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Abstract: Gaussian process regression (GPR) can effectively solve the problem of high-dimensional
modeling with a small sample size. However, there is a lack of studies comparing GPR with other
methods for leaf area index (LAI) inversion using hyperspectral data. In this study, winter wheat
was used as the research material to evaluate performance of different methods for LAI inversion,
i.e., GPR, an artificial neural network (ANN), partial least squares regression (PLSR) and the spectral
index (SI). To this end, a 2-year water and nitrogen coupled experiment was conducted, and canopy
hyperspectral and LAI data were measured at the critical growth stages of wheat. Based on these data,
calibration and validation datasets were obtained, and the LAI prediction model was constructed
using the above four methods and validated. The results showed that the LAI inversion models
of the SI were the least effective compared with other methods, with R2 and RMSE ranging from
0.42–0.76 and 0.80–1.04 during calibration and R2 and RMSE ranging from 0.37–0.55 and 0.94–1.09
during validation. The ANN and GPR had the best results, with R2 of 0.89 and 0.85 and RMSE of
0.46 and 0.53 during calibration and R2 of 0.74 and 0.71 and RMSE of both 0.74 during validation.
The PLSR had intermediate LAI inversion results, with R2 and RMSE values of 0.80 and 0.61 during
calibration and R2 and RMSE values of 0.67 and 0.80 during validation. Thus, the ANN and GPR
methods were recommended for LAI inversion of winter wheat.

Keywords: leaf area index; gaussian process regression; artificial neural networks; partial least
squares regression; hyperspectral; wheat

1. Introduction

Wheat is the raw material for bread, cakes, and pasta and is an important food crop
that provides 30% of the energy consumed by humans worldwide [1]. The leaf area index
(LAI) is defined as the sum of the leaf area on one side of a plant per unit of land area [2]. It
is a good indicator of plant population size, is closely related to plant growth status [3] and
is widely used in crop growth assessment. Therefore, rapid and nondestructive detection
of wheat LAI is important for its growth monitoring and yield prediction.

The traditional method of LAI measurement uses destructive sampling, which is time-
consuming and labor-intensive [4]. Numerous studies have shown that remote sensing
technology can achieve rapid and nondestructive detection of crop physiological and
biochemical parameters [5–8]. In terms of LAI estimation using remote sensing technology,
there are mainly two types of methods: empirical and physical modeling methods. The
empirical methods are directly based on statistics to establish a quantitative relationship
between measured spectral information and LAI. The established model was used to
predict LAI in the target area [9], which is easy to implement but also suffers from the
problem that the model is location specific [10]. The physical model has a clear mechanistic
explanation and can simulate crop canopy spectra using a set of input variables, such as
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leaf physiological and biochemical parameters, leaf and canopy structure parameters, the
solar zenith angle, solar azimuth angle, and observed zenith angle [11]. As one of the
input parameters, LAI can be estimated by inverting the physical model. The advantage
of the method is that it has universal applicability. However, it has the problems of
requiring many input parameters that are not easy to obtain in practice. When the input
parameters are uncertain, it is easy to encounter problems during model inversion [12]. In
general, empirical modeling methods are still the current mainstream methods in practical
applications for LAI prediction.

