
Citation: Geng, N.; Zheng, X.; Han, X.;

Li, X. Towards Sustainable

Development: The Impact of

Agricultural Productive Services on

China’s Low-Carbon Agricultural

Transformation. Agriculture 2024, 14,

1033. https://doi.org/10.3390/

agriculture14071033

Academic Editors: Maria Pergola

and Cornelia Flora

Received: 16 April 2024

Revised: 15 June 2024

Accepted: 25 June 2024

Published: 28 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Towards Sustainable Development: The Impact of Agricultural
Productive Services on China’s Low-Carbon
Agricultural Transformation
Ning Geng 1 , Xiaoqing Zheng 2, Xibing Han 1 and Xiaonan Li 3,*

1 School of Public Administration, Shandong Normal University, Jinan 250014, China;
gengning@sdnu.edu.cn (N.G.)

2 Inspur Smart City Technology Co., Ltd., Jinan 250014, China; zhengxq@inspur.com
3 School of Business, Shandong Normal University, Jinan 250014, China
* Correspondence: lixiaonan@sdnu.edu.cn

Abstract: In the context of carbon neutrality, the low-carbon transition in agriculture is crucial to
achieving carbon mitigation through clean production. The provision of agricultural productive
services (APS) is pivotal for modernizing farming practices in China. However, the impact of this on
the low-carbon transformation has received limited attention. This research examined the non-linear
relationship between agricultural productive services and low-carbon development, including verify-
ing a threshold effect with APS as the threshold variable, employing panel data for 31 provinces in
China from 2010 to 2021. The results of the study suggested that the effect of services associated with
agricultural productivity on the transition of the agricultural sector to low-carbon practices varied
across threshold ranges. Specifically, when the APS exceeded the threshold of 2.4396, a significant
suppressive effect was observed on carbon emission intensity. Further analysis revealed that APS indi-
rectly influenced the farmland scale and agricultural technological advancements, thereby promoting
the low-carbon transition of China’s agriculture. Based on these results, it is recommended to inten-
sify the development of APS in key cereal-producing regions, while emphasizing the harmonious
progress of these services in conjunction with large-scale farmland management.

Keywords: agricultural productive service; low-carbon transition; agricultural carbon emissions; China

1. Introduction

Global climate change has led to a series of effects on food security, human activities,
and the long-term development of economic and social systems, offering a common prob-
lem for nations globally [1,2]. Scholars have increasingly recognized significant emissions
of greenhouse gases, specifically CO2, CH4, and N2O, as crucial factors in the phenomenon
of global warming [3]. The UNFCC was officially executed in March 1994 as a response
to these challenges. Legislative initiatives on a global scale to control greenhouse gas
emissions commenced with the ratification and implementation of the Kyoto Protocol and
the Paris Agreement. It is mandatory for all signatory countries, regardless of their level of
development, to commit to emission reduction targets and ensure they meet the associated
responsibilities. The IPCC recommended in 2018 that to stabilize the climate, the world
should aim to attain net zero global emissions of greenhouse gases by about 2050. The
endorsement resulted in the extensive implementation of the “carbon neutrality” objective.
It is believed that a low-carbon transition is essential to achieving carbon reduction and
sustainable production [4].

China plays an active role in global climate governance and provides support as
an initial signatory to the UNFCC. The country consistently improves its autonomous
contributions to this cause. In 2015, China announced new autonomous emission reduction
goals, aiming for a 60–65% reduction in carbon emissions by 2030 compared to 2005
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levels (China has just announced its post-2020 climate target: to reduce carbon emission
intensity by 60% to 65% based on 2005 levels, http://www.tanjiaoyi.com/article-1094
9-1.html (accessed on 20 December 2023)). The Chinese government introduced new
approaches and strategies in tackling climate change by formally announcing the “dual
carbon” objectives in 2020 (“carbon peak” before 2030 and “carbon neutrality” before 2060,
Source: “Xi Jinping’s Speech at the General Debate of the 75th Session of the United Nations
General Assembly (Full Text)” https://www.gov.cn/xinwen/2021-09/22/content_563859
7.htm (accessed on 20 December 2023)).

Carbon emission reduction serves as the basis for achieving the “dual carbon” ob-
jectives, which also require increased carbon sequestration. Agricultural practices also
contribute significantly to the global release of carbon, although industry, manufacturing,
and the energy sector are the primary contributors to carbon emission reduction [5,6].
According to a 2019 UNFCCC report, the agricultural sector, in combination with food
systems, contributes to an estimated 31% of global carbon emissions caused by human
activities. Based on data provided by the FAO, greenhouse gas emissions associated with
worldwide agricultural operations and food production increased by 17% in 2019 relative
to 1990 levels [7]. China, being the leading global emitter of CO2, exhibits an upward trend
in agricultural carbon emissions, which account for 16–17% of its total emissions. This
figure exceeds the global average and continues to rise [8]. Energy consumption is expected
to play a significant role in the capital-intensive nature of modern agricultural development
for the foreseeable future, putting China’s efforts to reduce agricultural carbon emissions
under immense pressure.

To address the pressing difficulties, it is crucial to promptly address carbon emis-
sions from farming and promote the adoption of sustainable, low-emission agricultural
practices. Higher carbon emissions from agriculture in China can be attributed directly
to inefficient resource utilization and production practices [9,10]. Currently, there are
230 million farming households in China, each with an average arable land area of 7.8 mu
(approximately 0.52 hectares). Among these households, 210 million handle less than 10 mu
(around 0.67 hectares) of arable land (data come from the National Bureau of Statistics
in China. http://www.stats.gov.cn (accessed on 20 December 2023)). The environmen-
tal improvement resulting from the reduction of agricultural carbon emissions (ACEs)
is an excellent public benefit [9], accompanied by evident externalities [11]. In addition
to technical and higher cost constraints, profit-maximizing “rational peasants” [12] en-
counter limits such as transaction costs, human capital, and technology dissemination.
These constraints not only hinder their active adoption of low-carbon ways but also make
it difficult for them to receive direct economic benefits [13]. However, the smallholder
economy in China possesses organizational benefits and the capacity to specialize in labor.
Agricultural production processes are becoming more divided, allowing for the outsourcing
of various tasks, including sowing, seedling cultivation, fertilization, pest management,
harvesting, and drying, to service organizations. According to Qian [14], the shift from a
“self-management” paradigm to “outsourced service management” can stimulate the innate
motivation for adopting sustainable, low-carbon agricultural practices, as proposed by
Qing [15]. Agricultural productive services (APS) are crucial in promoting the transition to
low-carbon agriculture (LCA) within this framework. APS accomplishes this by incorporat-
ing environmentally friendly components such as biomass-derived pesticides, sustainable
fertilizers, and biodegradable agricultural films. Additionally, it utilizes advanced low-
carbon technologies that encompass accurate soil analysis, targeted fertilization methods,
eco-friendly pest control, and systems for reintroducing crop residues to the soil [16,17]. As
a result, the focus of our research is to elucidate the mechanisms by which APS influences
the low-carbon transformation of Chinese agriculture (LCTA) and to provide empirical
evidence to support this claim.

http://www.tanjiaoyi.com/article-10949-1.html
http://www.tanjiaoyi.com/article-10949-1.html
https://www.gov.cn/xinwen/2021-09/22/content_5638597.htm
https://www.gov.cn/xinwen/2021-09/22/content_5638597.htm
http://www.stats.gov.cn
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2. Literature Review and Analytical Framework
2.1. A Review of the Multiple Impacts of APS on LCTA

