Advances in Extracellular Matrix-Associated Diagnostics and Therapeutics
Abstract
:1. Introduction
- Common mechanisms of fibrosis: Studies explored the common molecular pathways underlying fibrosis across various organs and diseases. An emphasis was placed on mechanisms of tissue formation by activated fibroblasts and immune cell–mediated tissue destruction as a central component of the fibroinflammatory axis.
- Fibroblast action and heterogeneity: The importance of fibroblast activation, ECM production and deposition for clinical outcomes, and the heterogeneity of fibroblast function were discussed.
- Genetic and molecular markers: Research highlighted findings on genetic and molecular markers implicated in fibrosis and related chronic diseases.
- Therapeutic approaches: Developments included novel treatments targeting fibrosis, drug testing, potential biomarkers for early diagnoses, monitoring of disease progression, pharmacodynamic effects, and intervention efficacy.
- Disease models: Advancements in the development and utilization of animal models to study fibrosis and ECM remodeling across organs were showcased. In vitro and ex vivo technologies that support and advance drug development were highlighted.
2. The ECM in Lung Diseases: Genetics, Mechanisms, and Biomarkers of Interstitial Lung Diseases
3. Cardiovascular and Renal ECM Research
Therapeutic Approaches
4. Advances in ECM Pharmacology in Inflammatory Bowel Disease
4.1. Recent Highlights in ECM-Targeted Therapeutics
4.1.1. Integrin Antagonists
4.1.2. JAK Inhibitors
4.1.3. Therapeutic Targeting of ECM Remodeling Pathways
4.1.4. Neutrophil Extracellular Traps (Nets) and Involvement in Fibrosis
5. Quantifying Fibrolytic and Fibrogenic Activity in Rheumatic Diseases
5.1. A Role for Synovial Fibroblasts in Mediating Chronic Pain Sensitization
5.2. Role of Synovial Fibroblasts in Inflammation, Damage, and Repair
6. Understanding the ECM in Liver Fibrosis—Paving the Way Toward Antifibrogenic Interventions
7. Liver Fibrosis—Cause or Consequence of Cancer
8. Skin Diseases
9. Systemic Sclerosis
10. Cancer
10.1. Understanding ECM Changes Associated with Cancer
10.2. Biomarkers in Solid Tumors
10.3. Targeting ECM Changes in the Treatment of Cancer
10.4. Future Directions
- Further investigations into the specific signaling pathways and molecular mechanisms by which the ECM influences tumor behavior are needed. These should encompass ECM deposition and turnover, as well as the implications of changes in ECM architecture, biochemistry, and biomechanics.
- A deeper understanding of how the ECM contributes to the immunosuppressive tumor microenvironment and influences the infiltration and function of various immune cells is needed to identify new strategies for enhancing immunotherapy efficacy.
- Identification and validation of biomarkers that reflect ECM changes in tumors to enable early diagnosis, prognosis assessment, and monitoring of responses to both ECM targeting and conventional therapies are necessary.
- The development and evaluation of novel therapeutic agents or the repurposing of antifibrotic drugs for cancer that specifically target ECM components or ECM-modulated signaling pathways should also be pursued. Potential approaches include the use of small molecules, antibodies, and gene therapies aimed at normalizing the ECM.
- Further research is needed to investigate ECM variability not only across different tumor types but, more importantly, within distinct regions of the same tumor. Understanding how ECM composition correlates with cellular heterogeneity could enable the development of more precise, patient-specific therapeutic strategies.
- Investigating how tumor ECM alterations contribute to drug resistance in cancer cells and tumors, as a whole, is crucial. Uncovering the underlying mechanisms will help identify strategies to overcome resistance and enhance the effectiveness of existing therapies.
- Leveraging advanced technologies from bioengineering, imaging, and computational modeling will enable a more detailed study of the ECM. These approaches will provide new insights into its architectural, biophysical, and biochemical properties and their effects on cancer cells.
- Advancing ECM-related discoveries from the laboratory to clinical trials will require innovative study designs that, for example, focus on high-tissue-formation endotypes. Such approaches will be crucial for evaluating the safety and efficacy of ECM-targeting therapies.
11. Translational Mouse Models of Fibrotic Diseases: Where Do We Stand?
11.1. In Vitro and Ex Vivo Human Models
11.2. Fibroblast Activation and Heterogeneity
12. Proteomics
13. ECM Autoimmunity
14. ECM Biomarkers and Precision Medicine
14.1. Precision Medicine
14.2. The Relevance of the ECM
14.3. ECM Biomarkers
14.4. Outlook
15. Drug Discovery in IPF—How Can Biomarkers Support Key Decisions?
16. Imaging Techniques for ECM in Health and Disease
17. Translational Approaches to Directly Treat Liver Fibrosis and Liver Cancer
18. Conclusions and Perspectives
- Proteomic approaches to detecting disease-induced peptide fingerprints [228] (peptide location fingerprints identify species- and tissue-conserved structural remodeling of proteins resulting from aging and disease) are needed to identify new biomarker ECM fragments, including bioactive matrikines.
- Going beyond collagen biomarkers, attention should be paid to the development of proteoglycans, elastin, and other ECM proteins (which play a role in fibrosis and inflammation) for the diagnosis of diseases and monitoring of disease progression and therapeutic efficacy. We need to enable clinical chemistry to separate tissue formation from tissue destruction, which can help in the discovery and modulation of individual paths for tissue formation and tissue destruction disorders.
- Increasing the use of organs on chips as ex vivo disease models and moving away from cell culture on standard plastic dishes will increase in vivo likeness and improve target discovery and validation.
- New microscopy approaches need to be developed to monitor ECM organization and its alteration in diseases. This will help to distinguish between the regenerative response of basement membrane fibrosis and the dangerous myofibroblast activation and production in the fibrillar dense collagen of the interstitial matrix that overgrows the parenchymal tissue.
- Identifying new mechanisms/pathways could lead to drug repositioning through the establishment of a common denominator in organ fibrosis, allowing for an understanding of regenerating tissues.
- Inhibiting hepatic stellate cells, i.e., myofibroblasts, may have both cancer and antifibrotic therapeutic potential. Moreover, drug resistance in solid tumor types may be conferred by fibroblast activity.
- The development of drugs targeting specific disease stages (e.g., the autocrine signaling network driving “cold fibrosis”, i.e., lacking inflammatory cells) is driven by unique receptor–ligand pairs that are more dominant in advanced stages and represent novel therapeutic targets in liver fibrosis.
- Recognizing the interplay between the ECM and immune cells is essential because both hot and cold fibrosis exist, as in solid tumors [229]. The ECM may play a role not only in immunity and inflammation but also in targeting and excluding specific cell types.
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
General and ECM-Related Molecules | |
ADAPT | A PRO-C3-based score |
AMP | Adenosine Monophosphate |
COL | Collagen |
ECM | Extracellular Matrix |
ELF | Enhanced Liver Fibrosis Test |
GAG | Glycosaminoglycan |
LOX | Lysyl Oxidase |
MMP | Matrix Metalloproteinase |
PRO-C3 | Marker of Type III Collagen Formation |
PRO-C6 | Marker of Type VI Collagen Formation |
TGF-β | Transforming Growth Factor Beta |
TIMPs | Tissue Inhibitors of Metalloproteinases |
VEGF | Vascular Endothelial Growth Factor |
Key Diseases | |
CKD | Chronic Kidney Disease |
COPD | Chronic Obstructive Pulmonary Disease |
HFpEF | Heart Failure with Preserved Ejection Fraction |
IBD | Inflammatory Bowel Disease |
IPF | Idiopathic Pulmonary Fibrosis |
NAFLD | Non-Alcoholic Fatty Liver Disease |
NASH | Non-Alcoholic Steatohepatitis |
MASH | Metabolic Dysfunction-Associated Steatohepatitis |
OA | Osteoarthritis |
RA | Rheumatoid Arthritis |
SLE | Systemic Lupus Erythematosus |
SSC | Systemic Sclerosis |
UC | Ulcerative Colitis |
Techniques and Technologies | |
AFM | Atomic Force Microscopy |
CT | Computed Tomography |
DDA | Data-Dependent Acquisition |
DIA | Data-Independent Acquisition |
ELISA | Enzyme-Linked Immunosorbent Assay |
MALDI | Matrix-Assisted Laser Desorption–Ionization |
MRI | Magnetic Resonance Imaging |
PET | Positron Emission Tomography |
RNAseq | RNA Sequencing |
SHG | Second Harmonic Generation |
TEM | Transmission Electron Microscopy |
Key Cells and Biomarkers | |
CAFs | Cancer-Associated Fibroblasts |
HSCs | Hepatic Stellate Cells |
NETs | Neutrophil Extracellular Traps |
References
