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Abstract: Maize leaf area offers valuable insights into physiological processes, playing a 
critical role in breeding and guiding agricultural practices. The Azure Kinect DK pos-
sesses the real-time capability to capture and analyze the spatial structural features of 
crops. However, its further application in maize leaf area measurement is constrained by 
RGB–depth misalignment and limited sensitivity to detailed organ-level features. This 
study proposed a novel approach to address and optimize the limitations of the Azure 
Kinect DK through the multimodal coupling of RGB-D data for enhanced organ-level crop 
phenotyping. To correct RGB–depth misalignment, a unified recalibration method was 
developed to ensure accurate alignment between RGB and depth data. Furthermore, a 
semantic information-guided depth inpainting method was proposed, designed to repair 
void and flying pixels commonly observed in Azure Kinect DK outputs. The semantic 
information was extracted using a joint YOLOv11-SAM2 model, which utilizes supervised 
object recognition prompts and advanced visual large models to achieve precise RGB im-
age semantic parsing with minimal manual input. An efficient pixel filter-based depth 
inpainting algorithm was then designed to inpaint void and flying pixels and restore con-
sistent, high-confidence depth values within semantic regions. A validation of this ap-
proach through leaf area measurements in practical maize field applications—challenged 
by a limited workspace, constrained viewpoints, and environmental variability—demon-
strated near-laboratory precision, achieving an MAPE of 6.549%, RMSE of 4.114 cm², MAE 
of 2.980 cm², and R² of 0.976 across 60 maize leaf samples. By focusing processing efforts 
on the image level rather than directly on 3D point clouds, this approach markedly en-
hanced both efficiency and accuracy with the sufficient utilization of the Azure Kinect 
DK, making it a promising solution for high-throughput 3D crop phenotyping. 
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1. Introduction 
The leaf area of maize is intricately linked to key physiological processes such as 

photosynthesis, above-ground net primary productivity, and dry matter accumulation, 
serving as a crucial indicator of how the plant responds to factors like variety, environ-
mental conditions, and cultivation practices. By revealing the plant’s underlying growth 
and developmental patterns across varying environments, this parameter holds 
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significant potential in advancing maize breeding programs and facilitating research in 
functional–structural plant models (FSPMs) [1,2]. 

Traditionally, gathering morphological data relies heavily on manual measurement, 
which is labor-intensive, time-consuming, and susceptible to errors due to varying meas-
urement tools and operator differences [3,4]. With advancements in sensor technology 
and computer vision, high-throughput, high-precision, non-destructive measurement 
techniques are increasingly applied in crop phenotyping. Notably, three-dimensional (3D) 
phenotyping technologies have emerged as a research hotspot, offering comprehensive 
analyses of crop morphological structures in spatial dimensions. Compared to image-
based phenotyping methods [5,6], 3D techniques provide true scale measurements and 
allow for a more detailed analysis of the topological structure of the crop. It is worth not-
ing that while larger-scale sensing technologies excel at capturing extensive crop canopy 
data, their limitations in resolution and organ-level detail restrict their utility in high-pre-
cision phenotyping tasks, such as measuring maize leaf area. Therefore, this study focuses 
on leveraging proximal sensing technologies for detailed maize leaf area analysis. To ad-
dress its restricted coverage area, integrating the device with a mobile platform or multi-
device setup can enable high-throughput data acquisition while maintaining measure-
ment accuracy. 

A comparison of different 3D sensing technologies and devices is shown in Table 1. 
Technologies such as LiDAR scanners [7–9], structured light cameras, and structure from 
motion (SfM) methods [10,11] have diverse applications in agricultural contexts. Among 
these, RGB-D cameras stand out for their instant imaging capability, low cost, and porta-
bility, making them particularly advantageous for in-field, high-throughput phenotyping 
[12]. The Kinect series, designed by Microsoft, has gained significant popularity, with its 
three generations of consumer-grade cameras—Kinect V1, Kinect V2, and the Azure Ki-
nect DK—widely reported and applied in agricultural practices. The first-generation Ki-
nect employed environmentally sensitive structured light for depth measurement, offer-
ing a relatively low resolution suitable for rough estimations of objects. For instance, An-
dújar et al. used Kinect V1 to estimate the biomass of cauliflower crops [13]. Kinect V2, 
which adopted time-of-flight (ToF) technology, achieved improved depth estimations. 
The device demonstrated strong sensing capabilities for canopies of leafy crops or seedlings 
when combined with multi-view data [14–17] and even enabled detailed analyses of crop 
structures such as plant skeletons or leaves [18,19]. Published in 2019, it has been reported 
that the latest generation, the Azure Kinect DK, surpasses other consumer-grade RGB-D 
cameras in terms of system depth accuracy and resolution quality [20], demonstrating a su-
perior performance in dynamic environments [21] and semi-outdoor scenarios [22]. 

