Return to Work One Year after Moderate to Severe Traumatic Injury in a Working Age Population
Abstract
:1. Introduction
- -
- describe full or partial RTW at 6 and 12 months after traumatic injury.
- -
- investigate demographic and early injury-related predictors for RTW at 12 months with an initial focus on the centrality of the living area, both overall and for specific types of injury based on the most severe injury.
2. Materials and Methods
2.1. Design and Setting
2.2. Participants
2.3. Data Collection
2.4. Demographics, Comorbidity and Injury-Related Variables
2.5. Injury Severity
2.6. Assessments
2.6.1. Centrality
2.6.2. Rehabilitation Needs
2.6.3. Function
Statistical Analysis
3. Results
3.1. Return to Work or School at 6 and 12 Months after Traumatic Injury
3.2. Centrality as an Early Predictor for RTW at 12 Months Post Injury
3.3. Other Demographic and Injury-Related Predictors for RTW
3.4. Function and RTW
4. Discussion
4.1. Return to Work or School at 6 and 12 Months after Traumatic Injury
4.2. Centrality as an Early Predictor for RTW at 12 Months Post-Injury
4.3. Predictive Impact of Demographic and Early Injury-Related Co-Variables and Association of Function with RTW
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Total Population | Head (n = 103) | Extremities and Spine without Spinal Cord, (n = 61) | Thorax/Abdomen, (n = 60) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RTW | RTW | RTW | RTW | |||||||||||||
Factors | Yes (n = 187) | No (n = 56) | OR (95% CI) | p-Value | Yes (n = 72) | No (n = 31) | OR (95% CI) | p-Value | Yes (n = 46) | No (n = 15) | OR (95% CI) | p-Value | Yes (n = 53) | No (n = 7) | OR (95% CI) | p-Value |
Centrality, n (%) | ||||||||||||||||
1–2 | 125 (66.8) | 24 (42.9) | 1.0 (ref) | 46 (64) | 13 (42) | 1.0 (ref) | 33 (72) | 5 (33) | 1.0 (ref) | 36 (68) | 6 (86) | 1.0 (ref.) | ||||
3–6 | 62 (33.2) | 32 (57.1) | 0.37 (0.2–0.69) | 0.002 | 26 (36) | 18 (58) | 0.41 (0.17–0.97) | 0.041 | 13 (28) | 10 (67) | 0.2 (0.06–0.69) | 0.011 | 17 (32) | 1 (14) | 2.83 (0.32–25.42) | 0.352 |
Age in years, mean (SD) | 44 (14) | 50 (13) | 0.97 (0.95–0.99) | 0.006 | 43 (15) | 53 (13) | 0.95 (0.92–0.98) | 0.003 | 40(15) | 44 (14) | 0.99 (0.95–1.03) | 0.462 | 47 (12) | 51 (10) | 0.97 (0.9–1.05) | 0.406 |
Gender n (%) | ||||||||||||||||
Female | 39 (21) | 12 (21) | 0.97 (0.47–2.0) | 0.926 | 15 (21) | 6 (19) | 1.1 (0.38–3.16) | 0.864 | 10 (22) | 3 (20) | 1.11 (0.26–4.72) | 0.886 | 12 (23) | 3 (43) | 0.39 (0.14–4.41) | 0.258 |
Male | 148 (79) | 44 (79) | 1.0 (ref.) | 57 (79) | 25 (81) | 1.0 (ref.) | 36 (78) | 12 (80) | 1.0 (ref.) | 41 (77) | 4 (57) | 1.0 (ref.) | ||||
Living alone n (%) | ||||||||||||||||
Yes | 61 (33) | 17 (30) | 0.9 (0.47–1.72) | 0.75 | 23 | 6 | 0.9 (0.47–1.72) | 0.75 | 18 (39) | 5 (33) | 0.78 (0.23–2.65) | 0.688 | 18 (34) | 2 (29) | 0.78 (0.14–4.41) | 0.777 |
No | 126 (67) | 39 (70) | 1.0 (ref.) | 49 | 22 | 1 (ref.) | 28 (61) | 10 (67) | 1.0 (ref.) | 35 (66) | 5 (71) | 1.0 (ref.) | ||||
Education n (%) | ||||||||||||||||