Recently, there has been a substantial increase in studies focusing on long-term, low-
emission growth in the agricultural sector. Previous studies on LCA have mostly focused
on the following aspects: (1) Calculation of ACEs and structural characteristics: Researchers
have dedicated efforts to the measurement of ACEs and the comprehension of their struc-
tural properties [18–20]. (2) Evaluating the feasibility of agricultural carbon emission
reduction, [21] made an approximation of the worldwide potential to reduce agricultural
greenhouse gases (AGHGs) as early as 1997. However, the results were unreliable due
to inadequate baseline data on land use and AGHGs. Subsequent research on agricul-
tural carbon reduction utilized the concept of shadow pricing, originally derived from
economics, to assess the expenses associated with environmental pollution control [22].
Additionally, it explored regional variations in cost reduction [1,23], establishing a foun-
dation for further investigation in this field. (3) Identifying the driving factors behind
ACEs, Important factors include the level of economic development in agriculture [24],
improvements in agricultural management techniques [25,26], technological advancements
in agriculture [27], effective utilization of land resources [28], and the consumption of LCA
products [29]. (4) Selecting pathways for LCTA and formulating supportive policies: This
includes efficient planting methods, organic agriculture, and agricultural biogas [30,31],
conservation tillage techniques such as no-till or crop residue return [2], and strategies to
improve soil carbon sequestration [32]. Countries have implemented a range of approaches
to encourage LCA, including the imposition of carbon emission taxes [33] and the estab-
lishment of carbon credit trading markets within the farming sector [34,35]. In summary,
although considerable research has been conducted on LCTA thus far, there is still a lack of
literature on the correlation between APS and LCTA.

The notion that efficiency is increased through labor division is a fundamental princi-
ple in economic theory and was first proposed by Smith in 1776. Currently, APS plays a
vital role in promoting agricultural techniques in China, making a substantial contribution
to the modernization of the sector [36,37]. APS covers the provision of funds, technological
progress, machinery, and services associated with the processing and promotion of agricul-
tural products at different phases of production. On a fundamental level, APS promotes
specialization and labor division within the agricultural domain [38,39]. The LCTA model
is influenced by the specific factor endowments of a nation or region in practical application.
Agriculture in developed countries, such as the United States, tends to substitute mechan-
ical capital input for labor input. The literature focuses mostly on the effect of farming
scale on ACEs [40], emphasizing that larger operations and higher mechanization levels are
more likely to provide economies of scale [41]. Meanwhile, countries like Japan and South
Korea, which have high population densities and limited land, frequently utilize intensive
low-carbon technological solutions to counteract the scarcity of arable land. This approach
promotes sustainable low-carbon farming practices [42]. China also faces the imbalance
of having a large population and limited land. The yield-targeted agriculture strategy,
which involves the heavy application of chemicals, has effectively tackled food security
concerns for China’s population of over 1.4 billion [43]. However, the continuous and
excessive application of agricultural chemicals has caused a significant crisis in resources
and the environment, leading to increased greenhouse gas emissions. This poses a threat
to the quality and safety of agricultural products, as demonstrated by occurrences such
as the contamination of rice with cadmium [5]. To enhance the LCTA, APS facilitates the
reduction of fertilizers by modifying the composition of capital, labor, and technology
inputs [15]. Furthermore, they effectively overcome the invisible scale limitations of bio-
chemical technologies (e.g., pesticides, fertilizers) and permit the continuous operation
of agriculture [44,45].

Furthermore, numerous scholarly investigations have examined the potential of APS
to improve the output of LCA. These factors encompass the improvement of eco-friendly
efficiency in grain crops [11], the increase in crop production [46], the rise in income for
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agricultural producers [45], and the upgrading of the agricultural sector’s capacity to
meet demand [47]. Carbon emission intensity is an important measure for evaluating
the performance of low-carbon agricultural production. It helps to balance the goals of
stabilizing atmospheric CO2 levels and promoting economic growth. Additionally, it serves
as a standard for assessing the effectiveness of efforts to mitigate climate change [48].
Considering environmental costs within the global value chain, including service elements
in manufacturing, might reduce the carbon emission intensity of exports by promoting
factor reallocation and technical developments [49]. Moreover, studies utilizing the World
Input-Output Database (WIOD) transnational panel data suggest that China’s transition to
a service-oriented manufacturing sector had a greater effect on decreasing the intensity of
ACEs compared to similar transformations in developed economies [50].

The investigations mentioned above have made contributions to the LCTA and LCTA.
Unfortunately, in the context of small-scale farming, research on how APS affects LCA
via multiple pathways and mechanisms is limited. Thus, based on previous research, we
have carried out both theoretical and empirical investigations to examine the influence of
APS on LCTA. The following are key directions for expanded research and detailed study:
(1) Developing a conceptual model to clarify how APS affects LCTA and its fundamental
rational processes; (2) utilizing time-series cross-sectional data spanning 2000 to 2021 from
China’s 31 provinces (in view of the availability of data, panel data for 31 provinces of
China (excluding Taiwan Province, Hong Kong, and Macao SAR) were selected, including
municipalities and districts), to empirically assess the complex relationship between APS
and the decrease of ACEs, specifically examining the presence of a threshold effect with APS
acting as the pivotal variable; and (3) delving into the various channels APS may employ
to exert influence on LCTA. The results from our study are expected to contribute to the
formulation of LCAT strategies and the refinement of carbon emission mitigation policies.

2.2. Theoretical Perspectives of the Impacts of APS on LCTA

Expanding upon previous understandings of the inherent connection between scale
and economy, economists claim that endogenous economic development originates from
the division of labor [51–53]. Pa-nayotou (1993) provided additional evidence regarding
the interaction between economic growth and environmental pollution by illustrating how
aggregate pollutant emissions (including sulfur dioxide, carbon dioxide, and particulate
matter) and economic growth exhibit an inverse U-shaped pattern over time; this rela-
tionship is referred to as the environmental Kuznets curve (EKC). Recent studies indicate
that economic growth has a significant influence on ecological and environmental changes
through three specific mechanisms: scale effects, technological advancements, and adjust-
ments in economic structure [54]. Given the distinct framework of rural land ownership
in China, which distinguishes between ownership, contractual rights, and operational
rights, and taking into account the influence of external resource allocation and the ability
to separate different stages of farming, it is feasible to incorporate APS as an innovative
component of various stages of agricultural production. This integration may involve
the implementation of advanced machinery, organic fertilizers, and sustainable technolo-
gies, which would promote further specialization and division within the agricultural
sector [36,55]. Therefore, this would lead to the transformation of conventional high-carbon
agriculture practices in China. This study tries to analyze the underlying logic of how APS
contributes to the transition towards low-carbon farming practices, as discussed in the
aforementioned theories (Figure 1).
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Firstly, when considering the environmental Kuznets theory, the effect of APS on
LCTA could have a non-linear relationship. During the early stages of APS development,
unregulated growth in market capital might lead to the emergence of monopolistic condi-
tions [56]. Exclusive control over the provision of productive services frequently leads to
higher service prices, which then raise production costs throughout the agricultural indus-
try. As a result, the increased expenses related to APS usage decrease farmers’ earnings
and their willingness to invest in these services. Consequently, high-carbon agricultural
methods may continue for some time due to the influence of production goals. As the
market competitiveness mechanisms in the APS sector enhance, competitive pressures
lead to a decrease in service costs. Reduced input costs increase farmers’ profit margins,
making them more willing to outsource services at various stages of production. The LCTA
has advanced as a result of this transition from high-carbon practices to labor-saving and
low-carbon technologies [57]. Based on the previous theoretical foundation, we proposed
Hypothesis 1 in the following manner.