Table 1. The comparison of different 3D sensing technologies and devices. 

Indicator LiDAR Scanner Structured Light Camera SfM 
RGB-D Camera 

(Azure Kinect DK) 
Sensing method  Active Active Passive Active 

Resolution High Medium Medium Medium 
Accuracy High High Medium Medium 

Environmental robustness High Low Low Medium 
Real-time performance Low Medium Low High 

cost High High Low Medium 

Despite the widespread utilization of the Azure Kinect DK, limitations stemming 
from hardware constraints and condition variabilities restrict its application for organ-
level tasks like leaf area measurement. Though leaf area measurement for detached single 
leaves can achieve an RMSE of 4.05 cm² [23] in laboratory settings, measurements for the 
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whole maize plants in the field only achieved an RMSE ranging from 11 to 41 cm² [24,25]. 
The results suggest that the inherent sensing limitations of the RGB-D camera necessitate 
the application of supplementary algorithms to improve measurement precision, thereby 
enhancing its practical utility [26]. Although researchers have proposed methods such as 
point cloud optimization [27,28] and occlusion completion [29,30] to improve data accu-
racy, these approaches lack targeted solutions that address the specific challenges posed 
by the Azure Kinect DK in leaf area measurement, as discussed below. 

There are three significant challenges of the Azure Kinect DK for crop phenotyping, 
especially for leaf area measurement. First, the misalignment between RGB and depth 
data constrains the utility of visual data and limits the application of RGB-derived seman-
tic information in subsequent analyses. Second, the quality of depth data is not adequate 
for the detailed perception of small structures and edges, which frequently results in void 
pixels. Third, the Azure Kinect DK lacks clear delineation along object edges, where the 
presence of flying pixels severely impacts the accuracy for applications relying on spatial 
structure analysis. Therefore, the objectives of this study are as follows: (1) to propose a 
unified recalibration method for correcting the misalignment between the RGB and depth 
data of the Azure Kinect DK; (2) to leverage the semantic characteristics of RGB data to 
identify void pixels and flying pixels within the leaf regions of depth data that affect 3D 
phenotyping; (3) to design a depth inpainting process to repair depth information for 
these critical pixels; and (4) to validate the proposed approach in practical maize field 
applications, in which limited workspaces, constrained viewpoints, and unstructured var-
iations in wind speed and lighting conditions pose additional challenges to leaf area meas-
urement, thereby optimizing the key limitations of the Azure Kinect DK. These optimiza-
tions hold significant potential for advancing agricultural precision management. By en-
hancing the accuracy and reliability of leaf area measurement, the proposed method facil-
itates more the precise monitoring of crop growth and health, enabling informed decision 
making for irrigation, fertilization, and pest control. Additionally, the improved capabil-
ity of the Azure Kinect DK to handle real-world field challenges allows for the scalable 
and cost-effective adoption of 3D phenotyping technologies in diverse agricultural sce-
narios, promoting sustainable and efficient crop management practices. 

2. Materials and Methods 
2.1. Experiment Setup 

The Microsoft Azure Kinect DK (as shown in Figure 1a) is an advanced RGB-D cam-
era based on continuous wave ToF technology, with a reported random error standard 
deviation of ≤17 mm. Additionally, its typical system error is <11 mm +0.1% of the meas-
ured distance in the absence of multipath interference. The Azure Kinect DK is equipped 
with a high-resolution RGB camera with a maximum resolution of 12 MP and a depth 
sensor with a maximum resolution of 1 MP. Operating at a laser wavelength of 850 nm, 
the depth sensor determines depth by measuring the phase difference between transmit-
ted and received signals, which enables the simultaneous acquisition of depth images and 
their corresponding infrared images. The study selected WFOV (Wide Field of View) mode 
without binning of Azure Kinect DK for closer sensing distance and improved data quality. 
Under this mode, the FOV of RGB camera is H 90° and V 59°, and the RGB image resolution 
and frame rate are set to 3840 × 2160 at 5 fps. Meanwhile, the FOV of depth sensor is H120° 
V120°, with depth image resolution and frame rate set to 1024 × 1024 at 5 fps. 