Low | 72 (39) | 37 (66) | 0.32 (0.17–0.61) | <0.001 | 28 (39) | 19 (61) | 0.4 (0.17–0.95) | 0.039 | 21 (46) | 12 (80) | 0.21 (0.05–0.85) | 0.028 | 17 (33) | 4 (57) | 0.36 (0.7–1.81) | 0.218 |
High | 114 (61) | 19 (34) | 1.0 (ref.) | 44 (61) | 12 (39) | 25 (54) | 3 (20) | 1.0 (ref.) | 35 (67) | 3 43) | 1.0 (ref.) | |||||
Type of job n (%) | ||||||||||||||||
Blue collar | 63 (34) | 39 (70) | 0.22 (0.12–0.43) | <0.001 | 28 (39) | 20 (65) | 0.35 (0.15–0.84) | 0.19 | 13 (28) | 12 (80) | 0.098 (0.02–0.41) | 0.001 | 15 (29) | 5 (71) | 0.16 (0.3–0.93) | 0.041 |
White collar | 123 (66) | 17 (30) | 1.0 (ref.) | 44 (61) | 9 (35) | 1.0 (ref.) | 33 (72) | 3 (20) | 1.0 (ref.) | 37 (71) | 2 (29) | 1.0 (ref.) | ||||
ASA, n (%) | ||||||||||||||||
III–IV | 5 (3) | 2 (4) | 0.74 (0.14–3.91) | 0.721 | 1 (1) | 2 (6) | 0.2 (0.18–2.34) | 0.202 | Not analysable with logistic regression | Not analysable with logistic regression | ||||||
I–II | 182 (97) | 44 (96) | 1.0 (ref.) | 71 (99) | 29 (94) | 1.0 (ref.) | ||||||||||
Substance use at time of accident n (%) | ||||||||||||||||
yes | 36 (19) | 13 (23) | 0.78 (0.38–1.61) | 0.506 | 25 (35) | 12 (39) | 0.84 (0.35–2.01) | 0.699 | Not analysable with logistic regression | 4 (8) | 1 (14) | 0.49 (0.05–5.13) | 0.552 | |||
no | 151 (81) | 43 (77) | 1.0 (ref.) | 47 (65) | 19 (61) | 1.0 (ref.) | 49 (92) | 6 (86) | 1.0 (ref.) | |||||||
NISS mean (SD) | 23 (11) | 31 (16) | 0.95 (0.93–0.97) | <0.001 | 27 (12) | 40 (15) | 0.94 (0.91–0.97) | <0.001 | 17 (8) | 18 (87) | 0.99 (0.92–1.06) | 0.782 | 22 (8) | 22 (4) | 1.0 (0.9–1.13) | 0.875 |
Number of injuries totally mean (SD) | 5 (3) | 8 (4) | 0.82 (0.74–0.9) | <0.001 | 6 (3) | 8 (4) | 0.87 (0.78–0.98) | 0.019 | 5 (3) | 7 (2) | 0.76 (0.61–0.94) | 0.014 | 5 (2) | 8 (3) | 0.69 (0.49–0.96) | 0.03 |
Sum RCS baseline median (IQR) | 7 (1–11) | 12 (9–15) | 0.84 (0.78–0.89) | <0.001 | 10 (1–14) | 13 (10–16) | 0.86 (0.79–0.95) | 0.002 | 8 (1–10) | 10 (1–109 | 0.9 (0.79–1.03) | 0.111 | 1 (1–7) | 11 (8–15) | 0.49 (0.28–0.85) | 0.011 |
Highest AIS | ||||||||||||||||
Head | 72 | 31 | 0.55 (0.3.1.0) | 0.052 | ||||||||||||
Extremities/spine | 46 | 25 | 0.89 (0.45–1.75) | 0.725 | ||||||||||||
Thorax/abdomen | 53 | 7 | 2.77 (1.18–6.5) | 0.019 | ||||||||||||
Function | ||||||||||||||||
WHODAS 2.0 sum mean (SD) | 2.5 (4.4) | 8.9 (9.4) | 0.86 (0.81–0.92) | <0.001 | 1.7 (2.2) | 10.4 (10.6) | 0.71 (0.59–0.84) | <0.001 | 4.4 (7.4) | 7.6 (7.5) | 0.42 (0.23–0.78) | 0.006 | 1.8 (2.6) | 5.6 (8.8) | 0.5 (0.22–1.113) | 0.096 |
References
- Haider, A.H.; Herrera-Escobar, J.P.; Al Rafai, S.S.; Harlow, A.F.; Apoj, M.; Nehra, D.; Kasotakis, G.; Brasel, K.; Kaafarani, H.M.A.; Velmahos, G.; et al. Factors Associated With Long-term Outcomes after Injury: Results of the Functional Outcomes and Recovery After Trauma Emergencies (FORTE) Multicenter Cohort Study. Ann. Surg. 2020, 271, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Neiman, P.U.; Taylor, K.K.; Sinco, B.; Anderson, G.A.; Sangji, N.F.; Hemmila, M.R.; Scott, J.W. Insult to injury: National analysis of return to work and financial outcomes of trauma patients. J. Trauma Acute Care Surg. 2021, 91, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, D.; Vinogradova, Y.; Coupland, C.; Christie, N.; Lyons, R.A.; Towner, E.L. Getting back to work after injury: The UK Burden of Injury multicentre longitudinal study. BMC Public Health 2012, 12, 584. [Google Scholar] [CrossRef]
