Predicting Semen Analysis Parameters from Testicular Ultrasonography Images Using Deep Learning Algorithms: An Innovative Approach to Male Infertility Diagnosis
Abstract
:1. Introduction
2. Material and Methods
2.1. Patient Selection
2.2. Laboratory Tests
2.3. Semen Analysis
2.4. Testicular Ultrasonography
2.5. Image Preprocessing
2.6. Study Design
2.7. Deep Learning
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pfeifer, S.; Butts, S.; Fossum, G.; Gracia, C.; La Barbera, A.; Mersereau, J.; Odem, R.; Paulson, R.; Penzias, A.; Pisarska, M.; et al. Optimizing natural fertility: A committee opinion. Fertil. Steril. 2017, 107, 52–58. [Google Scholar] [CrossRef]
- Sengupta, P.; Borges, E.; Dutta, S.; Krajewska-Kulak, E. Decline in sperm count in European men during the past 50 years. Hum. Exp. Toxicol. 2018, 37, 247–255. [Google Scholar] [CrossRef]
- Krausz, C. Male infertility: Pathogenesis and clinical diagnosis. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 271–285. [Google Scholar] [CrossRef]
- Ballini, A.; Arrigoni, R.; Crocetto, F.; Risolo, R.; Colapietro, R.; Bellavita, R.; Barone, B.; Caputo, V.F.; Luca, G.; Grieco, P.; et al. Heavy Metal Pollution and Male Fertility: An Overview on Adverse Biological Effects and Socio-Economic Implications. Endocr. Metab. Immune Disord. Drug Targets 2023, 23, 129–146. [Google Scholar] [CrossRef]
- Lotti, F.; Maggi, M. Ultrasound of the male genital tract in relation to male reproductive health. Hum. Reprod. Updat. 2015, 21, 56–83. [Google Scholar] [CrossRef] [PubMed]
- Vockel, M.; Riera-Escamilla, A.; Tüttelmann, F.; Krausz, C. The X chromosome and male infertility. Hum. Genet. 2021, 140, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Ghuman, N.; Ramalingam, M. Male infertility. Obstet. Gynaecol. Reprod. Med. 2018, 28, 7–14. [Google Scholar] [CrossRef]
- Tomlinson, M.J. Uncertainty of measurement and clinical value of semen analysis: Has standardisation through professional guidelines helped or hindered progress? Andrology 2016, 4, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, H.; Ogawa, Y. Does a clinical varicocele influence the relationship between testicular volume by ultrasound and testicular function in patients with infertility? Fertil. Steril. 2009, 92, 1632–1637. [Google Scholar] [CrossRef] [PubMed]
- Forti, G.; Krausz, C. Evaluation and Treatment of the Infertile Couple1. J. Clin. Endocrinol. Metab. 1998, 83, 4177–4188. [Google Scholar] [CrossRef] [PubMed]
- Condorelli, R.; Calogero, A.E.; La Vignera, S. Relationship between Testicular Volume and Conventional or Nonconventional Sperm Parameters. Int. J. Endocrinol. 2013, 2013, 145792. [Google Scholar] [CrossRef] [PubMed]
- Lotti, F.; Frizza, F.; Balercia, G.; Barbonetti, A.; Behre, H.M.; Calogero, A.E.; Cremers, J.F.; Francavilla, F.; Isidori, A.M.; Kliesch, S.; et al. The European Academy of Andrology (EAA) ultrasound study on healthy, fertile men: Clinical, seminal and biochemical characteristics. Andrology 2020, 8, 1005–1020. [Google Scholar] [CrossRef]
- Fedder, J. Prevalence of small testicular hyperechogenic foci in subgroups of 382 non-vasectomized, azoospermic men: A retrospective cohort study. Andrology 2017, 5, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Loberant, N.; Bhatt, S.; McLennan, G.T.; Dogra, V.S. Striated Appearance of the Testes. Ultrasound Q. 2010, 26, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, X.; Yan, J.; Shu, H.; Li, Z.; Ye, C.; Chen, L.; Feng, C.; Zheng, Y. Non-invasive ultrasound localization microscopy (ULM) in azoospermia: Connecting testicular microcirculation to spermatogenic functions. Theranostics 2024, 14, 4967–4982. [Google Scholar] [CrossRef]
- Santi, D.; Spaggiari, G.; Granata, A.M. Testicular ultrasound inhomogeneity is an informative parameter for fertility evaluation. Asian J. Androl. 2020, 22, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Hajirasouliha, I.; Elemento, O. Precision medicine and artificial intelligence: Overview and relevance to reproductive medicine. Fertil. Steril. 2020, 114, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen; Geneva World Health Organization: Geneva, Switzerland, 2021; Volume 6, pp. 1–276. Available online: https://www.who.int/publications/i/item/9789240030787 (accessed on 17 April 2024).