Hypothesis 1. The impact of APS on the LCTA is to be nonlinear, with the existence of certain
threshold ranges.

Furthermore, by applying the theory of division and specialization, the incorpora-
tion of APS into the agricultural production process promotes the growth of agricultural
sectors [14]. Smallholder farmers, who labor on small and fragmented plots of land, expe-
rience longer operational times and faster machinery wear when applying APS to these
scattered plots. As a result, service providers frequently favor large-scale operators rather
than smallholders. Within this particular framework, APS organizations provide extensive
mechanized services, including contract plowing, harvesting, and planting. This encour-
ages small-scale farmers to combine their enterprises into larger ones (Figure 1), allowing
them to take advantage of economies of scale, lower service costs, increase agricultural
output, and improve profits [58], thus removing the necessity for individual investment in
farming machinery. Furthermore, in comparison to purchases made by individual farmers,
APS providers are capable of delivering agricultural film, fertilizers, and pesticides of
higher quality at reduced prices due to their operational scope [41]. Therefore, based on
the previous study, we put forward Hypothesis 2.
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Hypothesis 2. APS can indirectly facilitate the LCTA by promoting the large-scale operation
of farmland.

Furthermore, according to transition economics theory, technological advancement
plays a vital role in attaining transformative development. In his derivation of the pro-
duction function, Solow [59] showed that the marginal advantages of labor, capital, and
natural resources decline over time, while knowledge and technology do not exhibit de-
clining marginal returns. This suggests that investing in modern technology and existing
knowledge does not increase marginal costs. Extending Solow’s findings, subsequent
research clarifies the shift from a dichotomy between economic transformation and environ-
mental improvement to a synergistic relationship [54]. Therefore, continuous investment
in low-carbon agricultural technology such as soil testing, precision fertilization, digital
monitoring of fertilizer efficacy, and green pest management would help reduce chemical
and diffuse agricultural pollution. By using advanced low-carbon and eco-friendly tech-
nology, the simultaneous implementation of this initiative will improve the efficiency of
environmental governance and reduce carbon emissions in agriculture. Ultimately, this will
lead to the low-carbon transformation of agricultural development. Based on the previous
study, we propose Hypothesis 3.

Hypothesis 3. Agricultural productive services can indirectly facilitate the LCTA through the
advancement of low-carbon technologies.

3. Model Specifications and Data
3.1. The Measurement of APS

In this study, agriculture is narrowly defined as crop farming. Up to now, there is
no direct indicator for measuring the level of APS. Scholars employ a range of indirect
indicators to assess APS, including funds allocated to productive services in rural fixed
asset investment [60]; intermediate services of agricultural input in input-output tables [39],
and expenditures on productive services related to agriculture [14]. These indicators have
either been discontinued at the provincial level or have been collected inconsistently in
recent years, which may lead to overestimation or underestimation of the actual situation.
Consequently, we utilize the average value per acre of support service activities for crop
farming, as reported by the National Bureau of Statistics, to gauge APS. Supportive services
encompass professional and auxiliary production activities such as seedling breeding,
agricultural machinery, irrigation, and pest and disease control for sectors like crop farming,
forestry, animal husbandry, and fisheries. These offerings reflect, to some degree, the scope
of services that enhance agricultural productivity and are conceptually in harmony with
APS. Additionally, this dataset has been consistently available for more than two decades,
given that the macro provincial level aggregates the output value of professional and
supportive services for the whole of agriculture. As such, the value of supportive services
for crop farming presented in this paper requires adjustment. The calculation formula is
as follows:

APSit =
TAPSit × (AVit/TAVit)

Scaleit
(1)

where APSit is the value of agricultural support services for region i in year t, TAPSit is
the value of support services for crop farming, forestry, animal husbandry, and fisheries,
AVit/TAVit is the proportion of crop farming output value in the total output value of
agriculture, Scaleit is the sown area of crops.

3.2. The Measurement of Agricultural Carbon Emissions

Drawing from the environmental Kuznets theory, the transition to LCA necessitates the
integration of low-carbon technologies to mitigate emissions and promote clean production,
while simultaneously fostering agricultural economic growth to secure food supplies.
Consequently, this study adopts carbon emission intensity as a measurable indicator of
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the agricultural sector’s shift towards low-carbon practices. The calculation formula is
as follows:

ACIit = ACit/AGit (2)

In the formula, ACIit represents the agricultural carbon intensity for region i in
year t, ACit represents the total ACEs, and AGit represents the actual total agricultural
output value.

Current methodologies for calculating agricultural carbon emissions (ACit) primarily
utilize an input-output approach to estimate the aggregate carbon emissions across the
agricultural production process (Figure 2). First, inputs used in production, including
pesticides, fertilizers (like phosphate and potassium), agricultural plastics, and diesel, lead
directly to the emission of carbon dioxide (CO2). Furthermore, the remnants of nitrogen-
based fertilizers primarily release nitrous oxide (N2O), a gas that negatively affects the soil’s
health in farmed areas. Second, the planting and management of crops, involving activities
like plowing and irrigation, lead to the production of carbon dioxide (CO2). Third, methane
(CH4) emissions occur during the growth of rice, a significant factor to be accounted for in
the calculation of ACEs. As a major food crop in China, rice growth has contributed to over
22.74% of the nation’s ACEs [61]. Fourth, in the output stage, handling the crop remnants
that are reintegrated into the soil leads to the release of multiple pollutants, including
carbon dioxide, nitrous oxide, and methane. Two primary methods exist for calculating
agricultural greenhouse gas emissions: the carbon emission factor approach [62] and the
actual field measurement approach [63]. Given the research data in this paper are at the
macro level, it is more appropriate to adopt the carbon emission factor method. The precise
calculation methodology is outlined below:

ACit = ∑ Ci = ∑ Ti × δi = C1
it + C2

it + C3
it + C4

it (3)
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In Formula (3), Ci represents the ACEs; Ti and δi denotes the actual amount of each
carbon source and the corresponding coefficient of ACEs, respectively. This paper’s agri-
cultural greenhouse gas emissions include three gases: CH4, N2O, and CO2. To facilitate
aggregation and maintain consistency with other carbon emission studies, this paper
converts all kinds of AGHGs into standard carbon dioxide equivalents in the actual calcu-



Agriculture 2024, 14, 1033 8 of 23

lation. Based on the Fifth Assessment Report by the IPCC [64], the factors for converting
carbon dioxide to methane and nitrous oxide stand at 28 and 265, respectively. For pre-
cise calculations of greenhouse gas emissions from various agricultural carbon sources,
see Appendix A.

3.3. Variable Selection and Data Description

To examine the impacts of APS on the LCTA, this study selected one dependent
variable (ACI), one independent variable (APS), seven control variables, and two mediator
variables to construct a panel econometric model. Table 1 displays the chosen variables
along with their descriptive statistical analysis. The specifics are as follows:

Table 1. Variable selection and descriptive statistics.