- Convention on the Rights of Persons with Disabilities (CRPD), Article 27 k). Available online: https://social.desa.un.org/issues/disability/crpd/article-27-work-and-employment (accessed on 30 August 2024).
- de Munter, L.; Geraerds, A.; de Jongh, M.A.C.; van der Vlegel, M.; Steyerberg, E.W.; Haagsma, J.A.; Polinder, S. Prognostic factors for medical and productivity costs, and return to work after trauma. PLoS ONE 2020, 15, e0230641. [Google Scholar] [CrossRef]
- Collie, A.; Simpson, P.M.; Cameron, P.A.; Ameratunga, S.; Ponsford, J.; Lyons, R.A.; Braaf, S.; Nunn, A.; Harrison, J.E.; Gabbe, B.J. Patterns and Predictors of Return to Work After Major Trauma: A Prospective, Population-based Registry Study. Ann. Surg. 2019, 269, 972–978. [Google Scholar] [CrossRef]
- Holtslag, H.R.; Post, M.W.; van der Werken, C.; Lindeman, E. Return to work after major trauma. Clin. Rehabil. 2007, 21, 373–383. [Google Scholar] [CrossRef]
- Dinh, M.M.; Cornwall, K.; Bein, K.J.; Gabbe, B.J.; Tomes, B.A.; Ivers, R. Health status and return to work in trauma patients at 3 and 6 months post-discharge: An Australian major trauma centre study. Eur. J. Trauma Emerg. Surg. 2016, 42, 483–490. [Google Scholar] [CrossRef]
- Uleberg, O.; Pape, K.; Kristiansen, T.; Romundstad, P.R.; Klepstad, P. Population-based analysis of the impact of trauma on longer-term functional outcomes. Br. J. Surg. 2019, 106, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Gabbe, B.J.; Simpson, P.M.; Harrison, J.E.; Lyons, R.A.; Ameratunga, S.; Ponsford, J.; Fitzgerald, M.; Judson, R.; Collie, A.; Cameron, P.A. Return to Work and Functional Outcomes After Major Trauma: Who Recovers, When, and How Well? Ann. Surg. 2016, 263, 623–632. [Google Scholar] [CrossRef]
- Soberg, H.L.; Finset, A.; Bautz-Holter, E.; Sandvik, L.; Roise, O. Return to work after severe multiple injuries: A multidimensional approach on status 1 and 2 years postinjury. J. Trauma 2007, 62, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Keeves, J.; Ekegren, C.L.; Beck, B.; Gabbe, B.J. The relationship between geographic location and outcomes following injury: A scoping review. Injury 2019, 50, 1826–1838. [Google Scholar] [CrossRef] [PubMed]
- Furdock, R.J.; Feldman, B.; Sinkler, M.; Connelly, M.; Hoffa, M.; Simpson, M.; Hendrickson, S.B.; Vallier, H.A. Factors influencing participation in psychosocial programming among orthopaedic trauma patients with PTSD. Injury 2022, 53, 4000–4004. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.; Jeong, T.; Jo, J. Relationships between trauma death, disability, and geographic factors: A systematic review. Clin. Exp. Emerg. Med. 2023, 10, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Young, A.E.; Wasiak, R.; Webster, B.S.; Shayne, R.G. Urban-rural differences in work disability after an occupational injury. Scand. J. Work. Environ. Health 2008, 34, 158–164. [Google Scholar] [CrossRef]
