Nutrition Examination Survey, 1988–1994. Series 1: Programs and collection procedures, No. 32. In Vital and Health Statistics; US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 1994. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Busquets-Cortés, C.; López, C.; Paublini, H.; Arroyo Bote, S.; López-González, Á.A.; Ramírez-Manent, J.I. Relationship between Atherogenic Dyslipidaemia and Lipid Triad with Different Scales of Overweight and Obesity in 418,343 Spanish Workers. J. Nutr. Metab. 2022, 2022, 9946255. [Google Scholar] [CrossRef]
- Guyton, J.R.; Slee, A.E.; Anderson, T.; Fleg, J.L.; Goldberg, R.B.; Kashyap, M.L.; Marcovina, S.M.; Nash, S.D.; O’Brien, K.D.; Weintraub, W.S.; et al. Relationship of lipoproteins to cardiovascular events: The AIM-HIGH Trial (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides and Impact on Global Health Outcomes). J. Am. Coll. Cardiol. 2013, 62, 1580–1584. [Google Scholar] [CrossRef]
- Athyros, V.G.; Tziomalos, K.; Karagiannis, A.; Mikhailidis, D.P. Dyslipidaemia of obesity, metabolic syndrome and type 2 diabetes mellitus: The case for residual risk reduction after statin treatment. Open Cardiovasc. Med. J. 2011, 5, 24–34. [Google Scholar] [CrossRef]
- Banegas, J.R.; Lopez-Garcia, E.; Dallongeville, J.; Guallar, E.; Halcox, J.P.; Borghi, C.; Massó-González, E.L.; Jiménez, F.J.; Perk, J.; Steg, P.G.; et al. Achievement of treatment goals for primary prevention of cardiovascular disease in clinical practice across Europe: The EURIKA study. Eur. Heart J. 2011, 32, 2143–2152. [Google Scholar] [CrossRef]
- Pappan, N.; Awosika, A.O.; Rehman, A. Dyslipidemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Manjunath, C.N.; Rawal, J.R.; Irani, P.M.; Madhu, K. Atherogenic dyslipidemia. Indian J. Endocrinol. Metab. 2013, 17, 969–976. [Google Scholar]
- Paublini, H.; López González, A.A.; Busquets-Cortés, C.; Tomas-Gil, P.; Riutord-Sbert, P.; Ramírez-Manent, J.I. Relationship between Atherogenic Dyslipidaemia and Lipid Triad and Scales That Assess Insulin Resistance. Nutrients 2023, 15, 2105. [Google Scholar] [CrossRef]
- Musunuru, K. Atherogenic dyslipidemia: Cardiovascular risk and dietary intervention. Lipids 2010, 45, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Costacou, T.; Miller, R.G.; Bornfeldt, K.E.; Heinecke, J.W.; Orchard, T.J.; Vaisar, T. Sex differences in the associations of HDL particle concentration and cholesterol efflux capacity with incident coronary artery disease in type 1 diabetes: The RETRO HDLc cohort study. J. Clin. Lipidol. 2024, 18, e218–e229. [Google Scholar] [CrossRef]
- Lawler, P.R.; Akinkuolie, A.O.; Chu, A.Y.; Shah, S.H.; Kraus, W.E.; Craig, D.; Padmanabhan, L.; Glynn, R.J.; Ridker, P.M.; Chasman, D.I.; et al. Atherogenic Lipoprotein Determinants of Cardiovascular Disease and Residual Risk Among Individuals with Low Low-Density Lipoprotein Cholesterol. J. Am. Heart Assoc. 2017, 6, e005549. [Google Scholar] [CrossRef] [PubMed]
- Krauss, M. Small dense low-density lipoprotein particles: Clinically relevant? Curr. Opin. Lipidol. 2022, 33, 160–166. [Google Scholar] [CrossRef]
- Rizzo, M.; Berneis, K. Low-density lipoprotein size and cardiovascular risk assessment. QJM 2006, 99, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Berneis, K.; Krauss, M. Metabolic origin and clinical significance of LDL heterogeneity. Lipid Res. 2002, 43, 1363–1379. [Google Scholar] [CrossRef]
- Rasheed, A.; Cummins, L. Beyond the Foam Cell: The Role of LXRs in Preventing Atherogenesis. Int. J. Mol. Sci. 2018, 19, 2307. [Google Scholar] [CrossRef]