- Karsdal, M.A.; Detlefsen, S.; Daniels, S.J.; Nielsen, M.J.; Krag, A.; Schuppan, D. Is the Total Amount as Important as Localization and Type of Collagen in Liver Fibrosis Attributable to Steatohepatitis? Hepatology 2019, 71, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Karsdal, M.A.; Kraus, V.B.; Shevell, D.; Bay-Jensen, A.C.; Schattenberg, J.; Surabattula, R.R.; Schuppan, D. Profiling and targeting connective tissue remodeling in autoimmunity—A novel paradigm for diagnosing and treating chronic diseases. Autoimmun. Rev. 2020, 20, 102706. [Google Scholar] [CrossRef] [PubMed]
- Karsdal, M.A.; Nielsen, S.H.; Leeming, D.J.; Langholm, L.L.; Nielsen, M.J.; Manon-Jensen, T.; Siebuhr, A.; Gudmann, N.S.; Ronnow, S.; Sand, J.M.; et al. The good and the bad collagens of fibrosis—Their role in signaling and organ function. Adv. Drug Deliv. Rev. 2017, 121, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Karsdal, M.A.; Daniels, S.J.; Nielsen, S.H.; Bager, C.; Rasmussen, D.G.K.; Loomba, R.; Surabattula, R.; Villesen, I.F.; Luo, Y.; Shevell, D.; et al. Collagen biology and non-invasive biomarkers of liver fibrosis. Liver Int. 2020, 40, 736–750. [Google Scholar] [CrossRef]
- Zawadzki, A.; Leeming, D.J.; Sanyal, A.J.; Anstee, Q.M.; Schattenberg, J.M.; Friedman, S.L.; Schuppan, S.D.; Karsdal, M.A. Hot and Cold Fibrosis: The Role of Serum Biomarkers to Assess the Immune Mechanisms and ECM-Cell Interactions in Human Fibrosis. J. Hepatol. 2025; in press. [Google Scholar]
- Karsdal, M.A.; Genovese, F.; Madsen, E.A.; Manon-Jensen, T.; Schuppan, D. Collagen and tissue turnover as a function of age: Implications for fibrosis. J. Hepatol. 2016, 64, 103–109. [Google Scholar] [CrossRef]
- Althobiani, M.A.; Russell, A.-M.; Jacob, J.; Ranjan, Y.; Folarin, A.A.; Hurst, J.R.; Porter, J.C. Interstitial lung disease: A review of classification, etiology, epidemiology, clinical diagnosis, pharmacological and non-pharmacological treatment. Front. Med. 2024, 11, 1296890. [Google Scholar] [CrossRef]
- Borie, R.; Le Guen, P.; Ghanem, M.; Taillé, C.; Dupin, C.; Dieudé, P.; Kannengiesser, C.; Crestani, B. The genetics of interstitial lung diseases. Eur. Respir. Rev. 2019, 28, 190053. [Google Scholar] [CrossRef]
- Wang, D.; Ni, Y.; Liu, B.; Ding, H.; John, A.; Wain, L.V.; Johnson, S.R.; Maher, T.M.; Molyneaux, P.L.; Renzoni, E.; et al. Genetic burden of dysregulated cytoskeletal organisation in the pathogenesis of pulmonary fibrosis. bioRxiv 2024. [Google Scholar] [CrossRef]
- Chowdhury, A.; Hasselbach, L.; Echtermeyer, F.; Jyotsana, N.; Theilmeier, G.; Herzog, C. Fibulin-6 regulates pro-fibrotic TGF-β responses in neonatal mouse ventricular cardiac fibroblasts. Sci. Rep. 2017, 7, srep42725. [Google Scholar] [CrossRef]
- Adams, T.S.; Schupp, J.C.; Poli, S.; Ayaub, E.A.; Neumark, N.; Ahangari, F.; Chu, S.G.; Raby, B.A.; DeIuliis, G.; Januszyk, M.; et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci. Adv. 2020, 6, eaba1983. [Google Scholar] [CrossRef]
- Axelsson, G.T.; Gudmundsson, G.; Pratte, K.A.; Aspelund, T.; Putman, R.K.; Sanders, J.L.; Gudmundsson, E.F.; Hatabu, H.; Gudmundsdottir, V.; Gudjonsson, A.; et al. The Proteomic Profile of Interstitial Lung Abnormalities. Am. J. Respir. Crit. Care Med. 2022, 206, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Leuschner, G.; Semenova, A.; Mayr, C.H.; Kapellos, T.S.; Ansari, M.; Seeliger, B.; Frankenberger, M.; Kneidinger, N.; Hatz, R.A.; Hilgendorff, A.; et al. Mass spectrometry-based autoimmune profiling reveals predictive autoantigens in idiopathic pulmonary fibrosis. iScience 2023, 26, 108345. [Google Scholar] [CrossRef] [PubMed]
- Calver, J.F.; Parmar, N.R.; Harris, G.; Lithgo, R.M.; Stylianou, P.; Zetterberg, F.R.; Gooptu, B.; Mackinnon, A.C.; Carr, S.B.; Borthwick, L.A.; et al. Defining the mechanism of galectin-3–mediated TGF-β1 activation and its role in lung fibrosis. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Ravassa, S.; López, B.; Ferreira, J.P.; Girerd, N.; Bozec, E.; Pellicori, P.; Mariottoni, B.; Cosmi, F.; Hazebroek, M.; Verdonschot, J.A.; et al. Biomarker-based assessment of collagen cross-linking identifies patients at risk of heart failure more likely to benefit from spironolactone effects on left atrial remodelling. Insights from the HOMAGE clinical trial. Eur. J. Heart Fail. 2021, 24, 321–331. [Google Scholar] [CrossRef]
- Monzo, L.; Ferreira, J.P.; Cleland, J.G.; Pellicori, P.; Mariottoni, B.; Verdonschot, J.A.; Hazebroek, M.R.; Collier, T.J.; Cuthbert, J.J.; Pieske, B.; et al. Dyskalemia in people at increased risk for heart failure: Findings from the heart ‘OMics’ in AGEing (HOMAGE) trial. ESC Heart Fail. 2022, 9, 4352–4357. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, S.; Tavormina, J.; Tampe, D.; Zeisberg, M.; Wang, H.; Mahadevan, K.K.; Wu, C.-J.; Sugimoto, H.; Chang, C.-C.; et al. Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell 2022, 40, 818–834.e9. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Butler, J.; Anker, S.D.; Januzzi, J.L.; Panova-Noeva, M.; Reese-Petersen, A.L.; Sattar, N.; Schueler, E.; Pocock, S.J.; Filippatos, G.; et al. Effects of empagliflozin on collagen biomarkers in patients with heart failure: Findings from the EMPEROR trials. Eur. J. Heart Fail. 2023, 26, 274–284. [Google Scholar] [CrossRef]
- Nielsen, S.H.; Mygind, N.D.; Michelsen, M.M.; Bechsgaard, D.F.; Suhrs, H.E.; Genovese, F.; Nielsen, H.B.; Brix, S.; Karsdal, M.; Prescott, E.; et al. Accelerated collagen turnover in women with angina pectoris without obstructive coronary artery disease: An iPOWER substudy. Eur. J. Prev. Cardiol. 2018, 25, 719–727. [Google Scholar] [CrossRef]
- Yokota, T.; McCourt, J.; Ma, F.; Ren, S.; Li, S.; Kim, T.-H.; Kurmangaliyev, Y.Z.; Nasiri, R.; Ahadian, S.; Nguyen, T.; et al. Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury. Cell 2020, 182, 545–562.e23. [Google Scholar] [CrossRef]
- Genovese, F.; A Manresa, A.; Leeming, D.J.; Karsdal, M.A.; Boor, P. The extracellular matrix in the kidney: A source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenes. Tissue Repair 2014, 7, 4. [Google Scholar] [CrossRef]
- Henriksen, K.; Genovese, F.; Reese-Petersen, A.; Audoly, L.P.; Sun, K.; Karsdal, M.A.; Scherer, P.E. Endotrophin, a Key Marker and Driver for Fibroinflammatory Disease. Endocr. Rev. 2023, 45, 361–378. [Google Scholar] [CrossRef] [PubMed]
- Genovese, F.; Bager, C.; Frederiksen, P.; Vazquez, D.; Sand, J.M.B.; Jenkins, R.G.; Maher, T.M.; Stewart, I.D.; Molyneaux, P.L.; Fahy, W.A.; et al. The fibroblast hormone Endotrophin is a biomarker of mortality in chronic diseases. Matrix Biol. 2024, 132, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kamphaus, G.D.; Colorado, P.C.; Panka, D.J.; Hopfer, H.; Ramchandran, R.; Torre, A.; Maeshima, Y.; Mier, J.W.; Sukhatme, V.P.; Kalluri, R. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J. Biol. Chem. 2000, 275, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Reese-Petersen, A.L.; Olesen, M.S.; Karsdal, M.A.; Svendsen, J.H.; Genovese, F. Atrial fibrillation and cardiac fibrosis: A review on the potential of extracellular matrix proteins as biomarkers. Matrix Biol. 2020, 91–92, 188–203. [Google Scholar] [CrossRef]
- Nielsen, S.H.; Tengryd, C.; Edsfeldt, A.; Brix, S.; Genovese, F.; Bengtsson, E.; Karsdal, M.; Leeming, D.J.; Nilsson, J.; Goncalves, I. A biomarker of collagen type I degradation is associated with cardiovascular events and mortality in patients with atherosclerosis. J. Intern. Med. 2018, 285, 118–123. [Google Scholar] [CrossRef]
- Bertelsen, D.M.; Neergaard, J.S.; Bager, C.L.; Nielsen, S.H.; Secher, N.H.; Svendsen, J.H.; Bihlet, A.R.; Andersen, J.R.; Karsdal, M.A.; Christiansen, C.; et al. Matrix Metalloproteinase Mediated Type I Collagen Degradation is an Independent Predictor of Increased Risk of Acute Myocardial Infarction in Postmenopausal Women. Sci. Rep. 2018, 8, 5371. [Google Scholar] [CrossRef]
- Dragsbæk, K.; Neergaard, J.; Hansen, H.; Byrjalsen, I.; Alexandersen, P.; Kehlet, S.; Bay-Jensen, A.-C.; Christiansen, C.; Karsdal, M. Matrix Metalloproteinase Mediated Type I Collagen Degradation—An Independent Risk Factor for Mortality in Women. eBioMedicine 2015, 2, 723–729. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Chandra, J.; Ivanov, A.; Brown, J.M.; Rieder, F. Preventing fibrosis in IBD: Update on immune pathways and clinical strategies. Expert Rev. Clin. Immunol. 2024, 20, 727–734. [Google Scholar] [CrossRef]
- De Bruyn, J.R.; Becker, M.A.; Steenkamer, J.; Wildenberg, M.E.; Meijer, S.L.; Buskens, C.J.; Bemelman, W.A.; Löwenberg, M.; Ponsioen, C.Y.; van den Brink, G.R.; et al. Intestinal fibrosis is associated with lack of response to Infliximab therapy in Crohn’s disease. PLoS ONE 2018, 13, e0190999. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Nguyen, Q.T.; Li, J.; Zhao, S.; Christensen, S.M.; West, G.A.; Chandra, J.; Gordon, I.O.; Lin, S.; Wang, J.; et al. Stricturing Crohn’s Disease Single-Cell RNA Sequencing Reveals Fibroblast Heterogeneity and Intercellular Interactions. Gastroenterology 2023, 165, 1180–1196. [Google Scholar] [CrossRef]
- Honap, S.; Jairath, V.; Danese, S.; Peyrin-Biroulet, L. Navigating the complexities of drug development for inflammatory bowel disease. Nat. Rev. Drug Discov. 2024, 23, 546–562. [Google Scholar] [CrossRef]