Variable Basis Unite Mean Std. Dev. Min Max

Agricultural carbon
emission intensity (ACI)

Agricultural carbon emissions/Actual
GDP (log processing) 682 2.2843 1.4413 0.2197 11.4765

Agricultural productive
services (APS)

Value of agricultural support
services/farmland area 682 8.4123 6.7414 0.0001 39.1855

Farmland management
scale (SCALE)

Farmland area/number of
agricultural households 682 0.2565 0.1625 0.0306 1.4053

Agricultural technology
progress (TCH)

Regional agricultural science and
technology expenditure/total
agricultural expenditure

682 0.0017 0.0014 0.0001 0.0072

Farmers’ education
level (EDU) Per capita years of farmer education 682 8.5651 1.2692 3.4024 12.7244

Level of economic
development (GDP) Gross regional product per capita 682 9.2149 0.5541 7.8867 10.8156

Multiple cropping
index (MCC) Crop sown area/total cultivated area 682 1.3304 0.5223 0.4856 8.2514

Agricultural fiscal
expenditure (AFS)

Agricultural fiscal
expenditure/farmland area 682 8.3561 1.6499 4.9223 13.3997

Natural disaster
rate (DISA)

Crop affected area/total
farmland area 682 0.2178 0.1596 0.0156 0.9358

Rural power
infrastructure (API)

Rural electricity consumption/total
regional electricity consumption 682 0.1177 0.1001 0.0065 0.7024

Agricultural machinery
input (AML)

Total power of agricultural
machinery/total farmland area 682 0.5886 0.3347 0.1317 2.4626

(1) The education level of farmers (EDU).
The education levels among farmers vary, leading to differences in their awareness and

adoption of low-carbon technologies. More educated farmers typically have heightened
environmental awareness and are likelier to engage in low-carbon agricultural practices [41].
In the model, this variable is measured by the per capita years of schooling.

(2) Agricultural economic development (GDP).
Agricultural economic development levels, as measured by GDP, may exhibit a re-

lationship with ACI that aligns with the environmental Kuznets curve (EKC) hypothesis.
At lower agricultural development stages, profit-driven farmers might intensively apply
chemical inputs, along with widespread land cultivation, leading to increased agricultural
carbon emissions. Research findings suggest that as technology progresses and economic
expansion occurs, there is a corresponding rise in economic development. This escalation,
in turn, heightens the probability that farmers will embrace technologies that are low in
carbon emissions, thereby mitigating the impact of agriculture on carbon output [46,54]. In
the model, this variable is controlled by using per capita GDP.
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(3) The multiple cropping index of cultivated land (MCC).
MCC represents the degree of land use and is positively correlated with ACEs [29].

In our model, we measure the ratio of the planted area of crops to the total area of
cultivated land.

(4) Agricultural fiscal expenditure (AFS).
AFS serves as a crucial external mechanism to foster the LCTA. Given the positive

externalities of low-carbon agricultural production, agricultural fiscal expenditures can
effectively motivate farmers toward low-carbon practices and enhance agricultural pro-
ductivity [65]. This metric is gauged by the ratio of agricultural fiscal expenditure to
crop-sown area.

(5) The extent of crop disaster (DISA).
DISA represents a stochastic event that negatively impacts low-carbon agricultural

production. An increase in DISA correlates with reduced agricultural output [14], posing a
detriment to low-carbon agricultural production. The severity of agricultural calamity is
gauged by comparing the area impacted by the disaster to the overall area planted.

(6) Rural electricity infrastructure (API).
API may elevate energy consumption per unit of output and enhance ACEs when

rural areas rely on fossil fuels for agricultural production. Given data availability, the
proportion of rural electricity consumption and regional total electricity consumption is a
proxy variable.

(7) Agricultural machinery input (AML).
AML can effectively replace labor and improve labor productivity with the advance-

ment of agricultural mechanization [11], promoting agricultural economic development.
However, the rise in mechanized manufacturing could lead to higher carbon emissions as
it entails the extensive use of fossil fuels. Yet, AML might have a negative impact on ACI
by increasing agricultural output value. Following existing literature [36], we introduce the
proportion of the cumulative power of farm machinery relative to the overall area seeded
with crops as a metric for evaluation.

As the theoretical analysis section suggests (Figure 1), agricultural productive services
may indirectly influence the LCTA by enhancing farmland operation scale and low-carbon
technology advancement. Consequently, this study identifies two mediating variables
to assess their impact on the relationship between APS and the LCTA. Farmland oper-
ation scale (SCALE) is expressed specifically by the proportion of crops’ sown area to
the number of agricultural households. This implies that rural households with larger
operational scales tend to invest in agricultural productive services for more intensive
farming practices [50]. Technological progress (TCH) serves as the intrinsic driving force
behind low-carbon transformational development. Given that the government might boost
scientific and technological investment in agriculture to optimize low-carbon production
and reduce ACEs [8], we adopt the variable of technological progress (TCH). The specific
metric employed is the proportion of regional agricultural scientific expenditures to total
expenditures, contingent on data availability.

This research utilizes a panel data set covering the period from 2000 through 2021
for empirical examination. It sources indicators to compute the Agricultural Carbon
Intensity (ACI), such as crop yield and farmland area, from the “China Rural Statistical
Yearbook”. Additionally, one can find the carbon emission coefficients in Appendix A
for reference. Data relevant to Agricultural Productive Services (APS) originate from
the “China Tertiary Industry Statistical Yearbook”. Other pertinent variables have been
gathered from the “China Statistical Yearbook”. Data gaps in the aforementioned yearbooks
were obtained from the provincial statistical yearbook. To account for inflation, this article
sets the year 2000 as the base period, adjusting the agricultural output value and regional
GDP to constant prices. Additionally, a 1% bilateral trimming is applied to continuous
variable indicators.
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3.4. Econometric Models Linking the Effect of APS on LCTA

To verify the impact of APS on LCTA, we first employ a foundational panel economet-
ric model, which is structured in Formula (4).

LnACIit = αi + β1APSit + δjZit,j + εit (4)

In the formula, LnACIit represents the logarithmic value of the ACEs intensity for
the i province in the t-th year, which serves as an indicator of the LCTA. APSit represents
the status of APS; Zit,j denotes control variables, including EDU, GDP, MCC, AFS, DISA,
API, AML; αi captures individual effects; β1 and δj are the coefficients for APSit and control
variables, respectively; εit is the stochastic error term.

To verify the nonlinear effects of varying APS levels on LACT, research on nonlinear
relationships is predominantly categorized into two types. The first is the “U-shaped”
hypothesis, suggesting that past a specific threshold, the effect reverses; the second type
is known as a threshold–effect relationship. The limitation of the “U-shaped” hypothesis
is its assertion of a definitive U-shaped or inverted U-shaped relationship, which may be
arbitrary. The latter model describes the relationship as nonlinear and contingent upon
key economic variables, a more reasonable approach. Consequently, in accordance with
threshold model theory [66], we establish a basic static panel threshold model to serve as
the benchmark for empirical analysis.

LnACIit = αi + β11APSit × I(APS ≤ λ) + β12APSit × I(APS ≥ λ) + δjZit,j + εit (5)

LnACIit = αi + β11APSit × I(APS ≤ λ1) + β12APSit × I(λ1 ≤ APS ≤ λ2)
+β22APSit × I(APS ≥ λ2)δjZit,j + εit

(6)

LnACIit = αi + β11APSit × I(APS ≤ λ1) + β12APSit × I(λ1 ≤ APS ≤ λ2)
+β22APSit × I(λ2 ≤ APS ≤ λ3) + β31APSit × I(APS ≥ λ3)
+δjZit,j + εit

(7)

Equations (5)–(7) correspond to the models of single-threshold panel, double-threshold
panel, and triple-threshold panel, in that order. Here, I(·) denotes the threshold indicator
function; represents the threshold value; β11, β12, β22, β31 are the estimated parameters
before and after the threshold for the core variable. Other variables are explained in
Equation (1). Since static panel threshold models do not take into account the path de-
pendency and persistence characteristics of induced variables, and also require the core
variables to be strictly exogenous, which is difficult to fully satisfy in real economic activi-
ties [67], this study extends Equation (2) into a dynamic threshold model using the GMM
estimation method, effectively addressing the issues of endogeneity.