- Rizzo, M.; Kotur-Stevuljevic, J.; Berneis, K.; Spinas, G.; Rini, G.B.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V.; Vekic, J. Atherogenic dyslipidemia and oxidative stress: A new look. Transl. Res. 2009, 153, 217–223. [Google Scholar] [CrossRef]
- Abais, J.M.; Xia, M.; Zhang, Y.; Boini, K.M.; Li, P.L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid. Redox Signal. 2015, 22, 1111–1129. [Google Scholar] [CrossRef]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef]
- Peterson, S.J.; Shapiro, J.I.; Thompson, E.; Singh, S.; Liu, L.; Weingarten, J.A.; O’Hanlon, K.; Bialczak, A.; Bhesania, S.R.; Abraham, N.G. Oxidized HDL, Adipokines, and Endothelial Dysfunction: A Potential Biomarker Profile for Cardiovascular Risk in Women with Obesity. Obesity 2019, 27, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Janac, M.; Zeljkovic, A.; Jelic-Ivanovic, D.; Dimitrijevic-Sreckovic, S.; Vekic, J.; Miljkovic, M.; Stefanovic, A.; Kotur-Stevuljevic, J.M.; Ivanisevic, J.M.; Spasojevic-Kalimanovska, V.V. Increased Oxidized High-Density Lipoprotein/High-Density Lipoprotein-Cholesterol Ratio as a Potential Indicator of Disturbed Metabolic Health in Overweight and Obese Individuals. Lab. Med. 2020, 51, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Bobik, A. Apolipoprotein CIII and atherosclerosis: Beyond effects on lipid metabolism. Circulation 2008, 118, 702–704. [Google Scholar] [CrossRef] [PubMed]
- Grandl, G.; Wolfrum, C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin. Immunopathol. 2018, 40, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Welty, F.K.; Alfaddagh, A.; Elajami, T.K. Targeting inflammation in metabolic syndrome. Transl. Res. 2016, 167, 257–280. [Google Scholar] [CrossRef]
- Jin, Y.; Fu, J. Novel Insights into the NLRP 3 Inflammasome in Atherosclerosis. J. Am. Heart Assoc. 2019, 8, e012219. [Google Scholar] [CrossRef]
- Vekic, J.; Stromsnes, K.; Mazzalai, S.; Zeljkovic, A.; Rizzo, M.; Gambini, J. Oxidative Stress, Atherogenic Dyslipidemia, and Cardiovascular Risk. Biomedicines 2023, 11, 2897. [Google Scholar] [CrossRef]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature 2011, 473, 317–325. [Google Scholar] [CrossRef]
- Man, A.W.C.; Li, H.; Xia, N. Impact of Lifestyles (Diet and Exercise) on Vascular Health: Oxidative Stress and Endothelial Function. Oxid. Med. Cell. Longev. 2020, 2020, 1496462. [Google Scholar] [CrossRef]
- Henein, M.Y.; Vancheri, S.; Longo, G.; Vancheri, F. The Role of Inflammation in Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 12906. [Google Scholar] [CrossRef]
- Badi, I.; Mancinelli, L.; Polizzotto, A.; Ferri, D.; Zeni, F.; Burba, I.; Milano, G.; Brambilla, F.; Saccu, C.; Bianchi, M.E.; et al. miR-34a Promotes Vascular Smooth Muscle Cell Calcification by Downregulating SIRT1 (Sirtuin 1) and Axl (AXL Receptor Tyrosine Kinase). Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2079–2090. [Google Scholar] [CrossRef] [PubMed]
- Raucci, A.; Macrì, F.; Castiglione, S.; Badi, I.; Vinci, M.C.; Zuccolo, E. MicroRNA-34a: The bad guy in age-related vascular diseases. Cell. Mol. Life Sci. 2021, 78, 7355–7378. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, P.; Kohli, P.; Baber, U.; Nguyen, K.H.; Sartori, S.; Reilly, D.F.; Mehran, R.; Muntendam, P.; Fuster, V.; Rader, D.J.; et al. Association of APOC3 Loss-of-Function Mutations with Plasma Lipids and Subclinical Atherosclerosis: The Multi-Ethnic BioImage Study. J. Am. Coll. Cardiol. 2015, 66, 2053–2055. [Google Scholar] [CrossRef] [PubMed]
- TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute; Crosby, J.; Peloso, G.M.; Auer, P.L.; Crosslin, D.R.; Stitziel, N.O.; Lange, L.A.; Lu, Y.; Tang, Z.-Z.; Zhang, H.; et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N. Engl. J. Med. 2014, 371, 22–31. [Google Scholar]
- Zhan, J.; Qin, S.; Lu, L.; Hu, X.; Zhou, J.; Sun, Y.; Yang, J.; Liu, Y.; Wang, Z.; Tan, N.; et al. miR-34a is a common link in both HIV- and antiretroviral therapy-induced vascular aging. Aging 2016, 8, 3298–3310. [Google Scholar] [CrossRef]
- Gao, W.; He, H.W.; Wang, Z.M.; Zhao, H.; Lian, X.Q.; Wang, Y.S.; Zhu, J.; Yan, J.J.; Zhang, D.G.; Yang, Z.J.; et al. Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids Health Dis. 2012, 11, 55. [Google Scholar] [CrossRef]
- Ono, K. Functions of microRNA-33a/b and microRNA therapeutics. J. Cardiol. 2016, 67, 28–33. [Google Scholar] [CrossRef]
- Saydam, C.D. Subclinical cardiovascular disease and utility of coronary artery calcium score. Int. J. Cardiol. Heart Vasc. 2023, 46, 101208. [Google Scholar] [CrossRef]
- Cho, I.; Suh, J.W.; Chang, H.J.; Kim, K.I.; Jeon, E.J.; Choi, S.I.; Cho, Y.S.; Youn, T.J.; Chae, I.H.; Kim, C.H.; et al. Prevalence and prognostic implication of non-calcified plaque in asymptomatic population with coronary artery calcium score of zero. Korean Circ. J. 2013, 43, 154–160. [Google Scholar] [CrossRef]
- Quispe, R.; Martin, S.S.; Michos, E.D.; Lamba, I.; Blumenthal, R.S.; Saeed, A.; Lima, J.; Puri, R.; Nomura, S.; Tsai, M.; et al. Remnant cholesterol predicts cardiovascular disease beyond LDL and ApoB: A primary prevention study. Eur. Heart J. 2021, 42, 4324–4332. [Google Scholar] [CrossRef]
- Varbo, A.; Benn, M.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 2013, 128, 1298–1309. [Google Scholar] [CrossRef]
- von Eckardstein, A. High Density Lipoproteins: Is There a Comeback as a Therapeutic Target? Handb. Exp. Pharmacol. 2022, 270, 157–200. [Google Scholar] [PubMed]
- Razavi, A.C.; Mehta, A.; Jain, V.; Patel, P.; Liu, C.; Patel, N.; Eisenberg, S.; Vaccarino, V.; Isiadinso, I.; Sperling, L.S.; et al. High-Density Lipoprotein Cholesterol in Atherosclerotic Cardiovascular Disease Risk Assessment: Exploring and Explaining the “U”-Shaped Curve. Curr. Cardiol. Rep. 2023, 25, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.; Predazzi, I.M.; Williams, S.M.; Bush, W.S.; Kim, Y.; Havas, S.; Toth, P.P.; Fazio, S.; Miller, M. Is isolated low high-density lipoprotein cholesterol a cardiovascular disease risk factor? New insights from the Framingham Offspring Study. Circ. Cardiovasc. Qual. Outcomes 2016, 9, 206–212. [Google Scholar] [CrossRef]
- Girona, J.; Amigo, N.; Ibarretxe, D.; Plana, N.; Rodriguez-Borjabad, C.; Heras, M.; Ferre, R.; Gil, M.; Correig, X.; Masana, L. HDL Triglycerides: A New Marker of Metabolic and Cardiovascular Risk. Int. J. Mol. Sci. 2019, 20, 3151. [Google Scholar] [CrossRef] [PubMed]
- Webb, R. High-Density Lipoproteins and Serum Amyloid A (SAA). Curr. Atheroscler. Rep. 2021, 23, 7. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, M.; Zheng, S.; Xia, M.; Yang, H.; Zhang, D.; Yin, C.; Cheng, N.; Bai, Y. Comparing the Diagnostic Criteria of MAFLD and NAFLD in the Chinese Population: A Population-based Prospective Cohort Study. J. Clin. Transl. Hepatol. 2022, 10, 6–16. [Google Scholar]
Variable | Overall (n = 7093) | Normal HDL-C, Normal TG (n = 3304) | Normal HDL-C, High TG (n = 1134) | Low HDL-C, Normal TG (n = 1061) | Atherogenic Dyslipidemia (n = 1594) | p-Value † |
---|---|---|---|---|---|---|
Age, years; mean (SD) | 59.3 ± 13.4 | 59.6 ± 13.8 | 60.9 ± 12.4 | 57.3 ± 13.7 | 59.1 ± 12.8 | <0.001 |