The empirical modeling method includes both traditional statistical analysis methods
[e.g., spectral index (SI), partial least squares regression (PLSR), principal component
regression (PCR)] and machine learning methods [e.g., artificial neural network (ANN),
support vector machine (SVM)]. Based on UAV-acquired hyperspectral data, Tian et al. [13]
constructed an LAI prediction model using the spectral indices and obtained a coefficient
of determination (R2) of 0.85 and a root mean square error (RMSE) value of 0.02 during
validation. Yang et al. [14] used the stepwise multiple regression method and SVM method
to design rice LAI prediction models using original, first-order derivative, and second-order
derivative spectra and found that the LAI prediction model designed using the SVM and
original spectra had the best result. Using hyperspectral data, Kiala et al. [15] used the
SVM and PLSR methods to construct LAI prediction models for tropical grassland in early
and late summer, and the results showed that the PLSR model had better LAI prediction
ability. To predict LAI in a single soybean growth stage, Yuan et al. [16] compared the
ANN, SVM, PLSR, and random forest (RF) methods, and the results showed that the ANN
method had the highest accuracy. In addition to the above methods, the kernel function-
based machine learning method has developed rapidly in recent years, as it can perform
nonlinear modeling but still relies on linear algebraic operations and can effectively solve
the problem of modeling high-dimensional spaces with small data sizes [17]. In addition,
for field prediction by remote sensing, people are interested not only in the accuracy of
the model but also in the uncertainty generated by the prediction. The Gaussian process
regression (GPR) model is based on a kernel function using Bayesian theory to construct
prediction models, which has the advantages of a simple structure, few parameters and fast
training [18,19]. It can better deal with nonlinear problems and can give the uncertainty
of prediction, which is considered to have greater potential for application in remote
sensing [20]. However, few studies have been conducted on its application in wheat LAI
prediction. Therefore, it is necessary to conduct a comprehensive comparative analysis
between the GPR method and other methods for wheat LAI prediction to identify the
optimal method for users.

In this study, a field experiment was conducted to obtain LAI and canopy hyperspec-
tral data of winter wheat under different growth conditions. Based on these data, LAI
prediction models were designed by the SI, PLSR, ANN and GPR methods and compared,
to recommend the best method for high-precision LAI prediction.

2. Materials and Methods
2.1. Field Experiment

The study was conducted at the Yucheng Integrated Experiment Station (116◦34′13′′ E,
36◦50′00′′ N) of the Chinese Academy of Sciences in 2018–2019 and 2020–2021. The winter
wheat cultivar “Jimai 22” was sown with 20 cm row spacing. The experiment had two
irrigation treatments and five nitrogen (N) treatments in 32 plots. Each plot had an area of
10 m × 5 m. The two irrigation levels were 60 and 80% field water capacity and arranged
with split plot design. The five N levels were 0 kg N/ha−1 (N1), 70 kg N/ha−1 (N2),
140 kg N/ha−1 (N3), 210 kg N/ha−1 (N4), and 280 kg N/ha−1 (N5) and arranged with
randomized block design; N1–N4 had three replications and N5 had four replications.
Except for N fertilizer, the other management measures were the same in each plot, and the
experimental design is shown in Figure 1.
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N2: 70 kg N/ha−1; N3: 140 kg N/ha−1; N4: 210 kg N/ha−1; N5: 280 kg N/ha−1).

2.2. Data Acquisition

Field data were collected at the critical growth stages of wheat. Canopy hyperspectral
data and LAI were measured. The measurements were made at the Feekes 7 and Feekes
10.51 growth stages in 2019 and at the Feekes 4–5, Feekes 10.2, and Feekes 10.54 growth
stages in 2021 [21]. For the field data in each growth stage, a representative area was first se-
lected as the sampling site in each plot, and then the wheat canopy hyperspectral data, LAI
and chlorophyll were measured successively. The detailed procedure is described below.

2.2.1. Wheat Canopy Hyperspectral Data

FieldSpec HandHeld (Analytical Spectral Devices Inc., Boulder, CO, USA) was used
to measure wheat canopy hyperspectral data. The spectrometer had a wavelength range
of 325 nm to 1075 nm, with a sampling interval of 1.6 nm and a resolution of 3.5 nm. To
minimize illumination variations, data measurements were conducted during a cloud-free
period from 10:00 to 14:00. Measurements were made at each sampling site with the sensor
probe placed 1.8 m above the wheat canopy to obtain a field view of exactly four wheat
rows. Firstly, the spectrum of a reference white panel was measured, which was used to
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convert data from digital number (DN) values to reflection values subsequently. Then, at
each sampling site, ten scans were made and the averaged value was used.

2.2.2. LAI and Chlorophyll Data

An LAI 2200 Plant Canopy Analyzer (LI-COR Inc., Lincoln, NE, USA) was used for
the LAI measurements. During this process, the distance between two adjacent rows was
divided into four equal parts, and the LAI was measured at each position and averaged [22].
In addition, chlorophyll was measured by a handheld chlorophyll meter (SPAD-502, Minola
Ltd., Osaka, Japan). During this process, five representative plants were firstly selected.
Then, the SPAD values of their first fully expanded leaf were measured and averaged to
represent SPAD value in each sampling point.