LnACIit = αi + φ0LnACIi,t−1 + β11APSit × I(APS ≤ λ)
+β12APSit × I(APS ≥ λ) + δjZit,j + εit

(8)

In Equation (8), LnACIi,t−1 represents the variable of agricultural production carbon
emission intensity lagged by one period.

To further analyze the logical relationships and pathways of action between APS,
mediating variables, and LCTA, this paper employs Taylor’s mediation effect model for
stepwise regression [68]. Theoretical analysis suggests that the development of APS may
advance the expansion of the scale of farmland management, generating economies of
scale, and thereby affecting the value of agricultural production. Progress in agricultural
technology can reduce chemical pollutants in agriculture and also decrease ACEs by
enhancing low-carbon and green clean technologies, achieving LCTA. The designated
mediation effect model is as follows:

LnACIit = αi + a1APSit + δ1Zit + εit (9)
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Mit = γi + bAPSit + δ2Zit + εit (10)

LnACIit = αi + a2APSit + c1Mit + δ3Zit + εit (11)

Mit represents the mediating variable, which is denoted by SCALE and TCH, respec-
tively. Other variables are as explained in Equation (1). A mediating effect exists when the
coefficients a1, b and c1 are all significant.

We will use the software STATA16.0 to carry out the econometric analysis of the
above models.

4. Results and Discussions
4.1. Baseline Models Results

To avoid “spurious regression”, a unit root check is performed on panel data. The
test results show that all variables are stationary series. Concurrently, the Hausman test
value was 46.44, which passed the significance test at the 1% level, indicating the rejection
of the null hypothesis for the random effects model (RE); hence, a fixed effects model was
adopted. Table 2 shows the estimated results. In models (1) and (2), the coefficients for
APS are significant at the 1% level, incorporating provincial and year-fixed variables in the
model (2). Considering the issue of missing variables, we introduced control variables in
models (3) and (4), and the coefficients for APS remained negative and significant. This
indicates that APS has an inhibitory effect on LnACI. Additionally, to avoid endogeneity
issues and improve the robustness of regression results, in models (5) and (6) we replaced
APS with its first lag, APSt−1, and the coefficient for APSt−1 is still negative and significant.

Table 2. Results of the baseline models.

Variables
lnACI lnACI lnACI lnACI lnACI lnACI

(1) (2) (3) (4) (5) (6)

APS −0.3452 *** −0.0237 *** −0.0202 *** −0.1731 **
(0.0292) (0.0081) (0.0031) (0.0688)

APSt−1 −0.0152 *** −0.1643 **
(0.0881) (0.0067)

EDU −0.1823 *** −0.1332 * −0.1801 *** −0.1378 *
(0.0196) (0.0775) (0.0197) (0.0764)

GDP −0.0020 *** −0.0092 −0.0006 *** −0.0105
(0.0350) (0.0096) (0.0000) (0.0982)

MCC 0.0764 *** 0.0570 *** 0.0713 *** 0.0523 *
(0.0209) (0.0336) (0.0208) (0.0307)

AFS −0.0014 *** −0.0007 *** −0.0003 *** −0.0001 ***
(0.0038) (0.0022) (0.0002) (0.0002)

DISA −0.0299 −0.0846 0.4895 −0.0200
(0.0625) (0.0837) (0.3318) (0.0682)

API 0.8379 *** −0.3170 * −0.2635 ** −0.2732 *
0.1841 (0.1724) 0.1290 (0.1559)

AML −0.4453 ** 0.0228 −0.1420 *** 0.0149
(0.0506) 0.0910 (0.0518) 0.0887

Year fixed No Yes No Yes No Yes
Regional fixed No Yes No Yes No Yes

Constant 1.3038 *** 1.0698 *** 2.2715 * 1.9912 *** 2.5510 ** 2.1374 ***
(0.0213) (0.0480) (0.1667) (0.5660) (0.1643) (0.5552)

N 682 682 682 682 682 682
R2 0.1626 0.6705 0.5642 0.7222 0.6871 0.7121

Note: Standard errors in parentheses; * p < 0.1, ** p < 0.05, and *** p < 0.01.

After including two-way fixed effects and control variables, model (4) exhibits the
highest level of fit, and its regression findings are the most persuasive. There is substantial
evidence indicating that APS can enhance the LCTA. This is because APS has stimulated the
strategic allocation of resources, forcing small-scale growers to participate in coordinated,
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extensive agricultural activities. This has advanced the development of farm management
by promoting the expansion and intensification of operations. Similarly, previous studies
have confirmed the low-carbon performance of APS [9].

4.2. Results of Panel Threshold Models of APS on LCTA

Given the variability in APS levels, it is imperative to examine the existence of a
threshold for APS. The approach presented above depends on exogenous sample selection,
which may introduce estimation bias. Thus, we intend to use the panel threshold model to
conduct a more in-depth analysis of this phenomenon.

Consistent with accepted techniques in the literature, we utilized the bootstrap method
to determine the threshold values by conducting 300 iterations of bootstrapping. Table 3
shows that the F-values for the single and double threshold tests are statistically significant,
whereas the F-value for the triple threshold test is not statistically significant. Based on
our analysis, we can determine that there is a threshold effect on the level of agricultural
productive services. The impact of APS on LCTA is not the same across all threshold
intervals but rather varies asymmetrically. The LR test was employed to estimate the
threshold values to validate their authenticity. With threshold values of 2.4396 and 15.0736,
as illustrated in Figure 3, the LR statistic converges to zero. Furthermore, the LR test statistic
reaches a value lower than 7.35, indicating that the threshold values estimated in our study
are valid.

Table 3. Results of the threshold value test.

Threshold Estimates Threshold Value Fstat Prob Crit10 Crit5 Crit1

Single threshold test 2.4396 *** 42.05 0.0100 30.8355 33.8497 41.0753
Double threshold test 15.0736 * 29.90 0.0667 25.8527 32.0978 50.3004
Triple threshold test 4.8809 6.71 0.8767 28.2490 36.2104 46.2855

Note: * p < 0.1 and *** p < 0.01.
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The results of panel threshold regression are represented by models (1) and (3), while
models (2) and (4) include control variables and account for fixed effects, as shown in
Table 4. At λ = 2.4396 and λ = 15.0736, both threshold effects satisfy their corresponding
significance tests. When the APS is below 2.4396, the coefficient shows a statistically
significant positive effect at the 1% level, indicating a clear promotion of lnACI. This
suggests that during the early phases of agricultural productivity, the high costs of services
discourage farmers from using APS, which leads to the continued use of high-carbon
production methods that increase ACI. On the other hand, when the APS falls within the
range of 2.4396 and 15.0736, the coefficient becomes negative with a significance level of
1%. This indicates that as APS improves and the costs of agricultural services decrease,
farmers are increasingly adopting these cost-effective services. They integrate low-carbon
technologies and knowledge into their practices, which in turn has a suppressive effect
on the ACI. When the APS is above 15.0736, the effect on ACI continues to decrease. This
is shown by a coefficient of −0.0142, which is slightly less significant than the −0.0205
reported in the previous range. The rising levels of APS highlight the significance of APS
in promoting carbon emission reductions in agriculture, hence proving the asymmetrical
nature of the threshold effect and supporting Hypothesis 1.