Female; n (%) | 3743 (52.8) | 1762 (23.3) | 521 (45.9) | 636 (59.9) | 824 (51.7) | <0.001 |
Race-Ethnicity; n (%) | <0.001 | |||||
Non-Hispanic White; n (%) | 3506 (49.4) | 1639 (49.6) | 568 (50.1) | 480 (45.2) | 819 (51.4) | |
Non-Hispanic Black; n (%) | 1588 (22.4) | 911 (27.6) | 186 (16.4) | 277 (26.1) | 214 (13.4) | |
Mexican-American; n (%) | 1709 (24.1) | 624 (18.9) | 350 (30.9) | 245 (23.1) | 490 (30.7) | |
Other; n (%) | 290 (4.1) | 130 (3.9) | 30 (2.6) | 59 (5.6) | 71 (4.5) | |
Income <$20k; n (%) | 3205 (45.2) | 1466 (44.4) | 532 (46.9) | 463 (43.6) | 744 (46.7) | 0.195 |
Education ≥High School; n (%) | 3903 (55.0) | 1918 (58.1) | 572 (50.4) | 611 (57.6) | 802 (50.3) | <0.001 |
Ever Smoker; n (%) | 3852 (54.3) | 1753 (53.1) | 640 (56.4) | 545 (51.4) | 914 (57.3) | 0.0032 |
BMI; mean (SD) | 27.6 ± 5.5 | 26.2 ± 5.1 | 28.4 ± 4.9 | 28.6 ± 6.2 | 29.5 ± 5.4 | <0.001 |
Anti-hypertensive medications; n (%) | 1543 (21.8) | 593 (18.0) | 315 (27.8) | 210 (19.8) | 425 (26.66) | <0.001 |
LDL, mg/dL; mean (SD) | 136.4 ± 38.3 | 132.7 ± 37.6 | 142.9 ± 42.9 | 134.1 ± 34.5 | 142.2 ± 38.0 | <0.001 |
Lipid Lowering medications; mean (SD) | 258 (4.0) | 83 (2.5) | 67 (5.9) | 41 (3.9) | 41 (5.9) | <0.001 |
Total Cholesterol, mg/dL; mean (SD) | 222.2 ± 44.2 | 217.3 ± 40.7 | 245.8 ± 44.4 | 197.8 ± 38.4 | 231.5 ± 44.4 | <0.001 |
SBP, mmHg; mean (SD) | 132.9 ± 26.7 | 131 ± 20.3 | 137.6 ± 42.9 | 130.1 ± 30.0 | 134.5 ± 19.6 | <0.001 |
DBP, mmHg; mean (SD) | 76.9 ± 23.9 | 76.1 ± 17.5 | 79.6 ± 42.8 | 76.9 ± 26.9 | 76.9 ± 10.3 | <0.001 |
Diabetes Mellitus; n (%) | 1043 (14.7) | 301 (9.1) | 212 (18.7) | 134 (12.6) | 396 (24.8) | <0.001 |
Physically Active; n (%) | 4797 (67.6) | 2323 (10.3) | 769 (67.8) | 689 (64.9) | 1016 (63.4) | <0.001 |
Serum Creatinine; mean (SD) | 1.1 ± 0.4 | 1.1 ± 0.3 | 1.1 ± 0.3 | 1.1 ± 0.6 | 1.1 ± 0.4 | 0.027 |
TG/HDL-C Group | No. Event (%) | Model 1 | Model 2 | ||
---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | ||
Normal HDL-C, Normal TG | 789 (23.9) | Ref | -- | Ref. | -- |
Low HDL-C, Normal TG | 252 (23.8) | 1.09 (0.92–1.29) | 0.320 | 1.01 (0.86–1.20) | 0.877 |
Normal HDL-C, High TG | 323 (28.5) | 1.23 (1.06–1.44) | 0.008 | 1.13 (0.97–1.33) | 0.120 |
Atherogenic dyslipidemia | 498 (31.2) | 1.52 (1.32–1.74) | <0.001 | 1.31 (1.14–1.52) | <0.001 |
TG and HDL-C Status | No. Event (%) | Model 1 | Model 2 | ||
---|---|---|---|---|---|
OR, CI (95%) | p-Value | OR, CI (95%) | p-Value | ||
Normal TG | 1041 (23.9) | Ref | -- | Ref. | -- |
High TG | 821 (30.1) | 1.36 (1.22–1.52) | <0.001 | 1.23 (1.10–1.38) | <0.001 |
Normal HDL-C | 567 (26.3) | Ref | -- | Ref | -- |
Low HDL-C | 1295 (26.2) | 1.34 (1.14–1.57) | <0.001 | 1.24 (1.05–1.45) | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbadawi, N.S.; Sobih, M.H.; Soliman, M.Z.; Mostafa, M.A.; Kazibwe, R.; Soliman, E.Z. Association between Atherogenic Dyslipidemia and Subclinical Myocardial Injury in the General Population. J. Clin. Med. 2024, 13, 4946. https://doi.org/10.3390/jcm13164946
Elbadawi NS, Sobih MH, Soliman MZ, Mostafa MA, Kazibwe R, Soliman EZ. Association between Atherogenic Dyslipidemia and Subclinical Myocardial Injury in the General Population. Journal of Clinical Medicine. 2024; 13(16):4946. https://doi.org/10.3390/jcm13164946
Chicago/Turabian StyleElbadawi, Nada S., Moaze H. Sobih, Mai Z. Soliman, Mohamed A. Mostafa, Richard Kazibwe, and Elsayed Z. Soliman. 2024. "Association between Atherogenic Dyslipidemia and Subclinical Myocardial Injury in the General Population" Journal of Clinical Medicine 13, no. 16: 4946. https://doi.org/10.3390/jcm13164946