Hyperphosphorylated Tau and Cognition in Epilepsy
Abstract
:1. Introduction
2. Materials and Methods
3. Research Status on Hyperphosphorylated Tau and Cognition
4. Synthesis and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sen, A.; Capelli, V.; Husain, M. Cognition and Dementia in Older Patients with Epilepsy. Brain 2018, 141, 1592–1608. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; García-Cabrero, A.; Sánchez-Elexpuru, G.; Burgos, D.; Serratosa, J. Tau-Induced Pathology in Epilepsy and Dementia: Notions from Patients and Animal Models. Int. J. Mol. Sci. 2018, 19, 1092. [Google Scholar] [CrossRef]
- Hickman, L.B.; Stern, J.M.; Silverman, D.H.S.; Salamon, N.; Vossel, K. Clinical, Imaging, and Biomarker Evidence of Amyloid- and Tau-Related Neurodegeneration in Late-Onset Epilepsy of Unknown Etiology. Front. Neurol. 2023, 14, 1241638. [Google Scholar] [CrossRef]
- Hwang, K.; Vaknalli, R.N.; Addo-Osafo, K.; Vicente, M.; Vossel, K. Tauopathy and Epilepsy Comorbidities and Underlying Mechanisms. Front. Aging Neurosci. 2022, 14, 903973. [Google Scholar] [CrossRef] [PubMed]
- Tai, X.Y.; Koepp, M.; Duncan, J.S.; Fox, N.; Thompson, P.; Baxendale, S.; Liu, J.Y.W.; Reeves, C.; Michalak, Z.; Thom, M. Hyperphosphorylated Tau in Patients with Refractory Epilepsy Correlates with Cognitive Decline: A Study of Temporal Lobe Resections. Brain 2016, 139, 2441–2455. [Google Scholar] [CrossRef] [PubMed]
- Gourmaud, S.; Shou, H.; Irwin, D.J.; Sansalone, K.; Jacobs, L.M.; Lucas, T.H.; Marsh, E.D.; Davis, K.A.; Jensen, F.E.; Talos, D.M. Alzheimer-like Amyloid and Tau Alterations Associated with Cognitive Deficit in Temporal Lobe Epilepsy. Brain 2020, 143, 191–209. [Google Scholar] [CrossRef]
- Silva, J.C.; Vivash, L.; Malpas, C.B.; Hao, Y.; McLean, C.; Chen, Z.; O’Brien, T.J.; Jones, N.C.; Kwan, P. Low Prevalence of Amyloid and Tau Pathology in Drug-Resistant Temporal Lobe Epilepsy. Epilepsia 2021, 62, 3058–3067. [Google Scholar] [CrossRef]
- Toscano, E.C.B.; Vieira, É.L.M.; Grinberg, L.T.; Rocha, N.P.; Brant, J.A.S.; Paradela, R.S.; Giannetti, A.V.; Suemoto, C.K.; Leite, R.E.P.; Nitrini, R.; et al. Hyperphosphorylated Tau in Mesial Temporal Lobe Epilepsy: A Neuropathological and Cognitive Study. Mol. Neurobiol. 2023, 60, 2174–2185. [Google Scholar] [CrossRef] [PubMed]
- Aroor, A.; Nguyen, P.; Li, Y.; Das, R.; Lugo, J.N.; Brewster, A.L. Assessment of Tau Phosphorylation and β-Amyloid Pathology in Human Drug-Resistant Epilepsy. Epilepsia Open 2023, 8, 609–622. [Google Scholar] [CrossRef]
- Drane, D.L.; Pedersen, N.P. Knowledge of Language Function and Underlying Neural Networks Gained from Focal Seizures and Epilepsy Surgery. Brain Lang. 2019, 189, 20–33. [Google Scholar] [CrossRef]
- Markowitsch, H.J.; Kalbe, E.; Kessler, J.; Von Stockhausen, H.M.; Ghaemi, M.; Heiss, W.D. Short-Term Memory Deficit after Focal Parietal Damage. J. Clin. Exp. Neuropsychol. 1999, 21, 784–797. [Google Scholar] [CrossRef]
- Müller, N.G.; Knight, R.T. The Functional Neuroanatomy of Working Memory: Contributions of Human Brain Lesion Studies. Neuroscience 2006, 139, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Thom, M.; Liu, J.Y.W.; Thompson, P.; Phadke, R.; Narkiewicz, M.; Martinian, L.; Marsdon, D.; Koepp, M.; Caboclo, L.; Catarino, C.B.; et al. Neurofibrillary Tangle Pathology and Braak Staging in Chronic Epilepsy in Relation to Traumatic Brain Injury and Hippocampal Sclerosis: A Post-Mortem Study. Brain A J. Neurol. 2011, 134, 2969–2981. [Google Scholar] [CrossRef] [PubMed]
- Bollack, A.; Pemberton, H.G.; Collij, L.E.; Markiewicz, P.; Cash, D.M.; Farrar, G.; Barkhof, F. On behalf on the AMYPAD consortium Longitudinal Amyloid and Tau PET Imaging in Alzheimer’s Disease: A Systematic Review of Methodologies and Factors Affecting Quantification. Alzheimer’s Dement. 2023, 19, 5232–5252. [Google Scholar] [CrossRef]