The field experiment of this study was conducted at the agricultural experimental 
field of Zhejiang University, Hangzhou, China. Data of maize plants were collected in 
August 2024, including RGB images, depth images, and ground truth of leaf areas. To 
meet the demand for high-throughput and rapid phenotyping in the field, this study em-
ployed a single-view approach using Azure Kinect DK while ensuring the maximum 
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exposure of the entire leaf area within the field of view. In the experiment, the RGB-D 
camera was connected to a mobile workstation via a cable and mounted on a tripod or 
handheld, as shown in Figure 1b. The data were collected and saved by the program de-
veloped based on the Azure Kinect SDK 1.4. 

 

Figure 1. Experiment setup. (a) Azure Kinect DK. (b) Experiment setup. 

Fifteen maize plants with total 60 leaf samples were carefully selected to ensure the 
dataset represented the diversity of maize crops in real-world agricultural settings. The 
selection criteria included the following: 
• Growth Stage Diversity: Samples were chosen from various growth stages, ranging 

from V1 (vegetative stage when the first leaf collar is present) to V7 (vegetative stage 
when seven leaf collars are present); 

• Plant Size Variability: Maize plants with varying heights (from ~20 cm to ~45 cm) and 
leaf sizes (from ~10 cm2 to ~100 cm2) were included to reflect natural variability; 

• Spatial Distribution: Plants from different locations within the field were selected to 
account for variations caused by soil fertility, shading, and other factors. 
During data collection, environmental conditions were monitored to ensure con-

sistency and to simulate real-world field challenges. Ambient temperatures ranged from 
25 °C to 35 °C, and wind speeds averaged 2–5 m/s. To minimize the impact of environ-
mental variables, data collection was performed in early morning or late afternoon, when 
sunlight was softer, reducing glare and shadow effects in the images. 

The ground truth of leaf areas was obtained by cutting each maize leaf into separate 
parts, which were then immediately flattened and scanned using a 2D scanner. Addition-
ally, 100 RGB images of maize plants were collected to train the semantic information 
extraction network as discussed in Section 2.3. All of the tasks in this study were con-
ducted on a hardware platform equipped with an AMD Ryzen 7 3700X 8-Core CPU Pro-
cessor, 32 GB of memory, and an NVIDIA GTX 1080Ti GPU. 

2.2. Problem Description 

Following the experiment setup illustrated in the Section 2.1, the RGB-D data gener-
ated by the Azure Kinect DK presents three main challenges that impact subsequent pro-
cessing and applications. First, since the RGB camera and depth sensor are heterogeneous 
cameras integrated in the Azure Kinect DK, their data require alignment for further ap-
plications. However, low alignment accuracy has been found when using pre-shipment 
calibration parameters, especially for close-range objects [31]. As shown in Figure 2a, 
green regions that originally belonged to the leaf were misprojected onto the ground. Sec-
ond, due to the sensing capability limitation of Azure Kinect DK, the depth data cannot 
represent objects with surface reflections, occlusions, or out of measuring range, resulting 
in void pixels [32], as shown in Figure 2b, in which the blue line indicates the target region. 
Third, along the edges of object, depth measurements are affected by mixed reflections 
from both the object and the background, resulting in a reduced signal-to-noise ratio. This 
interference produces cascading “flying pixels” between the object and background 



Agriculture 2025, 15, 173 5 of 20 
 

 

[33,34], as illustrated in Figure 2c. To address these issues, the following methods were 
employed to mitigate their effects. 

 

Figure 2. Key limitations of the data generated by Azure Kinect DK. (a) Front-view point cloud of 
Azure Kinect DK showing RGB–depth misalignment. (b) Front-view point cloud showing void pix-
els inside leaf region. (c) Side-view point cloud showing flying pixels around the edges of leaf. 

2.3. Recalibration of RGB-D Camera 

Since the algorithm relied on precise alignment between the RGB and depth images, 
this study conducted a recalibration method based on checkerboard for the extrinsic pa-
rameters of RGB and depth cameras. As introduced in Section 2.1, although the depth 
sensor lacks sensitivity to optical data, its raw infrared images can be utilized for detecting 
checkerboard corner points [35]. A black-and-white checkerboard with dimensions of 15 
cm × 10 cm and a 9 × 6 grid pattern was employed as the calibration target. Positioned 
within a 20 cm to 1 m range from the RGB-D camera, the checkerboard was moved and 
rotated across various field-of-view positions, yielding a dataset of 20 RGB and infrared 
image pairs. The calibration was performed using MATLAB’s Stereo Camera Calibrator 
tool to extract the extrinsic parameters for both the RGB and depth cameras. The depth 
image was aligned to the RGB image through a subsequent coordinate transformation 
[36], as illustrated in Figure 3. It is worth noting that the recalibration only needs to be 
performed once. Subsequent applications can use the extrinsic parameters obtained from 
this recalibration to produce consistently aligned RGB–depth results. 
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Figure 3. The recalibration strategy. 