Table 4. Results of panel threshold models.

Variables
lnACI lnACI lnACI lnACI

(1) (2) (3) (4)

Threshold estimates
λ1 2.0269 2.4396 2.0269 2.4396
λ2 15.0736 15.0736

APS (<2.4396) 0.0622 *** 0.0314 *** 0.2285 *** 0.0268 ***
(0.0134) (−0.0068) (0.0406) (0.0071)

APS (2.4396 ≤ APS < 15.0736) −0.04123 *** −0.0127 *** −0.1382 *** −0.0205 ***
(0.0015) (−0.0013) (0.0067) (0.0019)

APS (≥15.0736) −0.0902 *** −0.0142 ***
(0.0041) (0.0014)

EDU −0.1311 *** −0.11947 ***
(0.0135) (0.0133)

GDP −0.00001 *** −0.00001 ***
(0.0002) (0.0002)

MCC 0.0458 *** 0.0385 ***
(−0.0139) (0.0137)

AFS 0.0004 *** 0.0002 **
(0.0001) (0.0001)

DISA −0.0664 −0.0668
(0.0416) (0.0407)

API −0.3618 *** −0.3201 ***
(0.0851) (0.0835)

AML −0.0224 0.0167
(0.0347) (0.0347)

Year fixed effect Yes Yes Yes Yes
Regional fixed effect Yes Yes Yes Yes

Constant 0.9900 *** 2.4713 3.2688 2.3841
(0.0146) (0.1032) (0.0496) (0.1022)

N 682 682 682 682
R2 0.5705 0.6634 0.4953 0.6787

Note: Standard errors in parentheses; ** p < 0.05, and *** p < 0.01.

A further examination was carried out on the distribution of provinces across different
APS thresholds from 2000 to 2021, as illustrated in Figure 4. APS was classified into three
levels: low, medium, and high, based on the values of λ = 2.4396 and λ = 15.0736, which
represent the effectiveness of APS on ACI. The data showed a consistent annual rise in
medium- and high-APS levels in most Chinese cities, accompanied by a yearly decrease in
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low APS levels. This suggests that APS has successfully implemented its role in assisting the
decrease of ACI in most provinces. Importantly, the occurrence of medium-level APS has
increased since its peak in 2010, indicating a greater overall effect of APS on ACI reduction
from 2010 to 2021. This trend presents new insights for advancing China’s agricultural
sector towards the peak of carbon emission actions.
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Figure 5 depicts the promotion of APS in different provinces around the country in
2011 and 2021. In 2011, most provinces across the country had a moderate level of APS,
except for Gansu Province, which had a high APS level. By 2021, the provinces with a
high APS level were primarily located in the eastern coastline areas, central regions, and
northwestern provinces of China. This includes Beijing, Shanghai, Tianjin, and China’s
main grain-producing areas. It is noteworthy that the central and western regions of China,
except Xinjiang, continue to advance the reduction of ACE at a relatively low level of APS.
Hence, to promote the LCTA more effectively, particularly in the western and northern
regions, it is critical to accelerate the development of APS.
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4.3. Robustness Check

To address the shortcomings of the static threshold model, we employed a dynamic
threshold model to assess the robustness of the estimations. The study used the lnACI
and APS variables, as well as their lagged counterparts (L.lnACI and L.APS), to address
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endogeneity issues. The estimation findings from Table 5 indicate that in models (1) and
(2), the inclusion of L.lnACI leads to a consistent single threshold estimate of 2.3065, while
the double threshold estimate remains unchanged. Furthermore, all coefficient values
successfully pass the 1% statistical test, providing additional confirmation of the asym-
metric threshold impact of APS on lnACI. This effect entails that APS initially stimulates
lnACI and subsequently reduces it. When analyzing model (3) with the lagged APS vari-
able, the threshold value remains the same, and all coefficients are statistically significant.
This demonstrates the rationality of the dynamic model configuration, where the APS
from the previous period first has a positive impact and then a negative impact on the
current period’s lnACI. When the value is beyond the threshold of 2.4396, the impact on
lnACI increases dramatically. However, once it goes over the threshold of 15.0736, the
degree of impact weakens. This further confirms the robustness of the research findings
for Hypothesis 1.

Table 5. Results of robustness check using the threshold model.

Variables
lnACI lnACI lnACI

(1) (2) (3)

L.lnACI 0.5727 *** 0.5532 ***
(0.0295) (0.0298)

APS (<2.3065) 0.0109 *** 0.0126 ***
(0.0017) (0.0070)

APS (2.3065 ≤ APS < 15.0736) −0.0065 *** −0.0112 ***
(0.0012) (0.0016)

APS (≥15.0736) −0.0069 ***
(0.0011)

L.APS (<2.4396) 0.0200 ***
(0.0072)

L.APS (2.4396 ≤ APS <
15.0736) −0.0167 ***

(0.0024)
L.APS (≥15.0736) −0.0115 ***

(0.0014)
EDU −0.0496 *** −0.1247 ***

(0.0112) (0.0138)
GDP −0.00005 ** −0.00001 ***

(0.0002) (0.0003)
MCC 0.0137 0.0394 ***

(0.0108) (0.0140)
AFS 0.0001 0.0029 *

(0.0001) (0.0015)
DISA −0.05419 −0.0178

(0.0334) (0.0433)
API −0.0645 −0.2506 ***

(0.0681) (0.0879)
AML 0.0046 −0.0197

(0.0283) (0.0364)
Year fixed effect Yes Yes Yes

Regional fixed effect Yes Yes Yes
Constant 1.0263 *** 1.0421 *** 2.4141 ***

(0.1080) (0.1071) (0.1068)
N 682 682 682

R-squared 0.7897 0.7937 0.6525
Note: Standard errors in parentheses; * p < 0.1, ** p < 0.05, and *** p < 0.01.

4.4. Mediating Effect of APS on LCTA

The mediation effect model proposed by Taylor [68] was used to examine the pathways
by which APS influences LACT, as measured by InACI in Table 6. The initial analysis
focused on the overall impact of APS on LACT. The model (1) showed a statistically
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significant negative coefficient for APS (−0.1731). The reason for this result can be ascribed
to the enduring impacts of APS, which successfully reduce the limitations arising from
resource endowments like labor and technology for farmers. In addition, APS can cause a
change in the practices of smallholders, who often depend on experiential knowledge for
agricultural production. Furthermore, APS addresses efficiency loss issues arising from the
dispersed operations of small farms, thus promoting the LCTA.

Table 6. Results of the mediating effect models.