2.3. Data Analysis Method

In this study, the SI, PLSR, ANN, and GPR methods were used to design LAI predic-
tion models. The performance of the four methods were compared. Notably, a total of
159 sampling points were acquired in the two years of this study due to the omission of
measured spectral data in a plot during Feekes 4–5 in 2021. During data checking at later
stages, four sampling points were found to have errors that were discarded. Thus, a total of
155 sampling points were finally retained. To divide the calibration and validation datasets
and eliminate errors caused by uneven samples between years, the sampling points of each
year were arranged from smallest to largest LAI; then, one-third of the points were selected
at equal intervals and used as validation data, and the remaining points were used as
calibration data. Finally, the calibration dataset had 116 sampling points, and the validation
dataset had 39 sampling points. The calibration coefficient of determination (Rcal

2) and
root mean square error (RMSEcal) and the validation coefficient of determination (Rval

2)
and root mean square error (RMSEval) were used to evaluate the model performance.

2.3.1. SI Method

Spectral indices that were commonly used for LAI prediction were selected and
are shown in Table 1 [23]. First, based on the calibration dataset, four types of models,
i.e., linear, exponential, power, and logarithmic models, were used for each SI to design
the LAI prediction model. Among them, the best model type was selected using the
leave-one-out cross validation method, with the largest coefficient of determination (Rcv

2)
and smallest root mean square error (RMSEcv). Then, the coefficients of selected model
types were obtained using calibration samples. Finally, the model was validated using
validation samples.

Table 1. Spectral indices used in this study.

Index Name Formula Source

RVI Ratio Vegetation Index R800/R670 [24]
NDVI Normalized Difference Vegetation Index (R800− R670)/(R800 + R670) [25]
DVI Difference Vegetation Index R800− R670 [26]
EVI Enhanced Vegetation Index 2.5(R800− R670)/(R800 + 6R670− 7.5R470 + 1) [27]

GNDVI Green Normalized Difference Vegetation Index (R800− R550)/(R800 + R550) [28]
MSAVI Modified Soil-Adjusted Vegetation Index

{
2R800 + 1− sqrt[(2R800 + 1)2 − 8(R800− R670)]

}
/2 [29]

OSAVI Optimization of Soil-Adjusted Vegetation Index 1.16(R800− R670)/(R800 + R670 + 0.16) [30]

RTVI Red-edge Triangle Vegetation Index [100(R750− R730)− 10(R750−
R550)]sqrt(R700/R670) [31]

Note: R470, R550, R670, R700, R730, R750, and R800 indicate the reflectance of the band at 470 nm, 550 nm, 670 nm,
700 nm, 730 nm, 750 nm, and 800 nm, respectively.

2.3.2. PLSR Method

The PLSR method is one of the commonly used methods to solve the problem of
collinearity of variables [32]. The process for designing the LAI prediction model based
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on the PLSR method was as follows: (1) correlation analysis between LAI and spectral
reflectance in each band was carried out to select the bands sensitive to LAI; (2) the
reflectance in sensitive bands and LAI were normalized between [−1, 1] to eliminate errors
resulting from differences in the magnitudes of the variables; (3) the normalized reflectance
data were used as the input of the PLSR method, and the leave-one-out cross validation
method was used to select the optimal number of latent variables (LVs); (4) the PLSR model
of LAI was designed based on all calibration samples using the optimal number of LVs;
and (5) the model was validated based on the validation samples (Figure 2). In this study, a
code to perform the above procedure was written in MATLAB 2020a.
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2.3.3. ANN Method

Compared with other ANN models, backpropagation (BP) ANN is one of the most
widely used neural network models due to its good performance and ability to handle any
linear or nonlinear relationship between input and output variables [33]. In addition, it has
been documented that a three-layer BP network performed better than other networks [34].
Therefore, a three-layer BP neural network containing an input layer, a hidden layer and an
output layer was used in this study.