- Sarnat, H.B.; Flores-Sarnat, L. Infantile Tauopathies: Hemimegalencephaly; Tuberous Sclerosis Complex; Focal Cortical Dysplasia 2; Ganglioglioma. Brain Dev. 2015, 37, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Witt, J.-A.; Helmstaedter, C. Neuropsychologie Bei Epilepsie Teil II: Gibt Es Eine Gemeinsame Basis Zur Etablierung Diagnostischer Leitlinien? Fortschritte Neurol. Psychiatr. 2009, 77, 691–698. (In German) [Google Scholar] [CrossRef] [PubMed]
- Vogt, V.L.; Äikiä, M.; del Barrio, A.; Boon, P.; Borbély, C.; Bran, E.; Braun, K.; Carette, E.; Clark, M.; Cross, J.H.; et al. Current Standards of Neuropsychological Assessment in Epilepsy Surgery Centers across Europe. Epilepsia 2017, 58, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, J.; Jones-Gotman, M. Inquiry on Assessments across Epilepsy Centers in Different Countries. In Neuropsychology in the Care of People with Epilepsy; Helmstaedter, C., Hermann, B., Lassonde, M., Kahane, P., Arzimanoglou, A., Eds.; John Libbey Eurotext: Mountrouge, France, 2011; pp. 13–26. [Google Scholar]
- Witt, J.-A.; Meschede, C.; Helmstaedter, C. Hazardous Employment of Invalid Measures for Cognitive Outcome Assessment: You Only See What Your Test Can Show You. Epilepsy Behav. 2021, 117, 107865. [Google Scholar] [CrossRef]
- Helmstaedter, C.; Wietzke, J.; Lutz, M.T. Unique and Shared Validity of the “Wechsler Logical Memory Test”, the “California Verbal Learning Test”, and the “Verbal Learning and Memory Test” in Patients with Epilepsy. Epilepsy Res. 2009, 87, 203–212. [Google Scholar] [CrossRef]
- Loring, D.W.; Strauss, E.; Hermann, B.P.; Barr, W.B.; Perrine, K.; Trenerry, M.R.; Chelune, G.; Westerveld, M.; Lee, G.P.; Meador, K.J.; et al. Differential Neuropsychological Test Sensitivity to Left Temporal Lobe Epilepsy. J. Int. Neuropsychol. Soc. 2008, 14, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Helmstaedter, C.; Witt, J.-A. Clinical Neuropsychology in Epilepsy: Theoretical and Practical Issues.; Elsevier B.V.: Amsterdam, The Netherlands, 2012; Volume 107, ISBN 2-282-87144-8. [Google Scholar]
- Witt, J.A.; Becker, A.J.; Helmstaedter, C. The Multifactorial Etiology of Cognitive Deficits in Epilepsy and the Neuropathology of Mesial Temporal Lobe Epilepsy beyond Hyperphosphorylated Tau. Alzheimer’s Dement. 2023, 19, 3231–3232. [Google Scholar] [CrossRef]
- Reimers, A.; Helmstaedter, C.; Elger, C.E.; Pitsch, J.; Hamed, M.; Becker, A.J.; Witt, J.A. Neuropathological Insights into Unexpected Cognitive Decline in Epilepsy. Ann. Neurol. 2022, 93, 536–550. [Google Scholar] [CrossRef]
- Helmstaedter, C.; Elger, C.E. Chronic Temporal Lobe Epilepsy: A Neurodevelopmental or Progressively Dementing Disease? Brain A J. Neurol. 2009, 132, 2822–2830. [Google Scholar] [CrossRef]
- Helmstaedter, C.; Elger, C.E. The Phantom of Progressive Dementia in Epilepsy. Lancet 1999, 354, 2133–2134. [Google Scholar] [CrossRef] [PubMed]
- Helmstaedter, C.; Lutz, T.; Wolf, V.; Witt, J.A. Prevalence of Dementia in a Level 4 University Epilepsy Center: How Big Is the Problem? Front. Neurol. 2023, 14, 1217594. [Google Scholar] [CrossRef] [PubMed]
Year of Publication | Country | N | Age, Years (Range) | Age At Epilepsy Onset, Years (Range) | Controls | References | |
---|---|---|---|---|---|---|---|
1 | 2016 | UK | 33 | 54 (50–65) | 15 (n.a.) | Age-matched population controls from a post-mortem series | [5] |
2 | 2020 | US | 19 | 29 (10–56) | 15 (1–36) | 22 neurologically normal and 9 Alzheimer’s disease autopsy cases | [6] |
3 | 2021 | AUS | 56 | 34 (20–68) | 15 (0–56) | - | [7] |