- Young, A.; Muhlner, S.; Kurowski, A.; Cifuentes, M. The association between physical medicine and rehabilitation service utilization and disability duration following work-related fracture. Work 2015, 51, 327–336. [Google Scholar] [CrossRef]
- Fan, Z.J.; Foley, M.P.; Rauser, E.; Bonauto, D.K.; Silverstein, B.A. Effects of residential location and work-commuting on long-term work disability. J. Occup. Rehabil. 2013, 23, 610–620. [Google Scholar] [CrossRef]
- Macpherson, R.A.; Amick, B.C., 3rd; Collie, A.; Hogg-Johnson, S.; Koehoorn, M.; Smith, P.M.; McLeod, C.B. Urban-Rural Differences in the Duration of Injury-Related Work Disability in Six Canadian Provinces. J. Occup. Environ. Med. 2020, 62, e200–e207. [Google Scholar] [CrossRef]
- Lavoie, C.A.; Voaklander, D.; Beach, J.R.; Gross, D.P. The association between rurality and return to work for workers’ compensation claimants with work-related musculoskeletal injuries: An analysis of workers who failed to return to work within typical healing time frames. Int. J. Occup. Med. Environ. Health 2017, 30, 715–729. [Google Scholar] [CrossRef]
- Harradine, P.G.; Winstanley, J.B.; Tate, R.; Cameron, I.D.; Baguley, I.J.; Harris, R.D. Severe traumatic brain injury in New South Wales: Comparable outcomes for rural and urban residents. Med. J. Aust. 2004, 181, 130–134. [Google Scholar] [CrossRef]
- Anke, A.G.; Stanghelle, J.K.; Finset, A.; Roaldsen, K.S.; Pillgram-Larsen, J.; Fugl-Meyer, A.R. Long-term prevalence of impairments and disabilities after multiple trauma. J. Trauma 1997, 42, 54–61. [Google Scholar] [CrossRef]
- Cancelliere, C.; Donovan, J.; Stochkendahl, M.J.; Biscardi, M.; Ammendolia, C.; Myburgh, C.; Cassidy, J.D. Factors affecting return to work after injury or illness: Best evidence synthesis of systematic reviews. Chiropr. Man. Therap. 2016, 24, 32. [Google Scholar] [CrossRef] [PubMed]
- Soberg, H.L.; Moksnes, H.O.; Anke, A.; Roise, O.; Roe, C.; Aas, E.; Sveen, U.; Gaarder, C.; Naess, P.A.; Helseth, E.; et al. Rehabilitation Needs, Service Provision, and Costs in the First Year Following Traumatic Injuries: Protocol for a Prospective Cohort Study. JMIR Res. Protoc. 2021, 10, e25980. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Osler, T.; Baker, S.P.; Long, W. A modification of the injury severity score that both improves accuracy and simplifies scoring. J. Trauma 1997, 43, 922–925; discussion 925–926. [Google Scholar] [CrossRef]
- Forslund, M.V.; Roe, C.; Arango-Lasprilla, J.C.; Sigurdardottir, S.; Andelic, N. Impact of personal and environmental factors on employment outcome two years after moderate-to-severe traumatic brain injury. J. Rehabil. Med. 2013, 45, 801–807. [Google Scholar] [CrossRef]
- Nasjonalt Traumeregister. Definisjonskatalog for Nasjonalt Traumeregister; Oslo Universitetssykehus HF: Oslo, Norway, 2019; pp. 32–33. Available online: www.ntr-definisjonskatalog.no (accessed on 14 August 2024).