The process of designing the LAI prediction model based on the BP ANN method
was as follows (Figure 2). (1) The same method used in designing the PLSR LAI model
was also used to select the bands sensitive to LAI. (2) The sensitive bands were normalized
between [−1, 1] to eliminate errors resulting from differences in the magnitudes of the
variables. (3) The LVs of PLSR were obtained and used as input variables, as many studies
had documented that this approach performed better than using principal components
from principal component analysis (PCA) [35,36]. (4) To design the BP ANN model, the
input layer was vectors of the LVs, and the output layer was vectors of the LAI. Referring
to Chen and Jing [37], the number of nodes in the hidden layer was set between 1 and 5 to
avoid overfitting, and the transformation function can be chosen as a tan-sigmoid function,
log-sigmoid function and linear function. From all their combinations, leave-one-out cross
validation method was used to select the best number of LVs, the number of hidden nodes
and the types of transformation function for converting from input nodes to hidden nodes
and from hidden nodes to output nodes. (5) The final ANN model was established based on
the selected number of LVs, the number of hidden nodes, and the types of transformation
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function, using all calibration samples. (6) The ANN model was tested using the validation
samples. A code to perform the above procedure was written in MATLAB 2020a.

2.3.4. GPR Method

GPR is a nonparametric regression model proposed by Rasmussen and William [38].
By assuming that the training data are sampled from Gaussian processes, the GPR method
uses the mean and covariance functions to describe the distribution of the object parameter.
During model calibration, the mean and covariance functions were obtained, and then
Bayesian theory was used to make predictions.

Considering the GPR model design, when the input variables are normalized between
[–1, 1], the mean function is usually set to 0. Therefore, the covariance function determines
the accuracy of the GPR model. The process of designing the GPR LAI prediction model is
described as follows (Figure 2). (1) Similar to the ANN method, the bands sensitive to LAI
variations were first selected and normalized to [–1, 1], and then LVs of PLSR were obtained
and used as input variables. (2) The leave-one-out cross validation method was used to
determine the number of LVs and kernel function types of the covariance function. During
this process, the kernel functions of the covariance function can be chosen as squared
exponential, Automatic Relevance Determination (ARD) squared exponential, rational
quadratic, ARD rational quadratic, exponential, ARD exponential, Matern 3/2, ARD Matern
3/2, Matern 5/2 or ARD Matern 5/2. (3) The final GPR model was established using the
selected number of LVs and the kernel function type of the covariance function, using all
calibration samples. (4) The designed GPR model was tested using validation samples.
A code to perform the above procedure was written in MATLAB 2020a (MathWorks Inc.,
Natick, MA, USA).

3. Results
3.1. LAI and SPAD in the Field

ANOVA and Duncan analysis were performed on the LAI and SPAD values of wheat
raised under different irrigation and N treatment levels at different growth stages in
different years and are shown in Tables 2 and 3, respectively. It can be noticed that there
were significant differences (p < 0.05) in LAI and SPAD among the different N levels in
almost all wheat growth stages. The LAI values in the two experimental years varied
between 0.34 and 5.56, covering a wide LAI range. This can be considered to be a good
dataset for LAI model design.

Table 2. Results of significance tests for LAI under different irrigation and N treatments at different
winter wheat growth stages in different years.

Year Growth Stage Irrigation
Treatment

N Fertilizer Treatment *

N1 N2 N3 N4 N5

2019 Feekes 7 W1 0.92 a 1.57 ab 1.32 ab 1.35 ab 2.25 b

W2 0.70 a 0.99 a 1.24 a 1.67 a 1.97 a

Feekes 10.51 W1 0.57 a 0.88 a 1.49 b 1.67 b 1.74 b

W2 0.53 a 0.71 a 1.50 b 1.53 b 2.06 b

2021 Feekes 4–5 W1 1.10 a 1.91 ab 2.52 ab 2.80 b 2.80 b

W2 0.85 a 2.53 b 3.28 b 3.78 b 3.25 b

Feekes 10.2 W1 2.34 a 3.87 ab 4.53 b 3.83 ab 4.88 b

W2 2.10 a 2.68 ab 4.44 abc 4.22 bc 4.95 c

Feekes 10.54 W1 1.42 a 2.52 ab 3.76 b 3.25 b 3.39 b

W2 1.10 a 2.54 b 3.87 c 3.78 c 4.13 c

*: Numbers mean averaged LAI in the corresponding N and irrigation treatment. Within each row, the different
letters indicate significant differences at the 0.05 level (p < 0.05); W1: 80% field capacity; W2: 60% field capacity;
N1: 0 kg N/ha−1; N2: 70 kg N/ha−1; N3: 140 kg N/ha−1; N4: 210 kg N/ha−1; N5: 280 kg N/ha−1.
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Table 3. Results of significance tests for SPAD under different irrigation and N treatments at different
winter wheat growth stages in different years.