2.4. Semantic Information Guided Depth Image Inpainting 

Directly repairing void pixels and flying pixels across the entire depth image is chal-
lenging and provides limited protection for leaf regions. With the growing development 
of computer vision, especially visual large models (LMs), nowadays, the fusion of RGB 
images and depth data is showing increasing potential, due to the capability of vision 
models to reveal semantic information in both RGB and depth data. The study proposed 
a semantic information-guided depth inpainting method for repairing void pixels and fly-
ing pixels in the leaf region, leveraging the multimodal coupling of RGB-D camera data 
to enhance depth information with organ-level semantic guidance. 

To extract the semantic information of leaves in the RGB images, the study designed 
a leaf segmentation framework, YOLOv11-SAM2, which leverages supervised object 
recognition prompts and high-performance visual LMs to achieve high-precision RGB im-
age semantic parsing with minimal manual effort. YOLO11 is a cutting-edge object detec-
tion model that builds upon the success of previous YOLO versions. To minimize manual 
annotations while ensuring high performance and generalization, we used the PlantDoc 
dataset [37] for pretraining YOLOv11 and additionally labeled 100 images of maize leaves 
(as mentioned in Section 2.1) with bounding boxes to fine-tune the model for improved 
detection in specific scenarios. This study adopted the YOLOv11-M model for training 
and inference, using the AdamW optimizer with an initial learning rate of 0.001, momen-
tum set to 0.937, and a step size decay strategy. The model was trained for 100 epochs 
with a batch size of 8. Data augmentation techniques included horizontal flipping (prob-
ability of 0.5), random scaling (range of 0.5 to 1.5), translation (up to 10% of image size), 
HSV adjustments (hsv_h = 0.015, hsv_s = 0.7, and hsv_v = 0.4), and random erasing (prob-
ability of 0.4). 

Segment Anything Model 2 (SAM2) is a visual LM for interactive image segmenta-
tion that returns effective masks from any given segmentation prompt [38]. After the 
trained YOLOv11 model conducted inference on new images, the position of each de-
tected leaf’s bounding box was subsequently fed as a prompt into SAM2 model. Finally, 
high-precision leaf masks were obtained from the SAM2 model. Since the accuracy of seg-
mentation results must be guaranteed, the study selected the sam2_hiera_large model as 
the inference model. The whole framework of YOLOv11-SAM2 is shown in Figure 4. 
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Figure 4. The framework of YOLOv11-SAM2. 

After being inferred by YOLOv11-SAM2 model, the semantic results of maize leaves 
were applied to the aligned depth image as masks, respectively. To identify and repair 
void pixels and flying pixels of leaf regions in the depth image, this study proposed a 
depth image inpainting method by integrating innovative techniques tailored for organ-
level phenotyping. Key innovations include depth inversion to prioritize high-confidence 
regions, topology-based edge detection to adaptively repair leaf curling and folding, and 
histogram filtering to dynamically eliminate anomalous pixels. The algorithm’s pixel-fil-
tering approach ensures accurate completion by leveraging spatial relationships between 
known and unknown pixels, while final refinement steps enhance edge continuity. These 
advancements significantly improve depth image quality, providing robust and reliable 
measurements even in complex morphological conditions. Moreover, as an unsupervised 
image algorithm, this method offers higher efficiency and better adaptability to diverse 
scenarios, as well as eliminates the need for extensive training data compared to deep-
learning-based inpainting methods. The proposed method was realized via the six steps 
of the algorithm described below. 

(1) Depth inversion. Azure Kinect DK stored depth image in 16-bit format. Objects 
farther from the RGB-D camera had higher values in the depth image, but with lower 
confidence. To prevent dilation and completion operations from allowing lower-confi-
dence pixels to overwrite higher-confidence pixels, the depth image would first conduct 
depth inversion, where objects closer to the camera have higher values in the depth map. 
After depth inversion, the value of depth image was as follows: 

maxinv inputD D D= −  (1) 

where maxD  was the maximum value allowed for depth image. 
(2) Void pixel identification. The depth values of pixels outside the mask were set to 

0, and then the void pixels inside the mask solely possess a value of maxD . These pixels 
were extracted as the regions to be repaired. 