- Pehrsson, M.; Alexdóttir, M.S.; Karsdal, M.A.; Thakker, P.; Mortensen, J. Novel fibro-inflammatory biomarkers associated with disease activity in patients with Crohn’s disease. Expert Rev. Gastroenterol. Hepatol. 2023, 17, 575–587. [Google Scholar] [CrossRef]
- Lin, S.-N.; Musso, A.; Wang, J.; Mukherjee, P.K.; West, G.A.; Mao, R.; Lyu, R.; Li, J.; Zhao, S.; Elias, M.; et al. Human intestinal myofibroblasts deposited collagen VI enhances adhesiveness for T cells—A novel mechanism for maintenance of intestinal inflammation. Matrix Biol. 2022, 113, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.H.; Mortensen, J.H.; Willumsen, N.; Rasmussen, D.G.K.; Mogensen, D.J.; Di Sabatino, A.; Mazza, G.; Jørgensen, L.N.; Giuffrida, P.; Pinzani, M.; et al. A Fragment of Collagen Type VI alpha-3 chain is Elevated in Serum from Patients with Gastrointestinal Disorders. Sci. Rep. 2020, 10, 5910. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Pokatayev, V.; Lefkovith, A.; Carter, G.T.; Creasey, E.A.; Krishna, C.; Subramanian, S.; Kochar, B.; Ashenberg, O.; Lau, H.; et al. The landscape of immune dysregulation in Crohn’s disease revealed through single-cell transcriptomic profiling in the ileum and colon. Immunity 2023, 56, 444–458.e5. [Google Scholar] [CrossRef]
- Mennillo, E.; Kim, Y.J.; Lee, G.; Rusu, I.; Patel, R.K.; Dorman, L.C.; Flynn, E.; Li, S.; Bain, J.L.; Andersen, C.; et al. Single-cell and spatial multi-omics highlight effects of anti-integrin therapy across cellular compartments in ulcerative colitis. Nat. Commun. 2024, 15, 1493. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.; Kurada, S.; Gordon, I.O.; Baker, M.E.; Gandhi, N.; McDonald, C.; Coffey, J.C.; Rieder, F. The Mesenteric Fat and Intestinal Muscle Interface: Creeping Fat Influencing Stricture Formation in Crohn’s Disease. Inflamm. Bowel Dis. 2018, 25, 421–426. [Google Scholar] [CrossRef]
- Mortensen, J.H.; Bay-Jensen, A.-C.; Karsdal, M.A.; Ostanin, D.; Galinsky, K.; Aubrecht, J.; Yajnik, V. Su435 Biomarkers of extracellular matrix remodeling identify responders to vedolizumab therapy in subjects with ulcerative colitis in the Gemini I study. Gastroenterology 2021, 160, S-688. [Google Scholar] [CrossRef]
- Czarnewski, P.; Parigi, S.M.; Sorini, C.; Diaz, O.E.; Das, S.; Gagliani, N.; Villablanca, E.J. Conserved transcriptomic profile between mouse and human colitis allows unsupervised patient stratification. Nat. Commun. 2019, 10, 2892. [Google Scholar] [CrossRef]
- De Vries, L.; Wildenberg, M.; De Jonge, W.; D’haens, G. The Future of Janus Kinase Inhibitors in Inflammatory Bowel Disease. J. Crohn’s Colitis 2017, 11, 885–893. [Google Scholar] [CrossRef]
- Lu, C.; Rosentreter, R.; Delisle, M.; White, M.; Parker, C.E.; Premji, Z.; Wilson, S.R.; Baker, M.E.; Bhatnagar, G.; Begun, J.; et al. Systematic review: Defining, diagnosing and monitoring small bowel strictures in Crohn’s disease on intestinal ultrasound. Aliment. Pharmacol. Ther. 2024, 59, 928–940. [Google Scholar] [CrossRef]
- Rieder, F.; Mukherjee, P.K.; Massey, W.J.; Wang, Y.; Fiocchi, C. Fibrosis in IBD: From pathogenesis to therapeutic targets. Gut 2024, 73, 854–866. [Google Scholar] [CrossRef] [PubMed]
- Roblin, X.; Serone, A.; Yoon, O.K.; Zhuo, L.; Grant, E.; Woo, J.; Liu, J.; Galien, R.; D’haens, G. Effects of JAK1-Preferential Inhibitor Filgotinib on Circulating Biomarkers and Whole Blood Genes/Pathways of Patients with Moderately to Severely Active Crohn’s Disease. Inflamm. Bowel Dis. 2021, 28, 1207–1218. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F.; Luo, F. The Role of JAK/STAT Pathway in Fibrotic Diseases: Molecular and Cellular Mechanisms. Biomolecules 2023, 13, 119. [Google Scholar] [CrossRef] [PubMed]
- Malabarba, M.G.; Rui, H.; Deutsch, H.H.J.; Chung, J.; Kalthoff, F.S.; Farrar, W.L.; Kirken, R.A. Interleukin-13 is a potent activator of JAK3 and STAT6 in cells expressing interleukin-2 receptor-γ and interleukin-4 receptor-α. Biochem. J. 1996, 319, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Monteleone, G.; Boirivant, M.; Pallone, F.; MacDonald, T.T. TGF-β1 and Smad7 in the regulation of IBD. Mucosal Immunol. 2008, 1, S50–S53. [Google Scholar] [CrossRef]
- Del Zotto, B.; Mumolo, G.; Pronio, A.M.; Montesani, C.; Tersigni, R.; Boirivant, M. TGF-β1 production in inflammatory bowel disease: Differing production patterns in Crohn’s disease and ulcerative colitis. Clin. Exp. Immunol. 2003, 134, 120–126. [Google Scholar] [CrossRef]
- Lawrance, I.C.; Maxwell, L.; Doe, W. Inflammation Location, But Not Type, Determines the Increase in TGF-β1 and IGF-1 Expression and Collagen Deposition in IBD Intestine. Inflamm. Bowel Dis. 2001, 7, 16–26. [Google Scholar] [CrossRef]
- Madsen, S.F.; Madsen, S.S.; Madrid, A.S.; Andersen, M.R.; Bay-Jensen, A.-C.; Thudium, C.S. Fibrotic remodeling in joint diseases: Induction and inhibition of fibrosis in fibroblast-like synoviocytes. Transl. Med. Commun. 2024, 9, 18. [Google Scholar] [CrossRef]
- Holvoet, T.; Devriese, S.; Castermans, K.; Boland, S.; Leysen, D.; Vandewynckel, Y.-P.; Devisscher, L.; Van den Bossche, L.; Van Welden, S.; Dullaers, M.; et al. Treatment of Intestinal Fibrosis in Experimental Inflammatory Bowel Disease by the Pleiotropic Actions of a Local Rho Kinase Inhibitor. Gastroenterology 2017, 153, 1054–1067. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, S.; Jiang, Q. Role of Rho kinase signal pathway in inflammatory bowel disease. Int. J. Clin. Exp. Med. 2015, 8, 3089–3097. [Google Scholar]
- Xiong, S.; Whitehurst, C.E.; Li, L.; Heo, G.S.; Lai, C.-W.; Jain, U.; Muegge, B.D.; Espenschied, S.T.; Musich, R.J.; Chen, M.; et al. Reverse translation approach generates a signature of penetrating fibrosis in Crohn’s disease that is associated with anti-TNF response. Gut 2021, 71, 1289–1301. [Google Scholar] [CrossRef]
- Delgado-Rizo, V.; Martínez-Guzmán, M.A.; Iñiguez-Gutierrez, L.; García-Orozco, A.; Alvarado-Navarro, A.; Fafutis-Morris, M. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front. Immunol. 2017, 8, 81. [Google Scholar] [CrossRef] [PubMed]
- Bennike, T.B.; Carlsen, T.G.; Ellingsen, T.; Bonderup, O.K.; Glerup, H.; Bøgsted, M.; Christiansen, G.; Birkelund, S.; Stensballe, A.; Andersen, V. Neutrophil Extracellular Traps in Ulcerative Colitis: A proteome analysis of intestinal biopsies. Inflamm. Bowel Dis. 2015, 21, 2052–2067. [Google Scholar] [CrossRef] [PubMed]
- Alexdottir, M.S.; Bourgonje, A.R.; Karsdal, M.A.; Pehrsson, M.; Loveikyte, R.; van Dullemen, H.M.; Visschedijk, M.C.; Festen, E.A.M.; Weersma, R.K.; Faber, K.N.; et al. Serological Biomarkers of Extracellular Matrix Turnover and Neutrophil Activity Are Associated with Long-Term Use of Vedolizumab in Patients with Crohn’s Disease. Int. J. Mol. Sci. 2022, 23, 8137. [Google Scholar] [CrossRef]
- Mortensen, J.H.; Sinkeviciute, D.; Manon-Jensen, T.; Domislović, V.; McCall, K.; Thudium, C.S.; Brinar, M.; Önnerfjord, P.; Goodyear, C.S.; Krznarić, Ž.; et al. A Specific Calprotectin Neo-epitope [CPa9-HNE] in Serum from Inflammatory Bowel Disease Patients Is Associated with Neutrophil Activity and Endoscopic Severity. J. Crohn’s Colitis 2022, 16, 1447–1460. [Google Scholar] [CrossRef]
- Schroder, A.L.; Chami, B.; Liu, Y.; Doyle, C.M.; El Kazzi, M.; Ahlenstiel, G.; Ahmad, G.; Pathma-Nathan, N.; Collins, G.; Toh, J.; et al. Neutrophil Extracellular Trap Density Increases with Increasing Histopathological Severity of Crohn’s Disease. Inflamm. Bowel Dis. 2021, 28, 586–598. [Google Scholar] [CrossRef] [PubMed]
- Dragoni, G.; Ke, B.-J.; Picariello, L.; Abdurahiman, S.; Ceni, E.; Biscu, F.; Mello, T.; Polvani, S.; Innocenti, T.; Spalart, V.; et al. The Impact of Peptidyl Arginine Deiminase 4-Dependent Neutrophil Extracellular Trap Formation on the Early Development of Intestinal Fibrosis in Crohn’s Disease. J. Crohn’s Colitis 2024, 19, jjae121. [Google Scholar] [CrossRef]
- Bay-Jensen, A.C.; Platt, A.; Siebuhr, A.S.; Christiansen, C.; Byrjalsen, I.; Karsdal, M.A. Early changes in blood-based joint tissue destruction biomarkers are predictive of response to tocilizumab in the LITHE study. Arthritis Res. Ther. 2016, 18, 13. [Google Scholar] [CrossRef]
- Karsdal, M.A.; Bay-Jensen, A.C.; Leeming, D.J.; Henriksen, K.; Christiansen, C. Quantification of “end products” of tissue destruction in inflammation may reflect convergence of cytokine and signaling pathways—Implications for modern clinical chemistry. Biomarkers 2013, 18, 375–378. [Google Scholar] [CrossRef]
- Madsen, S.F.; Sinkeviciute, D.; Thudium, C.S.; Karsdal, M.A.; Bay-Jensen, A.-C. The fibroid phenotype of biological naïve patients with rheumatoid arthritis are less likely to respond to anti-IL-6R treatment. Sci. Rep. 2024, 14, 10751. [Google Scholar] [CrossRef] [PubMed]
- Rivellese, F.; Surace, A.E.A.; Goldmann, K.; Sciacca, E.; Çubuk, C.; Giorli, G.; John, C.R.; Nerviani, A.; Fossati-Jimack, L.; Thorborn, G.; et al. Rituximab versus tocilizumab in rheumatoid arthritis: Synovial biopsy-based biomarker analysis of the phase 4 R4RA randomized trial. Nat. Med. 2022, 28, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Ravn, P.; Clemmesen, B.; Christiansen, C. Biochemical markers can predict the response in bone mass during alendronate treatment in early postmenopausal women. Bone 1999, 24, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Bay-Jensen, A.C.; Siebuhr, A.S.; Damgaard, D.; Drobinski, P.; Thudium, C.; Mortensen, J.; Nielsen, C.H. Objective and noninvasive biochemical markers in rheumatoid arthritis: Where are we and where are we going? Expert Rev. Proteom. 2021, 18, 159–175. [Google Scholar] [CrossRef]