Year Growth Stage Irrigation
Treatment

N Fertilizer Treatment *

N1 N2 N3 N4 N5

2019 Feekes 7 W1 31.0 a 40.5 b 49.5 c 45.1 bc 47.4 bc

W2 33.7 a 42.2 b 46.2 b 47.2 b 48.0 b

Feekes 10.51 W1 36.2 a 53.4 b 53.4 b 54.4 b 53.8 b

W2 37.3 a 51.3 b 54.0 b 55.0 b 52.7 b

2021 Feekes 4–5 W1 39.2 a 50.2 b 51.8 b 50.4 b 50.9 b

W2 35.3 a 50.2 b 51.8 b 50.1 b 51.1 b

Feekes 10.2 W1 36.0 a 42.5 ab 51.4 b 51.6 b 52.3 b

W2 29.5 a 46.4 b 52.1 c 52.0 c 52.9 c

Feekes 10.54 W1 36.5 a 44.7 ab 52.3 b 55.4 b 55.2 b

W2 29.3 a 42.2 b 50.3 c 53.2 cd 55.7 d

*: Numbers mean averaged SPAD in the corresponding N and irrigation treatment. Within each row, the different
letters indicate significant differences at the 0.05 level (p < 0.05); W1: 80% field capacity; W2: 60% field capacity;
N1: 0 kg N/ha−1; N2: 70 kg N/ha−1; N3: 140 kg N/ha−1; N4: 210 kg N/ha−1; N5: 280 kg N/ha−1.

3.2. Feature Bands for LAI Prediction

The correlation coefficients between the spectral reflectance in each band and the
LAI are shown in Figure 3. In the 325–730 nm spectral region, there was a significant
negative correlation (p < 0.01) between the reflectance and the LAI. This is mainly because
N fertilization leads to better wheat growth with higher chlorophyll content and LAI.
This spectral region is mainly affected by chlorophyll absorption, so it presents a negative
correlation between the reflectance of the bands and the LAI [39]. The 325–400 nm spectral
region suffers from noise due to atmospheric interference. In addition, the 740–930 nm
spectral region showed a significant positive correlation between the reflectance in each
band and the LAI (p < 0.01). This is mainly because the spectrum in this region is mainly
influenced by the LAI, and the higher the LAI, the higher the reflectance [40]. Although the
reflectance in the 931–1075 nm bands also correlated with the LAI, the results were noisy
due to atmospheric water absorption [41]. Therefore, in this study, only 401–730 nm and
740–930 nm spectral regions were selected as sensitive bands for LAI prediction and were
used in designing the PLSR, ANN, and GPR models.
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GNDVI 0.60 0.90 xy 98.313.0 e=  0.69 0.89 0.49 1.00 

OSAVI 0.55 0.95 xy 46.325.0 e=  0.67 0.93 0.47 1.04 
RTVI 0.53 0.94 67.018.0 += xy  0.54 0.93 0.47 1.01 
EVI 0.47 1.00 59.093.5 −= xy  0.49 0.99 0.43 1.04 

MSAVI 0.48 0.99 47.001.6 −= xy  0.50 0.98 0.42 1.05 
DVI 0.41 1.06 38.015.10 −= xy  0.42 1.04 0.37 1.09 

Figure 3. Correlation coefficients between reflectance and LAI (min/max, 0.34/5.56).
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3.3. Results of Different Models for LAI Prediction
3.3.1. SI Method

The LAI prediction results for the models designed using different spectral indices are
shown in Table 4 and ranked from best to worst performance according to the calibration
and validation results. The RVI and NDVI had the best results, with Rcal