(3) Skeleton-based edge pixels identification. To eliminate the flight pixels in the edge 
of leaf, an adaptive edge pixel identification method based on the width of leaf was 
adopted. Due to possible curling or folding of leaves, we first extracted the leaf skeleton 
using Zhang–Suen thinning algorithm from the mask. Then, the average width of the leaf 
was calculated using the shortest Euclidean distance from each point on the skeleton to 
the leaf edge. Pixels within a specific percentage of the leaf width from the leaf edge were 
identified as the regions to be repaired. 
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(4) Histogram-based anomalous pixel identification. Although the above steps re-
moved most undesirable pixels, some anomalous flying pixels still remained undetected. 
Therefore, we further applied histogram filtering to eliminate these anomalous pixels. The 
main peak in the histogram of depth image with the largest prominence was identified, 
along with its left base and right base. These two values were set as the upper and lower 
thresholds for the depth image, allowing for the identification of anomalous pixels whose 
values fall outside the main peak. 

(5) Depth completion based on pixel filter. For convenience, void pixels, edge pixels, 
and anomalous pixels are collectively referred to as unknown pixels (UPs), while other 
pixels within the leaf region are designated as known pixels (KPs). First, the distance ma-
trix, which represented the distance from UPs to KPs, was calculated, prioritizing UPs 

that were closer to KPs. Next, the neighboring pixels of every UP within a range of R  
were retrieved in order. If the number of non-zero neighboring pixels exceeded threshold 
∂ , the depth value of the unknown pixel could be assigned as the average depth value 

of all non-zero neighboring pixels, as shown in Figure 5. We continued this process until 
all UPs were completed. This depth completion method utilized the mean approach to 
fully leverage the cumulative effect of neighboring pixels, ensuring that only depth values 
larger than those in the surrounding pixels were generated, thus providing higher confi-
dence level in the completed depth values. 

 

Figure 5. Pixel filter depth completion algorithm. (The star in the figure represents the pixel cur-
rently being inpainted.). 

(6) Depth inversion. A 5 × 5 diamond-shaped kernel was used to conduct slight dila-
tion on the depth image [39], enhancing the relationship between the edges and high-
confidence pixels in the known regions. Then, the depth image was once again con-
strained using the semantic mask and underwent depth inversion, which was finally the 
completed depth image. The entire procedure for depth image inpainting is illustrated in 
Figure 6. 
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Figure 6. The procedure of depth image inpainting. 

2.5. Leaf Area Measurement 

To obtain leaf area measurements, the depth image needed to be mapped into three-
dimensional space, followed by meshing, smoothing, and other post-processing steps. 
The color image and aligned depth image could be converted to point cloud by the fol-
lowing: 

1
RGB

X
v

Y ZK
u

Z

−

 
   =       

 (2) 

where X , Y , and Z  are the representation of pixels mapped to coordinates in three-

dimensional space. Z  is the depth value of the pixel in the depth image. u  and v  
refer to row and column of the pixel. Similarly, the RGB information of the same pixel is 

attached to the point ( , , )X Y Z . 
Azure Kinect DK has a resolution of 1 mm in the Z-axis. Under the sampling settings 

illustrated in Section 2.1, the resolutions in X-axis and Y-axis were excessively high, caus-
ing the point cloud to have a stepped shape. Since the leaf surface had a curved shape, 
directly measuring the area would result in significant errors. Therefore, spatial subsam-
pling was first implemented, to ensure the point cloud was uniformly distributed with a 
spacing of 1 mm. Subsequently, Delaunay 2.5D triangulation was applied to the point 
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cloud to obtain a rough meshed model of the leaf. The maximum edge length of the trian-
gles was limited to 0.006 m. Next, the Laplacian smoothing method was applied to the 
mesh model, with 10 iterations and a smoothing factor set to 0.2. The leaf area could finally 
be measured by calculating the total area of mesh surface. The post process of 3D data for 
leaf area measurement is shown in Figure 7. 

 

Figure 7. Example of the 3D data gridding process for leaf area measurement. 

2.6. Evaluation of the Accuracy of Leaf Area Measurement 

In this study, four indicators were adopted to evaluate the accuracy of leaf area meas-
urement. Root mean square error (RMSE, Equation (3)) reflects the overall error magni-
tude, while mean average error (MAE, Equation (4)) represents the average absolute error. 
Mean absolute percentage error (MAPE, Equation (5)) highlights the relative accuracy as 
a percentage, and coefficient of determination (R-Square (R2), Equation (6)) measures how 
well the predictions align with the actual values, with higher values indicating better per-
formance. 
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where 


iy  is i -th simulated value, iy  is i -th ground truth value, and y  is the aver-
age of the ground truth values. 