- Schett, G.; Loza, M.J.; Palanichamy, A.; FitzGerald, O.; Ritchlin, C.; Bay-Jensen, A.-C.; Nielsen, S.H.; Gao, S.; Hsia, E.C.; Kollmeier, A.P.; et al. Collagen Turnover Biomarkers Associate with Active Psoriatic Arthritis and Decrease with Guselkumab Treatment in a Phase 3 Clinical Trial (DISCOVER-2). Rheumatol. Ther. 2022, 9, 1017–1030. [Google Scholar] [CrossRef]
- Gabay, C.; Msihid, J.; Zilberstein, M.; Paccard, C.; Lin, Y.; Graham, N.M.H.; Boyapati, A. Identification of sarilumab pharmacodynamic and predictive markers in patients with inadequate response to TNF inhibition: A biomarker substudy of the phase 3 TARGET study. RMD Open 2018, 4, e000607. [Google Scholar] [CrossRef]
- Thudium, C.S.; Bay-Jensen, A.C.; Cahya, S.; Dow, E.R.; Karsdal, M.A.; Koch, A.E.; Zhang, W.; Benschop, R.J. The Janus kinase 1/2 inhibitor baricitinib reduces biomarkers of joint destruction in moderate to severe rheumatoid arthritis. Arthritis Res. Ther. 2020, 22, 235. [Google Scholar] [CrossRef]
- Port, H.; Christiansen, F.; Nielsen, S.H.; Frederiksen, P.; Bay-Jensen, A.-C.; Karsdal, M.A.; Seven, S.; Sørensen, I.J.; Loft, A.G.; Madsen, O.R.; et al. Identification of patient endotypes and adalimumab treatment responders in axial spondyloarthritis using blood-derived extracellular matrix biomarkers. RMD Open 2024, 10, e003769. [Google Scholar] [CrossRef]
- Drobinski, P.J.; Bay-Jensen, A.C.; Karsdal, M.A.; Sardar, S.; Siebuhr, A.S. Connective tissue remodelling is differently modulated by tocilizumab versus methotrexate monotherapy in patients with early rheumatoid arthritis: The AMBITION study. Arthritis Res. Ther. 2021, 23, 13. [Google Scholar] [CrossRef]
- Sheng, X.R.; Gao, X.; Schiffman, C.; Jiang, J.; Ramalingam, T.R.; Lin, C.J.; Khanna, D.; Neighbors, M. Biomarkers of fibrosis, inflammation, and extracellular matrix in the phase 3 trial of tocilizumab in systemic sclerosis. Clin. Immunol. 2023, 254, 109695. [Google Scholar] [CrossRef]
- Kearsley-Fleet, L.; Davies, R.; De Cock, D.; Watson, K.D.; Lunt, M.; Buch, M.H.; Isaacs, J.D.; Hyrich, K.L. Biologic refractory disease in rheumatoid arthritis: Results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann. Rheum. Dis. 2018, 77, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Nagy, G.; Roodenrijs, N.M.T.; Welsing, P.M.; Kedves, M.; Hamar, A.; van der Goes, M.C.; Kent, A.; Bakkers, M.; Blaas, E.; Senolt, L.; et al. EULAR definition of difficult-to-treat rheumatoid arthritis. Ann. Rheum. Dis. 2021, 80, 31–35. [Google Scholar] [CrossRef]
- Orange, D.E.; Agius, P.; DiCarlo, E.F.; Robine, N.; Geiger, H.; Szymonifka, J.; McNamara, M.; Cummings, R.; Andersen, K.M.; Mirza, S.; et al. Identification of Three Rheumatoid Arthritis Disease Subtypes by Machine Learning Integration of Synovial Histologic Features and RNA Sequencing Data. Arthritis Rheumatol. 2018, 70, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Nerviani, A.; Di Cicco, M.; Mahto, A.; Lliso-Ribera, G.; Rivellese, F.; Thorborn, G.; Hands, R.; Bellan, M.; Mauro, D.; Boutet, M.-A.; et al. A Pauci-Immune Synovial Pathotype Predicts Inadequate Response to TNFα-Blockade in Rheumatoid Arthritis Patients. Front. Immunol. 2020, 11, 845. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Jonsson, A.H.; Nathan, A.; Millard, N.; Curtis, M.; Xiao, Q.; Gutierrez-Arcelus, M.; Apruzzese, W.; Watts, G.F.M.; Weisenfeld, D.; et al. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 2023, 623, 616–624. [Google Scholar] [CrossRef]
- Dennis, G., Jr.; Holweg, C.T.J.; Kummerfeld, S.K.; Choy, D.F.; Setiadi, A.F.; Hackney, J.A.; Haverty, P.M.; Gilbert, H.; Lin, W.Y.; Diehl, L.; et al. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthritis Res. Ther. 2014, 16, R90. [Google Scholar] [CrossRef]
- Lewis, M.J.; Barnes, M.R.; Blighe, K.; Goldmann, K.; Rana, S.; Hackney, J.A.; Ramamoorthi, N.; John, C.R.; Watson, D.S.; Kummerfeld, S.K.; et al. Molecular Portraits of Early Rheumatoid Arthritis Identify Clinical and Treatment Response Phenotypes. Cell Rep. 2019, 28, 2455–2470.e5. [Google Scholar] [CrossRef]
- Iyer, P.; Lee, Y.C. Why It Hurts. Rheum. Dis. Clin. N. Am. 2021, 47, 229–244. [Google Scholar] [CrossRef]
- Bai, Z.; Bartelo, N.; Aslam, M.; Hale, C.; Blachere, N.E.; Parveen, S.; Spolaore, E.; DiCarlo, E.; Gravallese, E.; Smith, M.H.; et al. Machine Learning Reveals Synovial Fibroblast Genes Associated with Pain Affect Sensory Nerve Growth in Rheumatoid Arthritis. medRxiv 2023. [Google Scholar] [CrossRef]
- Johnson, W.E.B.; Sivan, S.; Wright, K.T.; Eisenstein, S.M.; Maroudas, A.; Roberts, S. Human Intervertebral Disc Cells Promote Nerve Growth Over Substrata of Human Intervertebral Disc Aggrecan. Spine 2006, 31, 1187–1193. [Google Scholar] [CrossRef]
- Croft, A.P.; Campos, J.; Jansen, K.; Turner, J.D.; Marshall, J.; Attar, M.; Savary, L.; Wehmeyer, C.; Naylor, A.J.; Kemble, S.; et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 2019, 570, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Glaeser, J.D.; Kaneda, G.; Sheyn, J.; Wechsler, J.T.; Stephan, S.; Salehi, K.; Chan, J.L.; Tawackoli, W.; Avalos, P.; et al. Intervertebral disc human nucleus pulposus cells associated with back pain trigger neurite outgrowth in vitro and pain behaviors in rats. Sci. Transl. Med. 2023, 15, eadg7020. [Google Scholar] [CrossRef]
- Richardson, S.M.; Purmessur, D.; Baird, P.; Probyn, B.; Freemont, A.J.; Hoyland, J.A. Degenerate Human Nucleus Pulposus Cells Promote Neurite Outgrowth in Neural Cells. PLoS ONE 2012, 7, e47735. [Google Scholar] [CrossRef] [PubMed]
- Nanus, D.E.; Badoume, A.; Wijesinghe, S.N.; Halsey, A.M.; Hurley, P.; Ahmed, Z.; Botchu, R.; Davis, E.T.; Lindsay, M.A.; Jones, S.W. Synovial tissue from sites of joint pain in knee osteoarthritis patients exhibits a differential phenotype with distinct fibroblast subsets. eBioMedicine 2021, 72, 103618. [Google Scholar] [CrossRef] [PubMed]
- Marsh, L.; Kemble, S.; Nisa, P.R.; Singh, R.; Croft, A.P. Fibroblast pathology in inflammatory joint disease. Immunol. Rev. 2021, 302, 163–183. [Google Scholar] [CrossRef]
- Gauthier, V.; Kyriazi, M.; Nefla, M.; Pucino, V.; Raza, K.; Buckley, C.D.; Alsaleh, G. Fibroblast heterogeneity: Keystone of tissue homeostasis and pathology in inflammation and ageing. Front. Immunol. 2023, 14, 1137659. [Google Scholar] [CrossRef]
- Davidson, S.; Coles, M.; Thomas, T.; Kollias, G.; Ludewig, B.; Turley, S.; Brenner, M.; Buckley, C.D. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 2021, 21, 704–717. [Google Scholar] [CrossRef]
- Alivernini, S.; Firestein, G.S.; McInnes, I.B. The pathogenesis of rheumatoid arthritis. Immunity 2022, 55, 2255–2270. [Google Scholar] [CrossRef]
- Culemann, S.; Grüneboom, A.; Nicolás-Ávila, J.Á.; Weidner, D.; Lämmle, K.F.; Rothe, T.; Quintana, J.A.; Kirchner, P.; Krljanac, B.; Eberhardt, M.; et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 2019, 572, 670–675. [Google Scholar] [CrossRef]
- Wei, K.; Korsunsky, I.; Marshall, J.L.; Gao, A.; Watts, G.F.M.; Major, T.; Croft, A.P.; Watts, J.; Blazar, P.E.; Lange, J.K.; et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 2020, 582, 259–264. [Google Scholar] [CrossRef]
- Kemble, S.; Croft, A.P. Critical Role of Synovial Tissue–Resident Macrophage and Fibroblast Subsets in the Persistence of Joint Inflammation. Front. Immunol. 2021, 12, 715894. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.H.; Gao, V.R.; Periyakoil, P.K.; Kochen, A.; DiCarlo, E.F.; Goodman, S.M.; Norman, T.M.; Donlin, L.T.; Leslie, C.S.; Rudensky, A.Y. Drivers of heterogeneity in synovial fibroblasts in rheumatoid arthritis. Nat. Immunol. 2023, 24, 1200–1210. [Google Scholar] [CrossRef] [PubMed]
- Cooreman, M.P.; Butler, J.; Giugliano, R.P.; Zannad, F.; Dzen, L.; Huot-Marchand, P.; Baudin, M.; Beard, D.R.; Junien, J.-L.; Broqua, P.; et al. The pan-PPAR agonist lanifibranor improves cardiometabolic health in patients with metabolic dysfunction-associated steatohepatitis. Nat. Commun. 2024, 15, 3962. [Google Scholar] [CrossRef]
- Francque, S.M.; Bedossa, P.; Ratziu, V.; Anstee, Q.M.; Bugianesi, E.; Sanyal, A.J.; Loomba, R.; Harrison, S.A.; Balabanska, R.; Mateva, L.; et al. A Randomized, Controlled Trial of the Pan-PPAR Agonist Lanifibranor in NASH. N. Engl. J. Med. 2021, 385, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- Cooreman, M.P.; Vonghia, L.; Francque, S.M. MASLD/MASH and type 2 diabetes: Two sides of the same coin? From single PPAR to pan-PPAR agonists. Diabetes Res. Clin. Pract. 2024, 212, 111688. [Google Scholar] [CrossRef]
- Mittal, S.; El-Serag, H.B.; Sada, Y.H.; Kanwal, F.; Duan, Z.; Temple, S.; May, S.B.; Kramer, J.R.; Richardson, P.A.; Davila, J.A. Hepatocellular Carcinoma in the Absence of Cirrhosis in United States Veterans Is Associated with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2016, 14, 124–131.e1. [Google Scholar] [CrossRef]