- Economics, A.C.o. ASA Physical Status Classification System. Available online: https://www.asahq.org/standards-and-guidelines/asa-physical-status-classification-system (accessed on 14 August 2024).
- The Abbreviated Injury Scale (AIS) 2005. 2008. Available online: https://www.aaam.org/abbreviated-injury-scale-ais/ (accessed on 14 December 2022).
- Dahlhaug, M.; Røise, O. Årsrapport for 2022 Med Plan for Forbedringstiltak. Available online: https://www.kvalitetsregistre.no/sites/default/files/2023-07/%C3%85rsrapport%202022%20Nasjonalt%20traumeregister.pdf (accessed on 4 January 2024).
- Naberezhneva, N.; Uleberg, O.; Dahlhaug, M.; Giil-Jensen, V.; Ringdal, K.G.; Roise, O. Excellent agreement of Norwegian trauma registry data compared to corresponding data in electronic patient records. Scand. J. Trauma Resusc. Emerg. Med. 2023, 31, 50. [Google Scholar] [CrossRef]
- Høydahl, E. Sentralitetsindeksen—Oppdatering Med 2020-Kommuner; Statistisk sentralbyrå: Oslo, Norway, 2020; Available online: https://www.ssb.no/befolkning/folketall/artikler/sentralitetsindeksen/_/attachment/inline/aa8e00bb-5704-4b23-8ce3-1828cd6103f8:0fcdbdeb227f2ef11f95d3864a78c3efeab38640/NOT2020-04_web.pdf (accessed on 14 August 2024).
- Moksnes, H.O.; Schafer, C.; Rasmussen, M.S.; Soberg, H.L.; Roise, O.; Anke, A.; Roe, C.; Naess, P.A.; Gaarder, C.; Helseth, E.; et al. Factors associated with discharge destination from acute care after moderate-to-severe traumatic injuries in Norway: A prospective population-based study. Inj. Epidemiol. 2023, 10, 20. [Google Scholar] [CrossRef]
- Cicely Saunders Institute of Palliative Care, Policy & Rehabilitation; Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care. Rehabilitation Complexity Scale—Extended (RCS-E v13). Available online: https://www.kcl.ac.uk/cicelysaunders/resources/toolkits/rehabilitation-complexity-scale (accessed on 20 December 2023).
- Hoffman, K.; West, A.; Nott, P.; Cole, E.; Playford, D.; Liu, C.; Brohi, K. Measuring acute rehabilitation needs in trauma: Preliminary evaluation of the Rehabilitation Complexity Scale. Injury 2013, 44, 104–109. [Google Scholar] [CrossRef]
- Maribo, T.; Pedersen, A.R.; Jensen, J.; Nielsen, J.F. Assessment of primary rehabilitation needs in neurological rehabilitation: Translation, adaptation and face validity of the Danish version of Rehabilitation Complexity Scale-Extended. BMC Neurol. 2016, 16, 205. [Google Scholar] [CrossRef]
- Tarvonen-Schroder, S.; Kaljonen, A.; Laimi, K. Comparing functioning in spinal cord injury and in chronic spinal pain with two ICF-based instruments: WHODAS 2.0 and the WHO minimal generic data set covering functioning and health. Clin. Rehabil. 2019, 33, 1241–1251. [Google Scholar] [CrossRef]
- Üstün, T.B.; Kostanjsek, N.; Chatterji, S.; Rehm, J. Measuring Health and Disability: Manual for WHO Disability Assessment Schedule (WHODAS 2.0); WHO Press, World Health Organization: Genevea, Switzerland, 2010. [Google Scholar]
- Stefan Leknes, S.A.L. Municipal Population Projections 2022. 2022. Available online: https://www.ssb.no/en/befolkning/befolkningsframskrivinger/artikler/municipal-population-projections-2022 (accessed on 1 June 2024).