3. Results and Discussions 
3.1. Recalibration Result 

Derived from 20 sets of RGB and IR images, the reprojection accuracy of the external 
parameters of the RGB camera and depth sensor was 0.975 pixels. To facilitate the observa-
tion of alignment, we extracted the 3D point cloud of a specific maize plant generated from 
the RGB and aligned depth images for visualization. As shown in Figure 8c, the point cloud 
before the recalibration displayed noticeable misalignment, with some of the bronze color 
originally belonging to the ground mapped onto the leaf. In contrast, the point cloud after the 
recalibration (Figure 8d) possessed a consistent color, which indicated the depth image 
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aligned closely with the RGB data. This recalibrated alignment establishes a robust foundation 
for utilizing RGB semantic information to guide depth map restoration in this study. 

 

Figure 8. Point cloud of maize plant. (a) Total point cloud before recalibration. (b) Total point cloud 
after recalibration. (c) Point cloud of specific maize plant before recalibration. (d) Point cloud of 
specific maize plant after recalibration. 

3.2. Performance of Semantic Information Guided Depth Inpainting 

The yellow part of Figure 9 illustrates the semantic information extraction result of 
YOLOV11-SAM2. We can see that the trained YOLOv11 model accurately detected all 
leaves of the maize plant positioned at the center of the image view, fine-tuned and guided 
based on the training dataset to focus on regions with high-quality depth data. Although 
there were possibilities for the model to detect the leaves from other maize plants, the 
positions of the bounding box only from the main maize plant were fed as the prompt to 
the SAM2 model. The segmentation result of the SAM2 model demonstrates that, sup-
ported by the robust data engine, LMs can achieve zero-shot and high-precision semantic 
mask generation. The semantic masks of each leaf were applied on the depth image sepa-
rately for subsequent depth inpainting, as shown in the blue part of Figure 9. 

To visualize the features of the depth image, we mapped the values of the depth im-
age to the 0–255 range and used the Summer (yellow to green) colormap to clearly distin-
guish the depth values. It can be observed that the UPs, including void pixels, edge pixels, 
and anomalous pixels, were progressively identified by the pixel identification method 
designed in this study. 

Void pixel identification can extract most of the unsensed leaf regions from the orig-
inal depth map, maximizing the restoration of leaf area. As illustrated in Figure 10a, the 
blue line represents the semantic mask contour of the leaf, with the white area inside this 
contour highlighting the presence of void pixels. Figure 10b demonstrates that all void 
pixels within the leaf region have been accurately identified. After the depth inpainting, 
the generated point cloud in Figure 10d effectively restored the regions belonging to the 
leaf. Compared to the original point cloud in Figure 10c, there was a significant increase 
on the right side of the leaf. 
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Figure 9. Semantic information extraction result of YOLOV11-SAM2 and depth image of leaf in-
stances. 

 

Figure 10. Void pixel identification. (a) Original depth image of maize leaf. (b) Identified void pixels. 
(c) Original point cloud of maize leaf. (d) Inpainted point cloud of maize leaf. 

The adaptive edge pixel identification based on the leaf skeleton width can effectively 
remove flying pixels from the original depth image. This study tested the performance of 
edge pixel identification under different adaptive ratios in removing flying pixels. As 
shown in Figure 11, too small a ratio failed to completely remove the flying pixels, while 
too large a ratio removed crucial valid known pixels from the interior of the leaf. This lack 
of sufficient contextual information led to greater errors in depth completion. Therefore, 
the adaptive ratio in this study was set to 20% of the leaf skeleton width. 

Histogram filtering was a crucial method for identifying anomalous pixels. Figure 12 
demonstrates the effectiveness of histogram filtering for anomalous pixel identification. 
From Figure 12b, it can be observed that the noise points on the left side of the leaf were 
not detected by the above pixel identification methods, as indicated by the yellow depth 
values that were inconsistent with the main leaf region. Appling depth completion on 
these unidentified anomalous pixels could exacerbate the generation of noise points, as 
shown in Figure 12d. However, the histogram filtering method proposed in this study 
effectively eliminated the outliers, resulting in a depth completion output with smooth 
gradients and less noise, as illustrated in Figure 12e. Figure 13 concretely explains that by 
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locating the left and right bases of the histogram’s main peak, anomalous pixels that cru-
cially affect the quality of depth completion can be identified. 

 

Figure 11. Visualization of inpainted depth image and point cloud under different edge identifica-
tion ratios. 

 

Figure 12. Visualization of anomalous pixel identification. (a) The original depth image of leaf. (b) 
The depth image of known pixels without anomalous pixel identification. (c) The depth image of 
known pixels with anomalous pixel identification. (d) The depth image after depth completion with-
out anomalous pixel identification. (e) The depth image after depth completion with anomalous 
pixel identification. 