- Jackson, J.W.; Streich, F.C., Jr.; Pal, A.; Coricor, G.; Boston, C.; Brueckner, C.T.; Canonico, K.; Chapron, C.; Cote, S.; Dagbay, K.B.; et al. An antibody that inhibits TGF-β1 release from latent extracellular matrix complexes attenuates the progression of renal fibrosis. Sci. Signal. 2024, 17, eadn6052. [Google Scholar] [CrossRef]
- Hernández–Gea, V.; Ghiassi–Nejad, Z.; Rozenfeld, R.; Gordon, R.; Fiel, M.I.; Yue, Z.; Czaja, M.J.; Friedman, S.L. Autophagy Releases Lipid That Promotes Fibrogenesis by Activated Hepatic Stellate Cells in Mice and in Human Tissues. Gastroenterology 2012, 142, 938–946. [Google Scholar] [CrossRef]
- Sousa, C.M.; Biancur, D.E.; Wang, X.; Halbrook, C.J.; Sherman, M.H.; Zhang, L.; Kremer, D.; Hwang, R.F.; Witkiewicz, A.K.; Ying, H.; et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 2016, 536, 479–483. [Google Scholar] [CrossRef]
- Wang, S.; Li, K.; Pickholz, E.; Dobie, R.; Matchett, K.P.; Henderson, N.C.; Carrico, C.; Driver, I.; Jensen, M.B.; Chen, L.; et al. An autocrine signaling circuit in hepatic stellate cells underlies advanced fibrosis in nonalcoholic steatohepatitis. Sci. Transl. Med. 2023, 15, eadd3949. [Google Scholar] [CrossRef]
- Yashaswini, C.N.; Qin, T.; Bhattacharya, D.; Amor, C.; Lowe, S.; Lujambio, A.; Wang, S.; Friedman, S.L. Phenotypes and ontogeny of senescent hepatic stellate cells in metabolic dysfunction-associated steatohepatitis. J. Hepatol. 2024, 81, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Amor, C.; Feucht, J.; Leibold, J.; Ho, Y.-J.; Zhu, C.; Alonso-Curbelo, D.; Mansilla-Soto, J.; Boyer, J.A.; Li, X.; Giavridis, T.; et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 2020, 583, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Trinh, V.Q.-H.; Lee, T.-F.; Lemoinne, S.; Ray, K.C.; Ybanez, M.D.; Tsuchida, T.; Carter, J.K.; Agudo, J.; Brown, B.D.; Akat, K.M.; et al. Hepatic stellate cells maintain liver homeostasis through paracrine neurotrophin-3 signaling that induces hepatocyte proliferation. Sci. Signal. 2023, 16, eadf6696. [Google Scholar] [CrossRef]
- Sun, X.; Wu, B.; Chiang, H.-C.; Deng, H.; Zhang, X.; Xiong, W.; Liu, J.; Rozeboom, A.M.; Harris, B.T.; Blommaert, E.; et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion. Nature 2021, 599, 673–678. [Google Scholar] [CrossRef]
- Jariwala, N.; Ozols, M.; Bell, M.; Bradley, E.; Gilmore, A.; Debelle, L.; Sherratt, M.J. Matrikines as mediators of tissue remodelling. Adv. Drug Deliv. Rev. 2022, 185, 114240. [Google Scholar] [CrossRef]
- Bernasconi, R.; Thriene, K.; Romero-Fernández, E.; Gretzmeier, C.; Kühl, T.; Maler, M.; Nauroy, P.; Kleiser, S.; Rühl-Muth, A.; Stumpe, M.; et al. Pro-inflammatory immunity supports fibrosis advancement in epidermolysis bullosa: Intervention with Ang-(1–7). EMBO Mol. Med. 2021, 13, e14392. [Google Scholar] [CrossRef] [PubMed]
- Zeyer, K.A.; Bornert, O.; Nelea, V.; Bao, X.; Leytens, A.; Sharoyan, S.; Sengle, G.; Antonyan, A.; Bruckner-Tuderman, L.; Dengjel, J.; et al. Dipeptidyl Peptidase-4–Mediated Fibronectin Processing Evokes a Profibrotic Extracellular Matrix. J. Investig. Dermatol. 2024, 144, 2477–2487.e13. [Google Scholar] [CrossRef]
- Lowe, M.M.; Naik, H.B.; Clancy, S.; Pauli, M.; Smith, K.M.; Bi, Y.; Dunstan, R.; Gudjonsson, J.E.; Paul, M.; Harris, H.; et al. Immunopathogenesis of hidradenitis suppurativa and response to anti–TNF-α therapy. JCI Investig. 2020, 5, e139932. [Google Scholar] [CrossRef]
- Nielsen, S.H.; Groen, S.S.; Yao, Y.; Jørgensen, A.-H.R.; Nielsen, V.W.; Karsdal, M.; Gehring, K.; Bay-Jensen, A.-C.; Thomsen, S.F. Biomarkers of tissue turnover and systemic inflammation are associated with disease severity and activity in patients with hidradenitis suppurativa. J. Investig. Dermatol. 2022, 143, 328–331.e3. [Google Scholar] [CrossRef]
- Graff, P.; Woerz, D.; Wilzopolski, J.; Voss, A.; Sarrazin, J.; Blimkie, T.M.; Weiner, J.; Kershaw, O.; Panwar, P.; Hackett, T.; et al. Extracellular Matrix Remodeling in Atopic Dermatitis Harnesses the Onset of an Asthmatic Phenotype and Is a Potential Contributor to the Atopic March. J. Investig. Dermatol. 2023, 144, 1010–1021.e23. [Google Scholar] [CrossRef]
- Eckersley, A.; Morais, M.R.; Ozols, M.; Lennon, R. Peptide location fingerprinting identifies structural alterations within basement membrane components in ageing kidney. Matrix Biol. 2023, 121, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef]
- Farina, N.; Campochiaro, C.; Lescoat, A.; Benanti, G.; De Luca, G.; Khanna, D.; Dagna, L.; Matucci-Cerinic, M. Drug development and novel therapeutics to ensure a personalized approach in the treatment of systemic sclerosis. Expert Rev. Clin. Immunol. 2023, 19, 1131–1142. [Google Scholar] [CrossRef]
- Schett, G.; Müller, F.; Taubmann, J.; Mackensen, A.; Wang, W.; Furie, R.A.; Gold, R.; Haghikia, A.; Merkel, P.A.; Caricchio, R.; et al. Advancements and challenges in CAR T cell therapy in autoimmune diseases. Nat. Rev. Rheumatol. 2024, 20, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Cox, T.R. The matrix in cancer. Nat. Rev. Cancer 2021, 21, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, J.C.; Cox, T.R. The importance of 3D fibre architecture in cancer and implications for biomaterial model design. Nat. Rev. Cancer 2024, 24, 461–479. [Google Scholar] [CrossRef]
- E Mayorca-Guiliani, A.; Madsen, C.D.; Cox, T.R.; Horton, E.R.; A Venning, F.; Erler, J.T. ISDoT: In situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix. Nat. Med. 2017, 23, 890–898. [Google Scholar] [CrossRef]
- Rafaeva, M.; Horton, E.R.; Jensen, A.R.; Madsen, C.D.; Reuten, R.; Willacy, O.; Brøchner, C.B.; Jensen, T.H.; Zornhagen, K.W.; Crespo, M.; et al. Modeling Metastatic Colonization in a Decellularized Organ Scaffold-Based Perfusion Bioreactor. Adv. Health Mater. 2021, 11, 2100684. [Google Scholar] [CrossRef]
- Willumsen, N.; Jensen, C.; Green, G.; Nissen, N.I.; Neely, J.; Nelson, D.M.; Pedersen, R.S.; Frederiksen, P.; Chen, I.M.; Boisen, M.K.; et al. Fibrotic activity quantified in serum by measurements of type III collagen pro-peptides can be used for prognosis across different solid tumor types. Cell. Mol. Life Sci. 2022, 79, 204. [Google Scholar] [CrossRef]
- Thorlacius-Ussing, J.; Jensen, C.; I Nissen, N.; Cox, T.R.; Kalluri, R.; Karsdal, M.; Willumsen, N. The collagen landscape in cancer: Profiling collagens in tumors and in circulation reveals novel markers of cancer-associated fibroblast subtypes. J. Pathol. 2023, 262, 22–36. [Google Scholar] [CrossRef]
- Chitty, J.L.; Yam, M.; Perryman, L.; Parker, A.L.; Skhinas, J.N.; Setargew, Y.F.I.; Mok, E.T.Y.; Tran, E.; Grant, R.D.; Latham, S.L.; et al. A first-in-class pan-lysyl oxidase inhibitor impairs stromal remodeling and enhances gemcitabine response and survival in pancreatic cancer. Nat. Cancer 2023, 4, 1326–1344. [Google Scholar] [CrossRef]
- Hansen, H.H.; Feigh, M.; Veidal, S.S.; Rigbolt, K.T.; Vrang, N.; Fosgerau, K. Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov. Today 2017, 22, 1707–1718. [Google Scholar] [CrossRef]
- Vacca, M.; Kamzolas, I.; Harder, L.M.; Oakley, F.; Trautwein, C.; Hatting, M.; Ross, T.; Bernardo, B.; Oldenburger, A.; Hjuler, S.T.; et al. An unbiased ranking of murine dietary models based on their proximity to human metabolic dysfunction-associated steatotic liver disease (MASLD). Nat. Metab. 2024, 6, 1178–1196. [Google Scholar] [CrossRef]
- Dalbøge, L.S.; Christensen, M.; Madsen, M.R.; Secher, T.; Endlich, N.; Drenic’, V.; Manresa-Arraut, A.; Hansen, H.H.; Rune, I.; Fink, L.N.; et al. Nephroprotective Effects of Semaglutide as Mono- and Combination Treatment with Lisinopril in a Mouse Model of Hypertension-Accelerated Diabetic Kidney Disease. Biomedicines 2022, 10, 1661. [Google Scholar] [CrossRef]
- Dulce, R.A.; Kanashiro-Takeuchi, R.M.; Takeuchi, L.M.; Salerno, A.G.; Wanschel, A.C.B.A.; Kulandavelu, S.; Balkan, W.; Zuttion, M.S.S.R.; Cai, R.; Schally, A.V.; et al. Synthetic growth hormone-releasing hormone agonist ameliorates the myocardial pathophysiology characteristic of heart failure with preserved ejection fraction. Cardiovasc. Res. 2022, 118, 3586–3601. [Google Scholar] [CrossRef]
- Alex, L.; Russo, I.; Holoborodko, V.; Frangogiannis, N.G. Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H934–H949. [Google Scholar] [CrossRef]
- Withaar, C.; Meems, L.M.G.; Markousis-Mavrogenis, G.; Boogerd, C.J.; Silljé, H.H.W.; Schouten, E.M.; Dokter, M.M.; Voors, A.A.; Westenbrink, B.D.; Lam, C.S.P.; et al. The effects of liraglutide and dapagliflozin on cardiac function and structure in a multi-hit mouse model of heart failure with preserved ejection fraction. Cardiovasc. Res. 2020, 117, 2108–2124. [Google Scholar] [CrossRef]
- Tashiro, J.; Rubio, G.A.; Limper, A.H.; Williams, K.; Elliot, S.J.; Ninou, I.; Aidinis, V.; Tzouvelekis, A.; Glassberg, M.K. Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis. Front. Med. 2017, 4, 118. [Google Scholar] [CrossRef]
- Cooley, J.C.; Javkhlan, N.; Wilson, J.A.; Foster, D.G.; Edelman, B.L.; Ortiz, L.A.; Schwartz, D.A.; Riches, D.W.; Redente, E.F. Inhibition of antiapoptotic BCL-2 proteins with ABT-263 induces fibroblast apoptosis, reversing persistent pulmonary fibrosis. JCI Investig. 2023, 8, e163762. [Google Scholar] [CrossRef]