Variables lnACI Scale Tech lnACI lnACI

(1) (2) (3) (4) (5)

APS −0.0204 ** 0.0068 *** 0.0000433 *** −0.0187 *** −0.0218 ***
(−0.0688) (0.0009) (0.0000651) (0.0031) (0.0031)

Scale 0.2518 **
(0.1168)

TCH 32.8864 *
(17.8811)

EDU −0.1332 * 0.0991 *** 0.1134 *** 0.0318 0.0530 ***
(−0.0775) (0.0067) (0.0441) (0.0234) (0.0205)

GDP −0.0092 −0.0001 *** 0.0007 *** −0.0002 *** −0.00002 ***
(−0.0096) (0.0015) (0.0079) (0.0028) (0.00003)

MCC 0.0570 *** −0.0763 *** 0.2777 *** 0.3814 *** 0.3530
(−0.0336) (0.0105) (0.0069) (0.0331) (0.0323)

AFS −0.0007 *** −0.0019 0.0012 −0.0001 *** −0.0014 ***
(−0.0022) (0.0125) (0.0018) (0.0003) (0.0023)

DISA −0.0846 −0.1563 *** −0.0406 0.1730 0.1350
(−0.0837) (0.0362) (0.0371) (0.1114) (0.1100)

API −0.3170 * −0.0772 0.2371 *** 0.8685 *** 0.7775 ***
(−0.1724) (0.0605) (0.3963) (0.1838) (0.1878)

AML 0.0228 −0.0358 ** 0.0004 −0.4308 *** −0.4412 ***
(0.091) (0.0179) (0.0002) (0.0547) (0.0546)

Year fixed effect Yes Yes Yes
Regional fixed effect Yes Yes Yes

Constant 1.9912 *** −0.2205 *** −0.0012 *** 0.3599 ** 0.3431 **
(−0.566) (0.0548) (0.0003) (0.1683) (0.1678)

N 682 682 682 682 682
Sobel Test for Mediation Effect Z = −2.056 ** Z = 1.733 *

Percentage of Mediation Effect (%) 8.42% 6.97%

Note: Standard errors in parentheses; * p < 0.1, ** p < 0.05, and *** p < 0.01.

Furthermore, the impact of APS on the mediating variables (Scale and Tech) was
investigated. According to Models (2) and (3), when considering other factors, APS showed
a substantial positive correlation with both family business scale (Scale) and agricultural
technological advancement (Tech). The coefficients for these correlations were 0.0068 and
0.0433, respectively. This study implies that when the level of specialization increased,
expanding scale and advancing Tech indirectly benefited the LCTA. Thus, the results of
Hypotheses 2 and 3 are validated.

Finally, the mediating effects of the variables Scale and Tech were examined. At the
1% significance level, the results of Models (4) and (5) indicated that Scale and Tech have a
significant direct effect on lnACI, with coefficient values of 0.2518 and 32.8864, respectively.
In addition, when the mediating variables were Scale and Tech, APS had a direct influence
on lnACI. The findings indicate that Scale and Tech have a partially mediating effect (as
shown in Figure 6), which is further supported by the results of the Sobel test reported in
Table 6. This means that 8.42% and 6.97% of the influence of APS on LACT is achieved
indirectly by influencing Scale and Tech to promote the LCTA. APS plays a crucial role
in three areas: supporting large-scale management of farms, driving advancements in
low-carbon technology, and facilitating the transition to low-carbon agriculture.
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4.5. Discussion

To accomplish China’s “dual carbon” targets, this study considers the incorporation of
APS into China’s agricultural low-carbon production process as a logical starting point. Based
on a comprehensive examination and incorporation of current literature and relevant theories,
a systematic framework was developed (Figure 1). The study used national and provincial
statistical data to develop a detailed econometric model. This model was used to empirically
verify theoretical conclusions and research hypotheses, resulting in several valuable findings.

The impact of APS on LnACI demonstrated a distinct threshold value, indicating
a nonlinear relationship. As the level of APS increased, their impact on the LnACI was
initially stimulated and then suppressed, followed by a gradual suppression, with these
three phases being asymmetrical. The observed static threshold values of λ1 = 2.4396 and
λ2 = 15.0736 provide evidence of a significant threshold effect. In addition, the results of the
dynamic threshold regression, which includes a lag of one period for both the dependent
variable (lnACI) and the core explanatory variable (APS), indicated that while the threshold
values were different from the static ones, the differentiated impacts before and after the
thresholds remained consistent. This further supports the presence of a nonlinear effect.

Second, the influence of APS on LnACI exhibited regional heterogeneity and imbalance.
As shown in Figures 4 and 5, the national APS level increased by 2021 relative to 2011.
However, the Inner Mongolia Autonomous Region in northern China has maintained a
consistently low APS level, which is insufficient to suppress ACI. In 2021, the provinces in
China’s eastern coastal areas, central regions, and a few northwestern provinces had the
highest APS levels (APS ≥ 15.0736). These provinces are primarily located in China’s main
grain-producing areas. APS improves the economic benefits of the key grain-producing
areas and also decreases ACEs.

Third, in terms of indirect influence and pathways, agricultural productive services
can indirectly increase agricultural low-carbon transition by influencing the scale of farm-
land operations (Scale) and agricultural technological advancement (Tech) (as depicted
in Figure 6). APS providers prefer contiguous plots of land over fragmented ones to
achieve regional scale and specialized operations. Hence, the scale of farmland operations
(Scale) contributed 8.42% to the promotion of LCTA. On the other hand, APS facilitated an
indirect spillover into agricultural low-carbon transition by promoting low-carbon techno-
logical progress, with this factor accounting for 6.97%. Therefore, the organic incorporation
of service-scale management with farmland-scale operations, together with the ongoing
development of low-carbon technological progress and enhanced efficiency of agricul-
tural input factors, would serve as the driving force behind China’s future food security
and LCTA [17].
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5. Conclusions

The distinctive “large country, small farmers” characteristic of Chinese agriculture,
as suggested by the limited research findings mentioned above, may entail various policy
implications. These implications are aimed at optimizing the development of APS and
promoting the LCTA, serving as valuable reference points for guidance.

Firstly, APS has the potential to comprehensively integrate modern mechanical, capital,
and low-carbon technological components into agricultural production. This integration
occurs through specialized, standardized, and intensive-scale services, thereby facilitating
the low-carbon development of the entire agricultural production process [61]. Therefore,
the Chinese government must maintain its efforts that promote the development of diverse
entities in the APS market, establish a favorable institutional environment, and provide
financial assistance for the market’s advancement. Ensuring that the productive service
requirements of farmers are adequately addressed and lowering the barriers to entry into
the APS market will protect the technological dividends and scale advantages that APS
provides to all farmers, particularly smallholders.

Secondly, the regional disparity in the advancement of APS presents novel challenges in
the optimization of agricultural policy supply. Currently, China’s main grain-producing areas
(eastern and central regions) have higher APS levels, and the low-carbon transformation of
these areas should be fully leveraged as a demonstration effect. Moreover, in the northern
regions of China, particularly the Inner Mongolia Autonomous Region, where levels of APS
are relatively low, the government could potentially increase financial assistance, establish
APS-specific platforms, and foster a conducive environment for the growth of the APS sector.

Thirdly, it is imperative to consider environmental limitations, such as land fragmen-
tation, to establish conducive external circumstances that promote service-scale operations,
support land-scale operations, and ensure agricultural-scale benefits. Land-scale operations
can reduce the operating costs of productive service-scale operations, such as large-scale
mechanization (Liu et al., 2021) [49]. Hence, in consideration of farmers’ preferences, pro-
moting land leveling, irrigation facilities, and the development of high-standard farmland
becomes crucial to decreasing external constraints such as land fragmentation on the en-
vironmental conditions necessary for scaling up productive service operations. Various
regions should prioritize guiding the coordinated advancement of APS and land transfer-
related policies, aiming to achieve synergistic advantages between service-scale operations
and land-scale operations.