After identifying all the UPs and KPs, the pixel filter algorithm was applied for depth 
completion. As shown in Figure 14, the algorithm produced relatively smooth completion 
results, as it referenced the average values of neighboring valid pixels, thereby generating 
depth values with higher confidence levels and minimizing the noise introduced by high-
gradient flying pixels at the edges. In terms of the search range 𝑅𝑅 of the pixel filter, a 
smaller range (e.g., 𝑅𝑅 = one) confined the algorithm to focus only on adjacent local pixels, 
resulting in a stripe-like completion pattern. Conversely, an excessively large range (e.g., 
𝑅𝑅 = 10) generated blurred depth values that were inconsistent with the original depth gra-
dient. In this study, a radius of 𝑅𝑅 = five was selected as it achieved a uniform depth that 
aligns with the depth gradients of the known pixels. 
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Figure 13. The histogram of depth image with peaks. 

 

Figure 14. Performance of pixel filter using different search ranges. 

3.3. Leaf Area Measurement Performance 

Figure 15 illustrates the transformation process from the raw RGB-D data to the 3D 
mesh model that qualified for leaf area measurement. Due to the resolution limitation in 
the depth direction of the depth camera, the original point cloud showed a pronounced 
stepped distribution. After spatial subsampling, this issue was alleviated, although at the 
cost of some of the point cloud density. Following Delaunay triangulation, noticeable fluc-
tuations appeared across the mesh, making the leaf model appear overly wide and thick. 
The final smoothed mesh, however, effectively represented both the shape and color char-
acteristics of the leaf. 

To validate the effectiveness of the proposed method in mitigating the limitation of 
the Azure Kinect DK, this study also introduced the original RGB-D data for leaf area 
measurement as comparison. Similarly, the original data were processed by semantic 
masking, spatial subsampling, Delaunay 2.5D triangulation, and Laplacian smoothing. 

From Table 2, it is evident that among 60 samples of leaves, the original data were 
significantly affected by the previously mentioned factors, resulting in larger measure-
ment errors. In contrast, the proposed leaf area measurement method based on depth 
inpainting achieved an RMSE of 4.114 cm2 and an MAE of 2.980 cm2, while the MAPE 
decreased from 25.384% to 6.549%. Meanwhile, the robustness of the method was also 
validated by the R² value of 0.976. This method maintained a level of performance in field 
environments that was comparable to measurements taken in stable laboratory condi-
tions, as demonstrated in several studies [23]. Figure 16 specifically illustrated the rela-
tionship between the measured leaf area and ground truth for each sample, based on our 
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method (the red points) and the original data (the green points). Within the leaf area rang-
ing from 10 cm² to 100 cm², the green points were mostly scattered around both sides of 
the y x= line, with errors primarily stemming from the overestimation caused by flying 
pixels and the underestimation due to the loss of leaf areas from void or anomalous depth 
pixels. In contrast, the red points were tightly clustered around the y x=  line, indicat-
ing that the method effectively mitigated the errors presented in the original data. 

 

Figure 15. Visualization of 3D models for leaf area measurement. 

 

Figure 16. Scatter plots of measured and ground truth values of leaf area. 

Table 2. The performance of leaf area measurement. 

Data RMSE/cm2 MAE/cm2 MAPE/% R2 
Ours 4.114 2.980 6.549 0.976 

Original 14.953 10.726 25.384 0.687 
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At the same time, this study validated the performance of the proposed method in 
measuring leaf area at different growth stages of maize plants. The collected samples from 
the V1–V7 growth stages were divided into early-stage samples (V1–V4) and late-stage 
samples (V5–V7). The early-stage samples included 25 leaf samples, while the late-stage 
samples included 35 leaf samples. The measurement results are shown in Table 3. 

Table 3. The performance of leaf area measurement from different growth stages. 

Growth Stage Average Leaf Area/cm2 RMSE/cm2 MAE/cm2 MAPE/% 
V1–V4 40.907 2.274 1.812 5.824 
V5–V7 60.751 5.891 3.742 6.087 

As seen in Table 3, the average leaf area of the early-stage samples (V1–V4) was 
40.907 cm², with RMSE and MAE values of 2.274 cm² and 1.812 cm², respectively, and an 
MAPE of 5.824%. During this stage, the leaves were smaller in size, which exhibited sim-
pler shapes with smoother surfaces, resulting in less noise in the depth images and a 
higher measurement accuracy. However, due to the smaller leaf area, the presence of fly-
ing pixels had a more noticeable impact on the relative error, causing the MAPE to ap-
proach that of the late-stage samples. 