- Weckerle, J.; Picart-Armada, S.; Klee, S.; Bretschneider, T.; Luippold, A.H.; Rist, W.; Haslinger, C.; Schlüter, H.; Thomas, M.J.; Krawczyk, B.; et al. Mapping the metabolomic and lipidomic changes in the bleomycin model of pulmonary fibrosis in young and aged mice. Dis. Model. Mech. 2022, 15, dmm049105. [Google Scholar] [CrossRef]
- Strobel, B.; Klein, H.; Leparc, G.; Stierstorfer, B.E.; Gantner, F.; Kreuz, S. Time and phenotype-dependent transcriptome analysis in AAV-TGFβ1 and Bleomycin-induced lung fibrosis models. Sci. Rep. 2022, 12, 12190. [Google Scholar] [CrossRef]
- Rieder, F.; Kessler, S.; Sans, M.; Fiocchi, C. Animal models of intestinal fibrosis: New tools for the understanding of pathogenesis and therapy of human disease. Am. J. Physiol. Liver Physiol. 2012, 303, G786–G801. [Google Scholar] [CrossRef]
- Xu, Y.; Qian, W.; Huang, L.; Wen, W.; Li, Y.; Guo, F.; Zhu, Z.; Li, Z.; Gong, J.; Yu, Z.; et al. Crohn’s disease-associated AIEC inhibiting intestinal epithelial cell-derived exosomal let-7b expression regulates macrophage polarization to exacerbate intestinal fibrosis. Gut Microbes 2023, 15, 2193115. [Google Scholar] [CrossRef]
- Møllerhøj, M.B.; Veidal, S.S.; Thrane, K.T.; Oró, D.; Overgaard, A.; Salinas, C.G.; Madsen, M.R.; Pfisterer, L.; Vyberg, M.; Simon, E.; et al. Hepatoprotective effects of semaglutide, lanifibranor and dietary intervention in the GAN diet-induced obese and biopsy-confirmed mouse model of NASH. Clin. Transl. Sci. 2022, 15, 1167–1186. [Google Scholar] [CrossRef]
- Ahookhosh, K.; Vanoirbeek, J.; Velde, G.V. Lung function measurements in preclinical research: What has been done and where is it headed? Front. Physiol. 2023, 14, 1130096. [Google Scholar] [CrossRef]
- Li, X.; Bhattacharya, D.; Yuan, Y.; Wei, C.; Zhong, F.; Ding, F.; D’agati, V.D.; Lee, K.; Friedman, S.L.; He, J.C. Chronic kidney disease in a murine model of non-alcoholic steatohepatitis (NASH). Kidney Int. 2023, 105, 540–561. [Google Scholar] [CrossRef]
- Juhl, P.; Bondesen, S.; Hawkins, C.L.; Karsdal, M.A.; Bay-Jensen, A.-C.; Davies, M.J.; Siebuhr, A.S. Dermal fibroblasts have different extracellular matrix profiles induced by TGF-β, PDGF and IL-6 in a model for skin fibrosis. Sci. Rep. 2020, 10, 17300. [Google Scholar] [CrossRef]
- Adler, M.; Mayo, A.; Zhou, X.; Franklin, R.A.; Meizlish, M.L.; Medzhitov, R.; Kallenberger, S.M.; Alon, U. Principles of Cell Circuits for Tissue Repair and Fibrosis. iScience 2020, 23, 100841. [Google Scholar] [CrossRef]
- Pekgor, S.; Duran, C.; Berberoglu, U.; Eryilmaz, M.A. The Role of Visceral Adiposity Index Levels in Predicting the Presence of Metabolic Syndrome and Insulin Resistance in Overweight and Obese Patients. Metab. Syndr. Relat. Disord. 2019, 17, 296–302. [Google Scholar] [CrossRef]
- Selvarajah, B.; Azuelos, I.; Anastasiou, D.; Chambers, R.C. Fibrometabolism—An emerging therapeutic frontier in pulmonary fibrosis. Sci. Signal. 2021, 14, aay1027. [Google Scholar] [CrossRef]
- Lin, S.; Wang, J.; Mukherjee, P.K.; Mao, R.; West, G.; Czarnecki, D.; Zhao, S.; Nguyen, Q.T.; Elias, M.; Massey, W.J.; et al. Milk fat globule-epidermal growth factor 8 (MFGE8) prevents intestinal fibrosis. Gut 2024, 73, 1110–1123. [Google Scholar] [CrossRef]
- Choi, H.; Simpson, D.; Wang, D.; Prescott, M.; Pitsillides, A.A.; Dudhia, J.; Clegg, P.D.; Ping, P.; Thorpe, C.T. Heterogeneity of proteome dynamics between connective tissue phases of adult tendon. eLife 2020, 9, e55262. [Google Scholar] [CrossRef]
- Naba, A. Ten Years of Extracellular Matrix Proteomics: Accomplishments, Challenges, and Future Perspectives. Mol. Cell. Proteom. 2023, 22, 100528. [Google Scholar] [CrossRef]
- Frattini, T.; Devos, H.; Makridakis, M.; Roubelakis, M.G.; Latosinska, A.; Mischak, H.; Schanstra, J.P.; Vlahou, A.; Saulnier-Blache, J. Benefits and limits of decellularization on mass-spectrometry-based extracellular matrix proteome analysis of mouse kidney. Proteomics 2024, 24, e2400052. [Google Scholar] [CrossRef] [PubMed]
- Angelidis, I.; Simon, L.M.; Fernandez, I.E.; Strunz, M.; Mayr, C.H.; Greiffo, F.R.; Tsitsiridis, G.; Ansari, M.; Graf, E.; Strom, T.-M.; et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 2019, 10, 963. [Google Scholar] [CrossRef]
- Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 2019, 17, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.L.; Charkoftaki, G. A Guide to MALDI Imaging Mass Spectrometry for Tissues. J. Proteome Res. 2023, 22, 3401–3417. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.G.; Gerszten, R.E. Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease. Circulation 2017, 135, 1651–1664. [Google Scholar] [CrossRef]
- Haack, A.M.; Overall, C.M.; Keller, U.A.D. Degradomics technologies in matrisome exploration. Matrix Biol. 2022, 114, 1–17. [Google Scholar] [CrossRef]
- Ariosa-Morejon, Y.; Santos, A.; Fischer, R.; Davis, S.; Charles, P.; Thakker, R.; Wann, A.K.; Vincent, T.L. Age-dependent changes in protein incorporation into collagen-rich tissues of mice by in vivo pulsed SILAC labelling. eLife 2021, 10, e66635. [Google Scholar] [CrossRef]
- Arias-Hidalgo, C.; Juanes-Velasco, P.; Landeira-Viñuela, A.; García-Vaquero, M.L.; Montalvillo, E.; Góngora, R.; Hernández, Á.-P.; Fuentes, M. Single-Cell Proteomics: The Critical Role of Nanotechnology. Int. J. Mol. Sci. 2022, 23, 6707. [Google Scholar] [CrossRef]
- Zhao, M.; Zhai, H.; Li, H.; Wei, F.; Ma, H.; Liu, Y.; Li, W.; Wei, P. Age-standardized incidence, prevalence, and mortality rates of autoimmune diseases in adolescents and young adults (15–39 years): An analysis based on the global burden of disease study 2021. BMC Public Health 2024, 24, 1800. [Google Scholar] [CrossRef]
- Cooper, G.S.; Bynum, M.L.; Somers, E.C. Recent insights in the epidemiology of autoimmune diseases: Improved prevalence estimates and understanding of clustering of diseases. J. Autoimmun. 2009, 33, 197–207. [Google Scholar] [CrossRef]
- Shapira, Y.; Agmon-Levin, N.; Shoenfeld, Y. Defining and analyzing geoepidemiology and human autoimmunity. J. Autoimmun. 2010, 34, J168–J177. [Google Scholar] [CrossRef]
- Orange, D.E.; Yao, V.; Sawicka, K.; Fak, J.; Frank, M.O.; Parveen, S.; Blachere, N.E.; Hale, C.; Zhang, F.; Raychaudhuri, S.; et al. RNA Identification of PRIME Cells Predicting Rheumatoid Arthritis Flares. N. Engl. J. Med. 2020, 383, 218–228. [Google Scholar] [CrossRef]
- Rauber, S.; Mohammadian, H.; Schmidkonz, C.; Atzinger, A.; Soare, A.; Treutlein, C.; Kemble, S.; Mahony, C.B.; Geisthoff, M.; Angeli, M.R.; et al. CD200+ fibroblasts form a pro-resolving mesenchymal network in arthritis. Nat. Immunol. 2024, 25, 682–692. [Google Scholar] [CrossRef]
- Madsen, S.F.; Sand, J.M.B.; Juhl, P.; Karsdal, M.; Thudium, C.S.; Siebuhr, A.S.; Bay-Jensen, A.-C. Fibroblasts are not just fibroblasts: Clear differences between dermal and pulmonary fibroblasts’ response to fibrotic growth factors. Sci. Rep. 2023, 13, 9411. [Google Scholar] [CrossRef]
- Lewis, M.J.; McAndrew, M.B.; Wheeler, C.; Workman, N.; Agashe, P.; Koopmann, J.; Uddin, E.; Morris, D.L.; Zou, L.; Stark, R.; et al. Autoantibodies targeting TLR and SMAD pathways define new subgroups in systemic lupus erythematosus. J. Autoimmun. 2018, 91, 1–12. [Google Scholar] [CrossRef]
- Karsdal, B.C.; Asser, M.; Anne-Christine, B.-J.; Kim, H.; Diana, J.L.; Signe, N.H. Biochemistry of Collagens, Laminins and Elastin; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Henriksen, K.; Bohren, K.M.; Bay-Jensen, A.C.; Karsdal, M.A. Should biochemical markers of bone turnover be considered standard practice for safety pharmacology? Biomarkers 2009, 15, 195–204. [Google Scholar] [CrossRef]
- Henriksen, K.; Leeming, D.; Christiansen, C.; Karsdal, M. Use of bone turnover markers in clinical osteoporosis assessment in women: Current issues and future options. Women’s Health 2011, 7, 689–698. [Google Scholar] [CrossRef]
- Jensen, C.; Nissen, N.I.; Von Arenstorff, C.S.; Karsdal, M.A.; Willumsen, N. Serological assessment of collagen fragments and tumor fibrosis may guide immune checkpoint inhibitor therapy. J. Exp. Clin. Cancer Res. 2021, 40, 326. [Google Scholar] [CrossRef]
- Bager, C.; Willumsen, N.; Leeming, D.; Smith, V.; Karsdal, M.; Dornan, D.; Bay-Jensen, A. Collagen degradation products measured in serum can separate ovarian and breast cancer patients from healthy controls: A preliminary study. Cancer Biomarkers 2015, 15, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.; Sinkeviciute, D.; Madsen, D.H.; Önnerfjord, P.; Hansen, M.; Schmidt, H.; Karsdal, M.A.; Svane, I.M.; Willumsen, N. Granzyme B Degraded Type IV Collagen Products in Serum Identify Melanoma Patients Responding to Immune Checkpoint Blockade. Cancers 2020, 12, 2786. [Google Scholar] [CrossRef] [PubMed]
- Willumsen, N.; Bager, C.L.; Leeming, D.J.; Smith, V.; Christiansen, C.; Karsdal, M.A.; Dornan, D.; Bay-Jensen, A. Serum biomarkers reflecting specific tumor tissue remodeling processes are valuable diagnostic tools for lung cancer. Cancer Med. 2014, 3, 1136–1145. [Google Scholar] [CrossRef]