Furthermore, despite the aforementioned findings, this study has certain limitations.
The study was based on an investigation of the impact of APS on the low-carbon trans-
formation of agriculture. It primarily emphasized the analysis of provincial macro data
but lacked a detailed assessment of farmers’ perspectives on their desire to adopt APS or
use low-carbon technologies in agricultural production at a micro-level. It is essential to
conduct an empirical analysis in the future, using further micro-level data, that comprehen-
sively depicts the integration of APS into low-carbon agricultural production, considering
both macro and micro-level aspects.
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Appendix A

The study calculated the AGHGs from four aspects: material inputs (chemical fertiliz-
ers, pesticides, agricultural films, and diesel), crop cultivation management, rice planting,
and crop straw burning. The carbon emission coefficients are provided in Table A1.

The first is the carbon emissions from material inputs (C1
it), The calculation

Formula (A1):

C1
it =

3

∑
c=1

Ac
it × δ1c

it +
3

∑
c=1

Bc
it × δ2c

it + Fc
it × δ3

it × α1 (A1)

In this context, Ac
it represents the pure quantities of phosphorus fertilizer, potassium

fertilizer, and compound fertilizer used in region i during year t, and δ1c
it corresponds to the

respective carbon emission coefficients for region i; Bc
it represents the usage amounts of pes-

ticides, agricultural films, and diesel in region i during year t, and δ2c
it corresponds to their

respective carbon emission coefficients; since nitrogen fertilizers produce N2O, a conversion
factor is necessary to convert this into carbon dioxide equivalents, where Fc

it represents
the pure quantity of nitrogen fertilizer used in land utilization, δ3

it is the carbon emission
coefficient for nitrogen fertilizer, and α1 is the conversion factor (GWP100 = 265) [64].

The second aspect is the carbon emissions produced during the plowing and irrigation
processes in crop cultivation management (C2

it), with the calculation formula being:

C2
it = Dc

it × δ4
it + Ec

it × δ5
it (A2)

In Equation (A2), Dc
it and Ec

it represent the carbon emissions from plowing and irri-
gation processes respectively in region i during year t, denoted by the grain sowing area
and the irrigated arable land area, respectively; δ4

it and δ5
it are the corresponding carbon

emission coefficients.
The third is the methane gas (CH4) emissions during the growth process of rice

(C3
it). Rice is categorized into early, medium, and late varieties. Based on the “Provincial

Greenhouse Gas Emissions Inventory (2011)”, the calculation of CH4 emissions is as follows:

C3
it = CHrice

4 × α2 (A3)

CHrice
4 =

3

∑
c=1

Gc
it × δ6c

it (A4)

Here in, Gc
it represents the respective planting areas for early, medium, and late rice in

region i during year t, δ6c
it is the corresponding ACEs coefficient (see Table A2); α2 is the

CH4 conversion factor (GWP100 = 28) [64].
The fourth aspect involves the burning of crop residues (C4

it). We have calculated the
emissions of CO2, CH4, and N2O resulting from the burning of residues from four major crops
in China: wheat, corn, rice, and legumes. For ease of expression, the following indicators are
annual statistical measures for each region. The specific calculations are as follows:

C4
it = Cstraw

it + Nstraw
it × α1 + CHstraw

4it × α2 (A5)

Cstraw
it =

4
∑

c=1
Hc

it × Ic
it × Jc

it × Kc
it × Lc

it × δ7c
it

Nstraw
it =

4
∑

c=1
Hc

it × Ic
it × Jc

it × Kc
it × Lc

it × δ8c
it

CHstraw
4it =

4
∑

c=1
Hc

it × Ic
it × Jc

it × Kc
it × Lc

it × δ9c
it

(A6)
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Cstraw
it , Nstraw

it , and CHstraw
4it , correspond to the emissions of CO2, N2O, and CH4 from

straw burning, respectively; Hc
it is the yield of four different crops in region i during year

t; Ic
it, Jc

it, Kc
it, and Lc

it represent the grain–straw ratio, the dry matter proportion of straw,
the combustion efficiency, and the combustion ratio for different crops, respectively. The
straw burning algorithm is in reference to Li [69], and δ7c

it , δ8c
it , δ9c

it represent the combustion
coefficients for different crops. The statistics for each indicator can be found in Table A2.

Table A1. Description of calculation parameter.

Agricultural Activity Carbon Source Parameter References

Factor of input Phosphatic fertilizer (δ11
it ) 1.63 kg (CO2)/kg [70]

Potash fertilizer (δ12
it ) 0.65 kg (CO2)/kg [70]

Compound fertilizer (δ13
it ) 1.77 kg (CO2)/kg [70]

Pesticide (δ21
it ) 4.9341 kg (C)/kg [70]

Agricultural film (δ22
it ) 5.18 kg (C)/kg [70]

Diesel oil (δ23
it ) 0.5927 kg (C)/kg [64]

Nitrogenous fertilizer (δ3
it) 0.0125 kg (N2O)/kg [64]

Planting management Plowing (δ4
it) 312.6 kg (C)/km2 [71]

Irrigation (δ5
it) 266.48 kg (C)/hm2 [62]

Rice growth Single-season rice (δ61
it ) Table A2 [72]

Double-season rice (δ62
it ) Table A2 [72]

Late-season rice (δ63
it ) Table A2 [72]

Straw treatment δit
7c, δit

8c, δit
9c Table A3 [69]

Note: The IPCC refers to the Intergovernmental Panel on Climate Change of the United Nations, specifically
from the “2014 IPCC Guidelines for National Greenhouse Gas Inventories”, https://www.ipcc.ch/ (accessed
on 20 December 2023); CLCD stands for the China Life Cycle Database. IREEA is the Institute of Agricultural
Resources and Environmental Economics at Nanjing Agricultural University.

Table A2. Rice growth coefficient g (CH4)/m2.

Province (City,
Autonomous Region) Single-Season Rice Double-Season Rice Late-Season Rice

Beijing 0 13.23 0
Tianjin 0 11.34 0
Hebei 0 15.33 0
Shanxi 0 6.22 0

Inner Mongolia 0 8.93 0
Liaoning 0 9.24 0

Jilin 0 5.57 0
Heilongjiang 0 8.31 0

Shanghai 12.41 53.87 27.50
Jiangsu 16.07 53.55 27.60

Zhejiang 14.37 57.96 34.50
Anhui 16.75 51.24 27.60
Fujian 7.74 43.47 52.60
Jiangxi 15.47 65.42 45.80

Shandong 0 21.00 0
Henan 0 17.85 0
Hubei 17.51 58.17 39.00
Hunan 14.71 56.28 34.10

Guangdong 15.05 57.02 51.60
Guangxi 12.41 47.78 49.10
Hainan 13.43 52.29 49.4
Sichuan 6.55 25.73 18.50

Chongqing 6.55 25.73 18.50
Guizhou 5.10 22.05 21.00
Yunnan 2.38 7.25 7.60

Tibet 0 6.83 0
Shaanxi 0 12.51 0
Gansu 0 6.83 0

Qinghai 0 0 0
Ningxia 0 7.35 0
Xinjiang 0 10.5 0

https://www.ipcc.ch/
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Table A3. Crop straw burning.

Straw Type CO2 Coefficient (g/kg) N2O Coefficient (g/kg) CH4 Coefficient (g/kg)

Wheat 586.39 0.05 2.22
Maize 620.72 0.12 2.95
Rice 656.27 0.11 2.19

Beans 543.11 0.09 2.89
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