For the late-stage samples (V5–V7), the average leaf area increased to 60.751 cm², but 
the RMSE and MAE values also significantly increased to 5.891 cm² and 3.742 cm², respec-
tively, with an MAPE of 6.087%. At this stage, the leaves exhibited an increased size, 
curled edges, and more intricate surface textures. These morphological features and larger 
measuring surfaces significantly increased the difficulty of depth measurement, leading 
to greater measurement errors. Despite this, the above result indicates that the proposed 
method exhibits good adaptability and robustness for leaf area measurement across dif-
ferent growth stages, even though the increased complexity of leaf morphology in the 
later stages is a major factor affecting the measurement accuracy. 

As maize plants grow, the overall leaf area increases; however, newly emerged leaves 
appear simultaneously. Therefore, solely analyzing different growth stages is insufficient 
to validate the responsiveness of the method to leaves of varying sizes. To address this, 
Figure 17 presents the absolute errors (AEs) for all leaf samples, sorted by leaf area. The 
results show that the AE values for most samples using the proposed method were under 
five cm², demonstrating reliable performance in maize leaf area measurement across 
growth stages V1 to V7. However, as the leaf area increased, larger outliers in AE were 
frequently observed, particularly for samples with larger leaves. 

As previously discussed, larger measuring surfaces introduce more noise due to the 
inherent accuracy limitations of the RGB-D camera, contributing to systematic errors. Ad-
ditionally, larger leaf edges are more prone to curling as maize plants grow, and the RGB-
D camera struggles to accurately capture such complex local structures, resulting in sig-
nificant errors caused by incomplete or inaccurate depth information. 

To account for size differences, the absolute percentage error (APE) was used to nor-
malize the AE. As shown in Figure 18, larger leaves exhibited relatively smaller APEs, 
whereas smaller leaves had higher APEs. This discrepancy arises primarily because 
smaller areas are more challenging for the RGB-D camera to perceive accurately, leading 
to the introduction of flying pixels. While the depth inpainting method mitigated some of 
these issues, it could not entirely remove flying pixels without compromising valid depth 
information, thereby increasing relative errors for smaller leaves. 
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Figure 17. Absolute error plot of measured leaf area. 

 

Figure 18. Absolute percentage error plot of measured leaf area. 

In summary, the proposed method effectively overcomes key limitations of the Az-
ure Kinect DK, providing a robust and adaptable performance for organ-level phenotyp-
ing, such as maize leaf area measurement, even under varying leaf sizes and morpholog-
ical complexities. 

4. Conclusions 
Given the demand of high-throughput, organ-level 3D phenotyping for crops, par-

ticularly regarding leaf area measurement, this study parsed the common limitations of 
the well-known consumer-grade RGB-D camera, the Azure Kinect DK, including RGB–
depth misalignment and reduced sensitivity to fine leaf structures, resulting in insufficient 
data quality for phenotypic analysis. To address these limitations, the study proposed a 
novel optimization approach for the Azure Kinect DK comprising the following compo-
nents: (1) a unified recalibration protocol was developed to enhance RGB-D alignment 
quality, ensuring a more accurate overlay between RGB and depth data; (2) a semantic 
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information-guided depth inpainting method was proposed based on a YOLOv11-SAM2 
semantic information extraction framework, void and flying pixel identification method, 
and pixel filter depth inpainting algorithm; and (3) the application of maize leaf area meas-
urement in the field was developed using the Azure Kinect DK and the optimization ap-
proach. The method finally achieved a near-laboratory level of accuracy with an MAPE of 
6.549%, RMSE of 4.114 cm², MAE of 2.980 cm², and R² of 0.976 across 60 maize leaf sam-
ples. The application can be extended to entire plants and holds potential for measuring 
other crop types. 

This method effectively harnesses the synergy between depth data and high-resolu-
tion RGB data provided by the Azure Kinect, employing pixel-level masks to guide depth 
map inpainting. By focusing operations at the image level rather than engaging in com-
putationally intensive semantic parsing and denoising on 3D point clouds, the approach 
enhances both efficiency and accuracy, presenting a viable solution for high-throughput 
phenotypic analysis using the Azure Kinect DK. While the proposed optimization method 
has demonstrated a robust performance in maize leaf phenotyping, its applicability to 
other crops or more complex scenarios, such as dense canopies and overlapping leaves, 
merits further investigation. Future work could explore adaptations to address such chal-
lenges, including multi-view or multi-device data fusion for comprehensive spatial anal-
ysis and the integration of deep learning techniques to improve precision and robustness. 
However, it is crucial that future developments consider operational constraints in field 
settings and maintain computational efficiency to ensure practical applicability in diverse 
agricultural contexts. 
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