- Nissen, N.I.; Kehlet, S.; Boisen, M.K.; Liljefors, M.; Jensen, C.; Johansen, A.Z.; Johansen, J.S.; Erler, J.T.; Karsdal, M.; Mortensen, J.H.; et al. Prognostic value of blood-based fibrosis biomarkers in patients with metastatic colorectal cancer receiving chemotherapy and bevacizumab. Sci. Rep. 2021, 11, 865. [Google Scholar] [CrossRef]
- Nissen, N.I.; Kehlet, S.; Johansen, A.Z.; Chen, I.M.; Karsdal, M.; Johansen, J.S.; Diab, H.M.H.; Jørgensen, L.N.; Sun, S.; Manon-Jensen, T.; et al. Noninvasive prognostic biomarker potential of quantifying the propeptides of Type XI collagen alpha-1 chain (PRO-C11) in patients with pancreatic ductal adenocarcinoma. Int. J. Cancer 2021, 149, 228–238. [Google Scholar] [CrossRef]
- Willumsen, N.; Ali, S.M.; Leitzel, K.; Drabick, J.J.; Yee, N.; Polimera, H.V.; Nagabhairu, V.; Krecko, L.; Ali, A.; Maddukuri, A.; et al. Collagen fragments quantified in serum as measures of desmoplasia associate with survival outcome in patients with advanced pancreatic cancer. Sci. Rep. 2019, 9, 19761. [Google Scholar] [CrossRef] [PubMed]
- Karsdal, M.; Genovese, F.; Rasmussen, D.; Bay-Jensen, A.; Mortensen, J.; Nielsen, S.H.; Willumsen, N.; Jensen, C.; Manon-Jensen, T.; Jennings, L.; et al. Considerations for understanding protein measurements: Identification of formation, degradation and more pathological relevant epitopes. Clin. Biochem. 2021, 97, 11–24. [Google Scholar] [CrossRef]
- Bay-Jensen, A.C.; Platt, A.; Jenkins, M.A.; Weinblatt, M.E.; Byrjalsen, I.; Musa, K.; Genovese, M.C.; Karsdal, M.A. Tissue metabolite of type I collagen, C1M, and CRP predicts structural progression of rheumatoid arthritis. BMC Rheumatol. 2019, 3, 3. [Google Scholar] [CrossRef]
- Siebuhr, A.S.; Bay-Jensen, A.C.; Karsdal, M.A.; Lories, R.J.; de Vlam, K. CRP and a biomarker of type I collagen degradation, C1M, can differentiate anti-inflammatory treatment response in ankylosing spondylitis. Biomarkers Med. 2016, 10, 197–208. [Google Scholar] [CrossRef]
- Gudmann, N.S.; Hirata, S.; Karsdal, M.A.; Kubo, S.; Bay-Jensen, A.-C.; Tanaka, Y. Increased remodelling of interstitial collagens and basement membrane is suppressed by treatment in patients with rheumatoid arthritis: Serological evaluation of a one-year prospective study of 149 Japanese patients. Clin. Exp. Rheumatol. 2018, 36, 462–470. [Google Scholar] [PubMed]
- Gudmann, N.S.; Junker, P.; Juhl, P.; Thudium, C.S.; Siebuhr, A.S.; Byrjalsen, I.; Karsdal, M.A.; Bay-Jensen, A.C. Type IV collagen metabolism is associated with disease activity, radiographic progression and response to tocilizumab in rheumatoid arthritis. Clin. Exp. Rheumatol. 2018, 36, 829–835. [Google Scholar]
- Gudmann, N.S.; Siebuhr, A.S.; Christensen, A.F.; Ejstrup, L.; Sørensen, G.L.; Loft, A.G.; Karsdal, M.A.; Bay-Jensen, A.C.; Munk, H.L.; Junker, P. Type I and III collagen turnover is increased in axial spondyloarthritis and psoriatic arthritis. Associations with disease activity and diagnostic capacity. Clin. Exp. Rheumatol. 2017, 35, 653–659. [Google Scholar]
- Bay-Jensen, A.C.P.; Byrjalsen, I.; Siebuhr, A.S.M.; Christiansen, C.; Platt, A.; Karsdal, M.A.P. Serological biomarkers of joint tissue turnover predict tocilizumab response at baseline. Am. J. Clin. Oncol. 2014, 20, 332–335. [Google Scholar] [CrossRef]
- Bay-Jensen, A.C.; Platt, A.; Byrjalsen, I.; Vergnoud, P.; Christiansen, C.; Karsdal, M.A. Effect of tocilizumab combined with methotrexate on circulating biomarkers of synovium, cartilage, and bone in the LITHE study. Semin. Arthritis Rheum. 2014, 43, 470–478. [Google Scholar] [CrossRef]
- Hansen, A.H.; Mortensen, J.H.; Rønnow, S.R.; Karsdal, M.A.; Leeming, D.J.; Sand, J.M.B. A Serological Neoepitope Biomarker of Neutrophil Elastase-Degraded Calprotectin, Associated with Neutrophil Activity, Identifies Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease More Effectively Than Total Calprotectin. J. Clin. Med. 2023, 12, 7589. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.J.; Leeming, D.J.; Eslam, M.; Hashem, A.M.; Nielsen, M.J.; Krag, A.; Karsdal, M.A.; Grove, J.I.; Neil Guha, I.; Kawaguchi, T.; et al. ADAPT: An Algorithm Incorporating PRO-C3 Accurately Identifies Patients with NAFLD and Advanced Fibrosis. Hepatology 2019, 69, 1075–1086. [Google Scholar] [CrossRef]
- Tang, L.-J.; Ma, H.-L.; Eslam, M.; Wong, G.L.-H.; Zhu, P.-W.; Chen, S.-D.; Leeming, D.J.; Karsdal, M.; Li, G.; Huang, O.-Y.; et al. Among simple non-invasive scores, Pro-C3 and ADAPT best exclude advanced fibrosis in Asian patients with MAFLD. Metabolism 2021, 128, 154958. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Wong, G.L.-H.; Hashem, A.M.; Chan, H.L.-Y.; Nielsen, M.J.; Leeming, D.J.; Chan, A.W.-H.; Chen, Y.; Duffin, K.L.; Karsdal, M.; et al. A Sequential Algorithm Combining ADAPT and Liver Stiffness Can Stage Metabolic-Associated Fatty Liver Disease in Hospital-Based and Primary Care Patients. Am. J. Gastroenterol. 2020, 116, 984–993. [Google Scholar] [CrossRef]
- Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016, 97, 4–27. [Google Scholar] [CrossRef]
- Lu, P.; Takai, K.; Weaver, V.M.; Werb, Z. Extracellular Matrix Degradation and Remodeling in Development and Disease. Cold Spring Harb. Perspect. Biol. 2011, 3, a005058. [Google Scholar] [CrossRef]
- Joshua, A.; Cheng, G.; Lau, E. Soft matter analysis via atomic force microscopy (AFM): A review. Appl. Surf. Sci. Adv. 2023, 17, 100448. [Google Scholar] [CrossRef]
- Cauble, M.A.; Mancini, N.S.; Kalinowski, J.; Lykotrafitis, G.; Moss, I.L. Atomic force microscopy imaging for nanoscale and microscale assessments of extracellular matrix in intervertebral disc and degeneration. JOR Spine 2020, 3, e1125. [Google Scholar] [CrossRef]
- Li, M.; Xi, N.; Wang, Y.-C.; Liu, L.-Q. Atomic force microscopy for revealing micro/nanoscale mechanics in tumor metastasis: From single cells to microenvironmental cues. Acta Pharmacol. Sin. 2020, 42, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Shi, G.; Tang, J.; Cheng, R.; Shen, X.; Gu, Y.; Wu, L.; Xi, K.; Zhao, Y.; Cui, W.; et al. ECM-inspired micro/nanofibers for modulating cell function and tissue generation. Sci. Adv. 2020, 6, eabc2036. [Google Scholar] [CrossRef] [PubMed]
- Burke, K.; Brown, E. The Use of Second Harmonic Generation to Image the Extracellular Matrix During Tumor Progression. IntraVital 2014, 3, e984509. [Google Scholar] [CrossRef] [PubMed]
- Natal, R.d.A.; Adur, J.; Cesar, C.L.; Vassallo, J. Tumor extracellular matrix: Lessons from the second-harmonic generation microscopy. Surg. Exp. Pathol. 2021, 4, 7. [Google Scholar] [CrossRef]
- Aghigh, A.; Bancelin, S.; Rivard, M.; Pinsard, M.; Ibrahim, H.; Légaré, F. Second harmonic generation microscopy: A powerful tool for bio-imaging. Biophys. Rev. 2023, 15, 43–70. [Google Scholar] [CrossRef]
- Leonard, A.K.; Loughran, E.A.; Klymenko, Y.; Liu, Y.; Kim, O.; Asem, M.; McAbee, K.; Ravosa, M.J.; Stack, M.S. Methods for the visualization and analysis of extracellular matrix protein structure and degradation. Methods Cell Biol. 2018, 143, 79–95. [Google Scholar] [CrossRef]
- Noureddin, N.; Copur-Dahi, N.; Loomba, R. Monitoring disease progression in metabolic dysfunction-associated steatotic liver disease. Aliment. Pharmacol. Ther. 2024, 59, S41–S51. [Google Scholar] [CrossRef]
- Chowdhury, A.B.; Mehta, K.J. Liver biopsy for assessment of chronic liver diseases: A synopsis. Clin. Exp. Med. 2022, 23, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.Q.; Wilson, L.A.; Behling, C.; Kleiner, D.E.; Kowdley, K.V.; Dasarathy, S.; Amangurbanova, M.; Terrault, N.A.; Diehl, A.M.; Chalasani, N.; et al. Fibrosis Progression Rate in Biopsy-Proven Nonalcoholic Fatty Liver Disease Among People with Diabetes Versus People Without Diabetes: A Multicenter Study. Gastroenterology 2023, 165, 463–472.e5. [Google Scholar] [CrossRef] [PubMed]
- Tao, P.; Liu, J.; Li, Y.; Zhang, T.; Wang, F.; Chang, L.; Li, C.; Ge, X.; Zuo, T.; Lu, S.; et al. Damaged collagen detected by collagen hybridizing peptide as efficient diagnosis marker for early hepatic fibrosis. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2023, 1866, 194928. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Huang, Y.; Burwell, T.J.; Peterson, N.C.; Connor, J.; Weiss, S.J.; Yu, S.M.; Li, Y. In Situ Imaging of Tissue Remodeling with Collagen Hybridizing Peptides. ACS Nano 2017, 11, 9825–9835. [Google Scholar] [CrossRef]
- Bennink, L.L.; Li, Y.; Kim, B.; Shin, I.J.; San, B.H.; Zangari, M.; Yoon, D.; Yu, S. Visualizing collagen proteolysis by peptide hybridization: From 3D cell culture to in vivo imaging. Biomaterials 2018, 183, 67–76. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Yu, S.M.; Li, Y. The Chemistry and Biology of Collagen Hybridization. J. Am. Chem. Soc. 2023, 145, 10901–10916. [Google Scholar] [CrossRef]
- Linder, M.; Bennink, L.; Foxton, R.H.; Kirkness, M.; Westenskow, P.D. In vivo monitoring of active subretinal fibrosis in mice using collagen hybridizing peptides. Lab Anim. 2024, 53, 196–204. [Google Scholar] [CrossRef]
- Caussy, C.; Reeder, S.B.; Sirlin, C.B.; Loomba, R. Noninvasive, Quantitative Assessment of Liver Fat by MRI-PDFF as an Endpoint in NASH Trials. Hepatology 2018, 68, 763–772. [Google Scholar] [CrossRef]