4 | 2023 | US/BR | 22 | 42 (30–58) | 4 (0–13) | 20 hippocampi of neurologically normal autopsy cases | [8] |
5 | 2023 | US | 12 | 43 (24–67) | 19 (1–66) | - | [9] |
Assessed Cognitive Functions and Tests | N | Relationships Between pTau and Objective Neuropsychological Performance | References | |
---|---|---|---|---|
1 | Intelligence (WAIS), verbal and visual learning and long-term memory (AMIPB or BIMPB), naming (GNT), and phonemic and semantic fluency | 21/33 (64%) | There was no significant association between pTau and presurgical neuropsychological performance. A higher pTau burden was inversely correlated with cognitive decline from pre- to 12 months postoperative (verbal learning (r = −0.63) and memory (r = −0.44) and naming (r = −0.50)) as well as from 3 months to 12 months postoperative (verbal learning (r = −0.54)). | [5] |
2 | Intelligence (WAIS IV), executive function (digit span backward test, TMT-B), verbal (CVLT-II) and visuospatial long-term memory (BVMT-R), visuospatial functions (BFRT, ROCF), language (naming subtest of NAB), and dexterity (GPT) | 14/19 (74%) | Both the total and pTau burden inversely correlated with presurgical deficits in executive functions (processing speed efficiency (r = −0.78) and verbal working memory (r = −0.89)). | [6] |
3 | Verbal learning and long-term memory (RAVLT, VPA from WMS-R) and visual long-term memory (ROCF) | 31–52/56 (55–93%) | No significant correlation between pTau and presurgical memory performance was found. | [7] |
4 | Verbal short-term memory (subtest of WAIS), verbal (LM I and II of WMS) and visual long-term memory (VR I and II of WMS), and confrontative naming (BNT) | 22/22 (100%) | A higher pTau burden was associated with deficits in confrontative naming and verbal memory span. The latter relationship was confirmed by a multivariate model adjusted for age, sex, education, seizure frequency, and the type of hippocampal sclerosis. | [8] |
5 | Intelligence (abbreviated WAIS) | 8/12 (67%) | No significant correlation between pTau levels at two different sites (Thr181 and Thr205) and intelligence was found. However, the non-significant positive (!) correlation coefficient was large at site Thr181 (r = 0.54; p = 0.16). | [9] |
N | Hippocampal Sclerosis | Method (pTau) | Prevalence of pTau | Form of pTau | Location | Other Findings | References | |
---|---|---|---|---|---|---|---|---|
1 | 33 | 100% | IHC (AT8) | 94% | NT + PT + NFT | Mostly TC; relative sparing of HC | Aβ plaques in 15% | [5] |
2 | 19 | 63% | IHC (AT8, clone Tau5) | n.a. | n.a. | TC + HC | APP deposits in 3/11 (27%) | [6] |
3 | 56 | 52% | IHC (AT8) | 3.5% | NFT | TC, not HC | Aβ plaques in 7% | [7] |
4 | 22 | 100% | IHC + MA | 95% | NT + PT + NFT | HC (TC n.a.) | Aβ deposits absent | [8] |
5 | 12 | n.a. | IHC + IA | 50% | NT + NFT | TC (HC not analyzed) | Aβ deposits in 67% | [9] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witt, J.-A.; Andernach, J.; Becker, A.; Helmstaedter, C. Hyperphosphorylated Tau and Cognition in Epilepsy. J. Clin. Med. 2025, 14, 514. https://doi.org/10.3390/jcm14020514
Witt J-A, Andernach J, Becker A, Helmstaedter C. Hyperphosphorylated Tau and Cognition in Epilepsy. Journal of Clinical Medicine. 2025; 14(2):514. https://doi.org/10.3390/jcm14020514
Chicago/Turabian StyleWitt, Juri-Alexander, Johanna Andernach, Albert Becker, and Christoph Helmstaedter. 2025. "Hyperphosphorylated Tau and Cognition in Epilepsy" Journal of Clinical Medicine 14, no. 2: 514. https://doi.org/10.3390/jcm14020514
APA StyleWitt, J.-A., Andernach, J., Becker, A., & Helmstaedter, C. (2025). Hyperphosphorylated Tau and Cognition in Epilepsy. Journal of Clinical Medicine, 14(2), 514. https://doi.org/10.3390/jcm14020514