- Syse, A.F.R.o.A. Framtidens eldre i by og Bygd, Befolkningsframskrivinger, Sosiodemografiske Mønstre og Helse. 2017. Available online: https://www.ssb.no/befolkning/artikler-og-publikasjoner/_attachment/328026?_ts=167c714ea80 (accessed on 1 June 2024).
- von Oelreich, E.; Eriksson, M.; Brattstrom, O.; Discacciati, A.; Strommer, L.; Oldner, A.; Larsson, E. Predicting prolonged sick leave among trauma survivors. Sci. Rep. 2019, 9, 58. [Google Scholar] [CrossRef]
N = 243 | |
---|---|
Age, Years | |
Median (range) | 47 (18–69) |
Mean (SD) | 45 (14) |
Gender, n (%) | |
Female | 51 (21) |
Male | 192 (79) |
Education, n (%) | |
Lower education ≤ 13 years | 109 (45) |
High school/university > 13 years | 133 (55) |
Unknown | 1 (0.4) |
Marital status, n (%) | |
Living with someone | 165 (68) |
Living alone | 78 (32) |
Type of occupation at time of injury n (%) | |
Working | 220 (91) |
Studying | 23 (9) |
Type of job n (%) | |
Blue collar | 102 (42) |
White collar | 140 (58) |
Missing | 1 (0.4) |
Centrality index score (NCI) n(%) | |
1 (most central) | 106 (44) |
2 | 43 (18) |
3 | 62 (26) |
4 | 15 (6) |
5 | 13 (5) |
6 (most rural) | 4 (2) |
RTW, n (%) | |
No RTW | 56 (23) |
| 12 (5) |
| 11 (5) |
| 33 (14) |
Yes RTW | 187 (77) |
| 151 (62) |
| 33 (14) |
N = 243 | |
---|---|
Substance Use at time of the Accident, n (%) | 49 (20) |
Pre-injury ASA, n (%) | |
ASA I–II, no disability | 236 (97) |
ASA III–V, disability | 7 (3) |
New Injury Severity Score (NISS) | |
Mean | 25 (13) |
Median (range) | 22 (10–75) |
Moderate NISS 10–15, n (%) | 58 (24) |
Severe NISS ≥ 16, n (%) | 185 (76) |
Injury Severity Score (ISS) | |
Median (range) | 14 (4–59) |
ISS ≥ 16, n (%) | 118 (48) |
Number of injuries median (range) | 5 (1–23) |
AIS organ area with highest score, n (%) | |
Head | 103 (42) |
Extremities/spine without spinal cord injury | 61 (25) |
Spinal cord | 15 (6) |
Face | 4 (2) |
Thorax/abdomen | 60 (25) |
WHODAS 12-items at 12 months, median (IQR) | 2 (0–6) |
WHODAS 11-items at 12 months, median (IQR) | 1 (0–5) |
RTW 6 Months n (Row%) | RTW 12 Months n (Row%) | |||||
---|---|---|---|---|---|---|
Dominating Type of Injury | No | Partly | Full | No | Partly | Full |
Total N = 223 | 71 (32) | 60 (27) | 92 (41) | 48 (22) | 32 (14) | 140 (63) |
Head n = 97 | 40 (41) | 27 (28) | 30 (31) | 27 (28) | 19 (20) | 51 (53) |
Extremities and spine without spinal cord n = 54 | 17 (32) | 14 (26) | 23 (43) | 11 (20) | 9 (17) | 33 (61) |
Spinal cord n = 14 | 3 (21) | 7 (50) | 4 (29) | 2 (14) | 2 (14) | 10 (71) |
Face n = 3 * | 1 | 0 | 2 | 0 | 0 | 3 |
Thorax/abdomen n = 55 | 9 (16) | 12 (22) | 33 (60) | 6 (11) | 6 (11) | 43 (78) |
Centrality Index 1–2 N = 149 | Centrality Index 3–6 N = 94 | p | |
---|---|---|---|
RTW yes (%) | 125 (84) | 62 (66) | 0.001 |
Age in years, mean (SD) | 46 (14) | 44 (15) | 0.512 |