- Romero-Cristóbal, M.; Clemente-Sánchez, A.; Peligros, M.; Ramón, E.; Matilla, A.; Colón, A.; Alonso, S.; Catalina, M.; Fernández-Yunquera, A.; Caballero, A.; et al. Liver and spleen volumes are associated with prognosis of compensated and decompensated cirrhosis and parallel its natural history. United Eur. Gastroenterol. J. 2022, 10, 805–816. [Google Scholar] [CrossRef]
- Eriksson, O.; Velikyan, I. Radiotracers for Imaging of Fibrosis: Advances during the Last Two Decades and Future Directions. Pharmaceuticals 2023, 16, 1540. [Google Scholar] [CrossRef]
- Wegrzyniak, O.; Lechi, F.; Mitran, B.; Cheung, P.; Bitzios, A.; Persson, J.; Löfblom, J.; Nordström, H.; Eriksson, J.; Frejd, F.Y.; et al. Non-invasive PET imaging of liver fibrogenesis using a RESCA-conjugated Affibody molecule. iScience 2024, 27, 109688. [Google Scholar] [CrossRef]
- El–Serag, H.B.; Rudolph, K.L. Hepatocellular Carcinoma: Epidemiology and Molecular Carcinogenesis. Gastroenterology 2007, 132, 2557–2576. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Castet, F.; Heikenwalder, M.; Maini, M.K.; Mazzaferro, V.; Pinato, D.J.; Pikarsky, E.; Zhu, A.X.; Finn, R.S. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2021, 19, 151–172. [Google Scholar] [CrossRef]
- Kaps, L.; Schuppan, D. Targeting Cancer Associated Fibroblasts in Liver Fibrosis and Liver Cancer Using Nanocarriers. Cells 2020, 9, 2027. [Google Scholar] [CrossRef]
- Casari, M.; Siegl, D.; Deppermann, C.; Schuppan, D. Macrophages and platelets in liver fibrosis and hepatocellular carcinoma. Front. Immunol. 2023, 14, 1277808. [Google Scholar] [CrossRef] [PubMed]
- Schrader, J.; Gordon-Walker, T.T.; Aucott, R.L.; Van Deemter, M.; Quaas, A.; Walsh, S.; Benten, D.; Forbes, S.J.; Wells, R.G.; Iredale, J.P. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 2011, 53, 1192–1205. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Liu, D.-A.; Guan, L.; Myint, P.K.; Chin, L.; Dang, H.; Xu, Y.; Ren, J.; Li, T.; Yu, Z.; et al. Stiff matrix induces exosome secretion to promote tumour growth. Nat. Cell Biol. 2023, 25, 415–424. [Google Scholar] [CrossRef]
- Fan, W.; Adebowale, K.; Váncza, L.; Li, Y.; Rabbi, F.; Kunimoto, K.; Chen, D.; Mozes, G.; Chiu, D.K.-C.; Li, Y.; et al. Matrix viscoelasticity promotes liver cancer progression in the pre-cirrhotic liver. Nature 2024, 626, 635–642. [Google Scholar] [CrossRef]
- Schuppan, D.; Ruehl, M.; Somasundaram, R.; Hahn, E.G. Matrix as a Modulator of Hepatic Fibrogenesis. Semin. Liver Dis. 2001, 21, 351–372. [Google Scholar] [CrossRef]
- van Tienderen, G.S.; Conboy, J.; Muntz, I.; Willemse, J.; Tieleman, J.; Monfils, K.; Schurink, I.J.; Demmers, J.A.; Doukas, M.; Koenderink, G.H.; et al. Tumor decellularization reveals proteomic and mechanical characteristics of the extracellular matrix of primary liver cancer. Biomater. Adv. 2023, 146, 213289. [Google Scholar] [CrossRef]
- Benson, M.D.; Waddington-Cruz, M.; Berk, J.L.; Polydefkis, M.; Dyck, P.J.; Wang, A.K.; Planté-Bordeneuve, V.; Barroso, F.A.; Merlini, G.; Obici, L.; et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Tsimikas, S.; Karwatowska-Prokopczuk, E.; Gouni-Berthold, I.; Tardif, J.-C.; Baum, S.J.; Steinhagen-Thiessen, E.; Shapiro, M.D.; Stroes, E.S.; Moriarty, P.M.; Nordestgaard, B.G.; et al. Lipoprotein(a) Reduction in Persons with Cardiovascular Disease. N. Engl. J. Med. 2020, 382, 244–255. [Google Scholar] [CrossRef]
- Bergmark, B.A.; Marston, N.A.; Prohaska, T.A.; Alexander, V.J.; Zimerman, A.; Moura, F.A.; Murphy, S.A.; Goodrich, E.L.; Zhang, S.; Gaudet, D.; et al. Olezarsen for Hypertriglyceridemia in Patients at High Cardiovascular Risk. N. Engl. J. Med. 2024, 390, 1770–1780. [Google Scholar] [CrossRef]
- Maurer, M.S.; Kale, P.; Fontana, M.; Berk, J.L.; Grogan, M.; Gustafsson, F.; Hung, R.R.; Gottlieb, R.L.; Damy, T.; González-Duarte, A.; et al. Patisiran Treatment in Patients with Transthyretin Cardiac Amyloidosis. N. Engl. J. Med. 2023, 389, 1553–1565. [Google Scholar] [CrossRef]
- Strnad, P.; Mandorfer, M.; Choudhury, G.; Griffiths, W.; Trautwein, C.; Loomba, R.; Schluep, T.; Chang, T.; Yi, M.; Given, B.D.; et al. Fazirsiran for Liver Disease Associated with Alpha 1 -Antitrypsin Deficiency. N. Engl. J. Med. 2022, 387, 514–524. [Google Scholar] [CrossRef]
- O’donoghue, M.L.; Rosenson, R.S.; Gencer, B.; López, J.A.G.; Lepor, N.E.; Baum, S.J.; Stout, E.; Gaudet, D.; Knusel, B.; Kuder, J.F.; et al. Small Interfering RNA to Reduce Lipoprotein(a) in Cardiovascular Disease. N. Engl. J. Med. 2022, 387, 1855–1864. [Google Scholar] [CrossRef]
- Balwani, M.; Sardh, E.; Ventura, P.; Peiró, P.A.; Rees, D.C.; Stölzel, U.; Bissell, D.M.; Bonkovsky, H.L.; Windyga, J.; Anderson, K.E.; et al. Phase 3 Trial of RNAi Therapeutic Givosiran for Acute Intermittent Porphyria. N. Engl. J. Med. 2020, 382, 2289–2301. [Google Scholar] [CrossRef] [PubMed]
- Schuppan, D.; Ashfaq-Khan, M.; Yang, A.T.; Kim, Y.O. Liver fibrosis: Direct antifibrotic agents and targeted therapies. Matrix Biol. 2018, 68–69, 435–451. [Google Scholar] [CrossRef] [PubMed]
- Calvente, C.J.; Sehgal, A.; Popov, Y.; Kim, Y.O.; Zevallos, V.; Sahin, U.; Diken, M.; Schuppan, D. Specific hepatic delivery of procollagen α1(I) small interfering RNA in lipid-like nanoparticles resolves liver fibrosis. Hepatology 2015, 62, 1285–1297. [Google Scholar] [CrossRef]
- Leber, N.; Kaps, L.; Aslam, M.; Schupp, J.; Brose, A.; Schäffel, D.; Fischer, K.; Diken, M.; Strand, D.; Koynov, K.; et al. SiRNA-mediated in vivo gene knockdown by acid-degradable cationic nanohydrogel particles. J. Control. Release 2017, 248, 10–23. [Google Scholar] [CrossRef]
- Leber, N.; Kaps, L.; Yang, A.; Aslam, M.; Giardino, M.; Klefenz, A.; Choteschovsky, N.; Rosigkeit, S.; Mostafa, A.; Nuhn, L.; et al. α-Mannosyl-Functionalized Cationic Nanohydrogel Particles for Targeted Gene Knockdown in Immunosuppressive Macrophages. Macromol. Biosci. 2019, 19, e1900162. [Google Scholar] [CrossRef]
- Molokanova, O.; Schönig, K.; Weng, S.-Y.; Wang, X.; Bros, M.; Diken, M.; Ohngemach, S.; Karsdal, M.; Strand, D.; Nikolaev, A.; et al. Inducible knockdown of procollagen I protects mice from liver fibrosis and leads to dysregulated matrix genes and attenuated inflammation. Matrix Biol. 2018, 66, 34–49. [Google Scholar] [CrossRef] [PubMed]
- Kaps, L.; Huppertsberg, A.; Choteschovsky, N.; Klefenz, A.; Durak, F.; Schrörs, B.; Diken, M.; Eichler, E.; Rosigkeit, S.; Schmitt, S.; et al. pH-degradable, bisphosphonate-loaded nanogels attenuate liver fibrosis by repolarization of M2-type macrophages. Proc. Natl. Acad. Sci. USA 2022, 119, e2122310119. [Google Scholar] [CrossRef]
- Wernig, G.; Chen, S.-Y.; Cui, L.; Van Neste, C.; Tsai, J.M.; Kambham, N.; Vogel, H.; Natkunam, Y.; Gilliland, D.G.; Nolan, G.; et al. Unifying mechanism for different fibrotic diseases. Proc. Natl. Acad. Sci. USA 2017, 114, 4757–4762. [Google Scholar] [CrossRef] [PubMed]
- Schuppan, D.; Myneni, S.; Surabattula, R. Liquid biomarkers for fibrotic NASH—Progress in a complex field. J. Hepatol. 2021, 76, 5–7. [Google Scholar] [CrossRef]
- Eckersley, A.; Ozols, M.; Chen, P.; Tam, V.; Ward, L.J.; Hoyland, J.A.; Trafford, A.; Yuan, X.-M.; Schiller, H.B.; Chan, D.; et al. Peptide location fingerprinting identifies species- and tissue-conserved structural remodelling of proteins as a consequence of ageing and disease. Matrix Biol. 2022, 114, 108–137. [Google Scholar] [CrossRef]
- Nissen, N.I.; Karsdal, M.; Willumsen, N. Collagens and Cancer associated fibroblasts in the reactive stroma and its relation to Cancer biology. J. Exp. Clin. Cancer Res. 2019, 38, 115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karsdal, M.; Cox, T.R.; Parker, A.L.; Willumsen, N.; Sand, J.M.B.; Jenkins, G.; Hansen, H.H.; Oldenburger, A.; Geillinger-Kaestle, K.E.; Larsen, A.T.; et al. Advances in Extracellular Matrix-Associated Diagnostics and Therapeutics. J. Clin. Med. 2025, 14, 1856. https://doi.org/10.3390/jcm14061856
Karsdal M, Cox TR, Parker AL, Willumsen N, Sand JMB, Jenkins G, Hansen HH, Oldenburger A, Geillinger-Kaestle KE, Larsen AT, et al. Advances in Extracellular Matrix-Associated Diagnostics and Therapeutics. Journal of Clinical Medicine. 2025; 14(6):1856. https://doi.org/10.3390/jcm14061856
Chicago/Turabian StyleKarsdal, Morten, Thomas R. Cox, Amelia L. Parker, Nicholas Willumsen, Jannie Marie Bülow Sand, Gisli Jenkins, Henrik H. Hansen, Anouk Oldenburger, Kerstin E. Geillinger-Kaestle, Anna Thorsø Larsen, and et al. 2025. "Advances in Extracellular Matrix-Associated Diagnostics and Therapeutics" Journal of Clinical Medicine 14, no. 6: 1856. https://doi.org/10.3390/jcm14061856
APA StyleKarsdal, M., Cox, T. R., Parker, A. L., Willumsen, N., Sand, J. M. B., Jenkins, G., Hansen, H. H., Oldenburger, A., Geillinger-Kaestle, K. E., Larsen, A. T., Black, D., Genovese, F., Eckersley, A., Heinz, A., Nyström, A., Holm Nielsen, S., Bennink, L., Johannsson, L., Bay-Jensen, A.-C., ... Ricard-Blum, S. (2025). Advances in Extracellular Matrix-Associated Diagnostics and Therapeutics. Journal of Clinical Medicine, 14(6), 1856. https://doi.org/10.3390/jcm14061856