2 values of 0.76 and
0.70 and RMSEcal values of 0.80 and 0.88 during calibration, Rcv

2 values of 0.66 and 0.62
and RMSEcv values of 0.81 and 0.89 during cross validation, and Rval

2 values of 0.55 and
0.52 and RMSEval values of 0.94 and 0.97 during validation (Figure 4). The GNDVI, OSAVI
and RTVI had intermediate LAI estimation results. The LAI prediction model had Rcal

2

values between 0.54 and 0.69 and RMSEcal values between 0.89 and 0.93 during calibration,
Rcv

2 values between 0.53 and 0.60 and RMSEcv values between 0.90 and 0.94 during cross
validation, and Rval

2 values between 0.47 and 0.49 and RMSEval values between 1.00 and
1.04 during validation. The EVI, MSAVI and DVI had the worst results for LAI prediction.
The LAI prediction model had Rcal

2 values between 0.42 and 0.50 and RMSEcal values
between 0.98 and 1.04 during calibration, Rcv

2 values between 0.41 and 0.48 and RMSEcv
values between 0.99 and 1.06 during cross validation, and Rval

2 values between 0.37 and
0.43 and RMSEval values between 1.04 and 1.09 during validation.

Table 4. LAI prediction results for the models designed using different spectral indices. Linear,
logarithmic, exponential, and power models were used for fitting each index. The model type
with the highest Rcv

2 and lowest RMSEcv was used, and the calibration and validation results are
expressed in the table.

SI
Cross Validation Calibration Validation

Rcv
2 RMSEcv Model Rcal

2 RMSEcal Rval
2 RMSEval

RVI 0.66 0.81 y = 0.38x0.77 0.76 0.80 0.55 0.94
NDVI 0.62 0.89 y = 0.2e3.06x 0.70 0.88 0.52 0.97

GNDVI 0.60 0.90 y = 0.13e3.98x 0.69 0.89 0.49 1.00
OSAVI 0.55 0.95 y = 0.25e3.46x 0.67 0.93 0.47 1.04
RTVI 0.53 0.94 y = 0.18x + 0.67 0.54 0.93 0.47 1.01
EVI 0.47 1.00 y = 5.93x− 0.59 0.49 0.99 0.43 1.04

MSAVI 0.48 0.99 y = 6.01x− 0.47 0.50 0.98 0.42 1.05
DVI 0.41 1.06 y = 10.15x− 0.38 0.42 1.04 0.37 1.09
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3.3.2. PLSR Method

The leave-one-out cross validation results of the PLSR model under different numbers
of LVs are shown in Figure 5. When seven LVs were used, the model had the highest Rcv

2

value and lowest RMSEcv value. Thus, seven LVs were used to design the final PLSR model.
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Considering LAI prediction, the PLSR model had an Rcal
2 value of 0.80 and RMSEcal value

of 0.61 during calibration (Figure 6a) and an Rval
2 value of 0.67 and RMSEval value of 0.80

during validation (Figure 6b).
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3.3.3. ANN Method

For the ANN model, the highest Rcv
2 value and lowest RMSEcv value were obtained

by the combination of seven LVs, two hidden nodes, the tan-sigmoid function used as the
transformation algorithm from the input nodes to the hidden nodes and the linear function
used as the transformation algorithm from the hidden nodes to the output layer. Based on
the calibration samples, the model had an Rcal

2 value of 0.89 and RMSEcal value of 0.46
(Figure 7a). The cross validation had an Rcv

2 value of 0.80 and RMSEcv value of 0.62. When
the ANN model was validated using the validation samples, the result was also good,
having an Rval

2 of 0.74 and RMSEval of 0.74 (Figure 7b).
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3.3.4. GPR Method

For the GPR model, the cross validation results for all combinations of the number of
LVs and kernel functions are shown in Figure 8. The highest Rcv

2 value and lowest RMSEcv
value were obtained when the number of LVs was seven and the kernel function type was
the ARD Matern 3/2, with values of 0.79 and 0.63, respectively. Based on the selected
combination and all data in the calibration dataset, the GPR model had an Rcal