- Liu, C.; Liu, X.; Zhang, X.; Yang, B.; Huang, L.; Wang, H.; Yu, H. Referential Values of Testicular Volume Measured by Ultrasonography in Normal Children and Adolescents: Z-Score Establishment. Front. Pediatr. 2021, 9, 648711. [Google Scholar] [CrossRef]
- Virgili, G.; Bove, P.; Tariciotti, P.; Antinori, M.; Antinori, S.; Vespasiani, G.; Cerusico, F. Correlation between testicular parenchymal echogenicity and male infertility. Arch. Ital. Urol. Androl. Organo Uff. [di] Soc. Ital. Ecogr. Urol. Nefrol. 2010, 82, 262–264. [Google Scholar]
- Pozza, C.; Kanakis, G.; Carlomagno, F.; Lemma, A.; Pofi, R.; Tenuta, M.; Minnetti, M.; Tarsitano, M.; Sesti, F.; Paoli, D.; et al. Testicular ultrasound score: A new proposal for a scoring system to predict testicular function. Andrology 2020, 8, 1051–1063. [Google Scholar] [CrossRef] [PubMed]
- Lenz, S.; Giwercman, A.; Elsborg, A.; Cohr, K.-H.; Jelnes, J.E.; Carlsen, E.; Skakkebœk, N.E. Ultrasonic Testicular Texture and Size in 444 Men from the General Population: Correlation to Semen Quality. Eur. Urol. 1993, 24, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Fanni, S.C.; Febi, M.; Colligiani, L.; Volpi, F.; Ambrosini, I.; Tumminello, L.; Aghakhanyan, G.; Aringhieri, G.; Cioni, D.; Neri, E. A first look into radiomics application in testicular imaging: A systematic review. Front. Radiol. 2023, 3, 1141499. [Google Scholar] [CrossRef] [PubMed]
- De Santi, B.; Spaggiari, G.; Granata, A.R.; Romeo, M.; Molinari, F.; Simoni, M.; Santi, D. From subjective to objective: A pilot study on testicular radiomics analysis as a measure of gonadal function. Andrology 2022, 10, 505–517. [Google Scholar] [CrossRef]
- Taye, M.M. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers 2023, 12, 91. [Google Scholar] [CrossRef]
Parameter | Before Augmentation | After Augmentation | |
---|---|---|---|
Sperm Concentration | Oligospermia | 152 | 456 |
Normal | 340 | 340 | |
Motility | Asthenozoospermia | 104 | 312 |
Normal | 388 | 388 | |
Morphology | Teratozoospermia | 310 | 310 |
Normal | 182 | 364 |
Parameter | Mean ± SD (Range) |
---|---|
Age | 33.7 ± 7.3 (18–54) |
BMI | 26.9 ± 4.4 (16–43) |
FSH (n = 231) | 4.6 ± 3.8 (0.3–23.0) |
LH (n = 230) | 4.3 ± 2.4 (0.8–27.0 |
Testosterone (n = 231) | 428.1 ± 181.8 (47.0–1451.6) |
Seminal Volume | 3.8 ± 1.7 (0.8–13.0) |
Sperm Concentration | 40.5 × 106 ± 34.6 × 106 (105–163 × 106) |
Progressive Motility | 37.6 ± 14.0 (0–68) |
Morphology | 2.8 ± 2.2 (0–9) |
Right Testis Volume | 17.4 ± 6.0 (4.0–35.4) |
Left Testis Volume | 15.9 ± 5.9 (2.2–32.9) |
Total Testis Volume | ||
---|---|---|
Correlation Coefficient (r) | p | |
Volume | −0.067 | 0.295 |
Sperm Concentration | 0.403 | 0.001 |
Progressive Motility | 0.204 | 0.001 |
Morphology | 0.314 | <0.001 |
Parameter | Training | Test |
---|---|---|
Sperm concentration | 638 | 160 |
Progressive motility | 560 | 140 |
Morphology | 539 | 135 |
AUC | Accuracy | Precision | Specificity | Recall | F1 Score | |
---|---|---|---|---|---|---|
Sperm concentration | 0.76 | 0.68 | 0.62 | 0.59 | 0.79 | 0.69 |
Progressive motility | 0.89 | 0.83 | 0.78 | 0.76 | 0.90 | 0.84 |
Morphology | 0.86 | 0.79 | 0.77 | 0.81 | 0.77 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagir, L.; Kaba, E.; Huner Yigit, M.; Tasci, F.; Uzun, H. Predicting Semen Analysis Parameters from Testicular Ultrasonography Images Using Deep Learning Algorithms: An Innovative Approach to Male Infertility Diagnosis. J. Clin. Med. 2025, 14, 516. https://doi.org/10.3390/jcm14020516
Sagir L, Kaba E, Huner Yigit M, Tasci F, Uzun H. Predicting Semen Analysis Parameters from Testicular Ultrasonography Images Using Deep Learning Algorithms: An Innovative Approach to Male Infertility Diagnosis. Journal of Clinical Medicine. 2025; 14(2):516. https://doi.org/10.3390/jcm14020516
Chicago/Turabian StyleSagir, Lutfullah, Esat Kaba, Merve Huner Yigit, Filiz Tasci, and Hakki Uzun. 2025. "Predicting Semen Analysis Parameters from Testicular Ultrasonography Images Using Deep Learning Algorithms: An Innovative Approach to Male Infertility Diagnosis" Journal of Clinical Medicine 14, no. 2: 516. https://doi.org/10.3390/jcm14020516
APA StyleSagir, L., Kaba, E., Huner Yigit, M., Tasci, F., & Uzun, H. (2025). Predicting Semen Analysis Parameters from Testicular Ultrasonography Images Using Deep Learning Algorithms: An Innovative Approach to Male Infertility Diagnosis. Journal of Clinical Medicine, 14(2), 516. https://doi.org/10.3390/jcm14020516