Female Gender, n (%) | 34 (23) | 17 (18) | 0.377 |
Living alone, n (%) | 54 (36) | 24 (26) | 0.082 |
Education ≤ 13 years, n (%) | 50 (34) | 59 (63) | <0.001 |
Blue-collar jobb, n (%) | 47 (32) | 55 (59) | <0.001 |
ASA III-IV, n (%) | 4 (3) | 3 (3) | 0.818 |
Substance use at the time of the injury, n (%) | 28 (19) | 21 (22) | 0.502 |
NISS, mean (SD) | 23 (12) | 28 (14) | 0.002 |
Number of injuries totally, mean (SD) | 6 (3) | 7 (3) | 0.002 |
Head, n (%) | 59 (40) | 44 (47) | 0.268 |
Extremities/spine without spinal cord, n (%) | 38 (26) | 23 (25) | 0.856 |
Spinal cord, n (%) | 7 (5) | 8 (9) | 0.229 |
Face, n (%) | 3 (2) | 1 (1) | 1.0 * |
Thorax/abdomen, n (%) | 42 (28) | 18 (19) | 0.112 |
Estimated RCSE Trauma Baseline, mean (SD) | 7 (6) | 10 (5) | <0.001 |
WHODAS 11-item 12 months, mean (SD) | 3 (7) | 5 (6) | 0.023 |
Total | Head | Extremities/Spine without Spinal Cord | |||||||
---|---|---|---|---|---|---|---|---|---|
N = 243 | N = 103 | n= 61 | |||||||
RTW Yes/No (%/%) 187/56 (77/23) | RTW Yes/No (%/%) 73/30 (71/29) | RTW Yes/No (%/%) 46/15 (75/25) | |||||||
OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Centrality index (NCI) | |||||||||
1 and 2 (ref.)/3–6 | 0.71 | 0.34–1.50 | 0.370 | 0.56 | 0.19–1.6 | 0.276 | 0.2 | 0.04–0.9 | 0.036 |
Age mean | 0.95 | 0.92–0.98 | <0.001 | 0.93 | 0.89–0.97 | 0.001 | |||
Education low/high n = 242 | 0.58 | 0.24–1.41 | 0.232 | ||||||
Blue collar/hvite collar n = 242 | 0.23 | 0.09–0.57 | 0.002 | 0.29 | 0.1–0.85 | 0.025 | 0.12 | 0.02–0.56 | 0.007 |
NISS mean | 0.99 | 0.95–1.03 | 0.487 | 0.92 | 0.89–0.96 | <0.001 | |||
Number of injuries totally mean | 0.85 | 0.75–0.96 | 0.010 | 0.74 | 0.56–0.97 | 0.030 | |||
Highest AIS head mean | 2.12 | 0.8–5.62 | 0.133 | ||||||
Highest AIS Thorax/abdomen mean | 2.38 | 0.75–7.6 | 0.144 | ||||||
Sum RCS baseline median | 0.87 | 0.79–0.95 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schäfer, C.; Moksnes, H.Ø.; Rasmussen, M.S.; Hellstrøm, T.; Brunborg, C.; Soberg, H.L.; Røise, O.; Røe, C.; Andelic, N.; Anke, A. Return to Work One Year after Moderate to Severe Traumatic Injury in a Working Age Population. J. Clin. Med. 2024, 13, 5308. https://doi.org/10.3390/jcm13175308
Schäfer C, Moksnes HØ, Rasmussen MS, Hellstrøm T, Brunborg C, Soberg HL, Røise O, Røe C, Andelic N, Anke A. Return to Work One Year after Moderate to Severe Traumatic Injury in a Working Age Population. Journal of Clinical Medicine. 2024; 13(17):5308. https://doi.org/10.3390/jcm13175308
Chicago/Turabian StyleSchäfer, Christoph, Håkon Øgreid Moksnes, Mari Storli Rasmussen, Torgeir Hellstrøm, Cathrine Brunborg, Helene Lundgaard Soberg, Olav Røise, Cecilie Røe, Nada Andelic, and Audny Anke. 2024. "Return to Work One Year after Moderate to Severe Traumatic Injury in a Working Age Population" Journal of Clinical Medicine 13, no. 17: 5308. https://doi.org/10.3390/jcm13175308