2 of 0.85
and RMSEcal of 0.53 (Figure 9a). When the GPR model was validated using the validation
samples, the result was satisfactory, with a validation Rval

2 of 0.71 and an RMSEval of 0.74
(Figure 9b).
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4. Discussion
4.1. Comparison with Previous Results

Considering wheat LAI prediction, Xie et al. [42] took formulation as NDVI, MSR, and
MSAVI, and used different methods to select bands into the formula to design spectral
indices. The spectral indices had R2 values between 0.48 and 0.87 during calibration and R2

values between 0.50 and 0.76 during validation. Liang et al. [43] used the OSAVI to design
a wheat LAI prediction model, and the model had R2 values of 0.82 during both calibration
and validation. Li et al. [44] selected the sensitive bands of LAI and then used the PLSR
method to design a wheat LAI prediction model using these bands. The model had an R2

value of 0.84 during calibration and 0.88 during validation. Based on UAV hyperspectral
data, Tao et al. [45] used PLSR to design an LAI prediction model for wheat at different
growth stages, and the prediction model had R2 values between 0.64 and 0.76 during
calibration and 0.62 and 0.84 during validation. Siegmann et al. [46] also designed PLSR
LAI prediction models for wheat in different years, and they had R2 values between 0.90
and 0.92 during validation. In this study, wheat LAI prediction models were designed using
the SI, PLSR, ANN and GPR methods, and the models had R2 values between 0.42 and 0.89
during calibration and between 0.37 and 0.74 during validation (Table 5). Compared with
existing studies, the results of this study are within a reasonable range.

Table 5. Summary of results from different LAI prediction methods used in this study.

Methods
Calibration Validation

Rcal
2 RMSEcal Rval

2 RMSEval

SI 0.42–0.76 0.80–1.04 0.37–0.55 0.94–1.09
PLSR 0.80 0.61 0.67 0.80
ANN 0.89 0.46 0.74 0.74
GPR 0.85 0.53 0.71 0.74

4.2. Optimal LAI Prediction Method

Considering the LAI prediction accuracy during calibration and validation, the results
showed that the ANN achieved the best results. GPR followed, with validation results
closely to that of ANN. PLSR displayed intermediate results for LAI prediction, and
SI had the worst results. This may be due to the following reasons: (1) SI is based on
multispectral information, which only utilizes limited spectral features. The ANN, GPR
and PLSR can use more diagnosis features in the spectra. Considering LAI estimation,
Neinavaz et al. [47] and He et al. [48] also stated ANN and PLSR performed better than
SI respectively. (2) Multiple factors (e.g., LAI, chlorophyll, leaf mesophyll structure, leaf
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water content, leaf angle distribution function, background) influence canopy reflectance
and the combined influence of these factors on the reflectance spectrum is not purely
linear [37]. Thus, many studies have reported that the relationships between LAI and
spectral information are non-linear [16,23]. The PLSR method is a linear regression method
that cannot effectively solve the nonlinear relationship between the spectral reflectance and
the LAI. Thus, the accuracy of the PLSR method for estimating LAI is lower than that of
the ANN and GPR method.

4.3. Application Potential of This Study

As mentioned earlier, the Gaussian regression method is a new machine learning
method that has emerged in recent years. In this study, it was applied to wheat LAI
prediction and was compared with other commonly used methods to provide useful
information for users selecting methods. The results showed that, though LAI prediction
results from GPR were slightly worse than those of ANN, the GPR method also can solve
the nonlinear problem well, resulting in accurate LAI prediction. In the future, for “robust”
wheat LAI prediction model design, samples covering different climatic areas and different
cropping management types should be collected and used to calibrate and validate the
ANN or GPR models to apply the models in different scenarios.

5. Conclusions

In this study, a wheat field experiment under different irrigation and N treatments was
conducted for two years, and LAI and canopy hyperspectral data were collected during the
critical growth stages. Based on these data, different methods, such as the SI, PLSR, ANN
and GPR methods, were compared for LAI prediction. The results showed that both ANN
and GPR can solve the nonlinear problem well, resulting in better LAI prediction results
than PLSR and SI methods. They were recommended for designing LAI prediction models
based on hyperspectral data.
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