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Abstract: This study investigates the dynamic changes in wheat canopy spectral charac-
teristics across seven critical growth stages (Tillering, Pre-Jointing, Jointing, Post-Jointing,
Booting, Flowering, and Ripening) using UAV-based multispectral remote sensing. By
analyzing four key spectral bands—green (G), red (R), red-edge (RE), and near-infrared
(NIR)—and their combinations, we identify spectral features that reflect changes in canopy
activity, health, and structure. Results show that the green band is highly sensitive to chloro-
phyll activity and low canopy coverage during the Tillering stage, while the NIR band
captures structural complexity and canopy density during the Jointing and Booting stages.
The combination of G and NIR bands reveals increased canopy density and spectral concen-
tration during the Booting stage, while the RE band effectively detects plant senescence and
reduced spectral uniformity during the ripening stage. Time-series analysis of spectral data
across growth stages improves the accuracy of growth stage identification, with dynamic
spectral changes offering insights into growth inflection points. Spatially, the study demon-
strates the potential for identifying field-level anomalies, such as water stress or disease,
providing actionable data for targeted interventions. This comprehensive spatio-temporal
monitoring framework improves crop management and offers a cost-effective, precise
solution for disease prediction, yield forecasting, and resource optimization. The study
paves the way for integrating UAV remote sensing into precision agriculture practices, with
future research focusing on hyperspectral data integration to enhance monitoring models.

Keywords: UAV remote sensing; wheat growth stages; multispectral analysis; spatio-
temporal monitoring; precision agriculture

1. Introduction
The development of precision agriculture has introduced new technical supports for

crop growth monitoring, with UAV-based remote sensing emerging as an efficient data
acquisition tool gaining increasing prominence in the agricultural sector [1,2]. As one of
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the world’s most important cereal crops, wheat production is directly tied to food security
and agricultural economic efficiency [3]. The growth cycle of wheat is complex, spanning
multiple critical stages from tillering to ripening, with significant variations in canopy char-
acteristics, spectral reflectance properties, and growth status at each stage [3,4]. Traditional
field-based observations can be time-consuming and labor-intensive and may not provide
the same level of spatial and temporal resolution as UAV-based remote sensing. UAV
remote sensing equipped with multispectral sensors enables efficient acquisition of canopy
spectral information with high spatial resolution, enhancing crop growth monitoring from
the tillering stage to the ripening stage [5–7].

Hyperspectral remote-sensing technologies have transformed agricultural monitor-
ing by capturing detailed spectral data across narrow bands, offering insights into crop
physiology and biochemistry [8]. Applications of this technology address key challenges
such as yield prediction, stress detection, and resource optimization [2]. UAV-mounted
hyperspectral cameras are particularly impactful due to their high spatial resolution and
cost efficiency, complementing satellite-based and airborne platforms [9]. The visible spec-
trum (400–700 nm) supports chlorophyll monitoring, while RE (700–750 nm) and NIR
(750–1400 nm) bands are crucial for assessing canopy health and structure [10]. Advanced
indices like NDVI and CI, derived from these bands, enhance the sensitivity of monitoring
models. Additionally, machine-learning algorithms like random forests and support vector
machines improve the selection of optimal band combinations, boosting the accuracy of
crop analysis [11].

Effective hyperspectral data analysis combines preprocessing, feature extraction, and
advanced modeling techniques [12]. Preprocessing corrects distortions, while methods such
as derivative spectroscopy and texture analysis reveal critical biophysical properties [13].
Machine-learning and deep-learning approaches, including convolutional and recurrent
neural networks, enable precise analysis of growth dynamics and stress responses. These
techniques facilitate applications like growth stage identification, early stress detection, and
yield forecasting. However, challenges such as data redundancy, high costs, and a lack of
standardized protocols hinder widespread adoption. Addressing these limitations requires
innovative solutions for data management and algorithm development.

During wheat growth, the canopy characteristics and spectral responses undergo
significant dynamic changes at each growth stage [14]. For example, the tillering stage
is characterized by low canopy coverage, where the G band is highly sensitive to the
inactive canopy [15]. During the jointing stage, canopy structural complexity significantly
increases, with the NIR band responding strongly to these structural changes [16]. In the
ripening stage, spectral reflectance uniformity declines, reflecting senescence and maturity.
However, the application of UAV remote sensing to wheat growth stage monitoring still
faces unresolved challenges, such as accurate growth stage classification, robust feature
extraction, and the development of models that are both robust and transferable across
different environmental conditions [17,18].

(1) How can key features of different wheat growth stages be accurately extracted from
multispectral remote sensing data? The extraction of growth stage information relies
on the selection of spectral bands and the quantification of critical features [11]. The
G band reflectance captured the chlorophyll content of the plants, serving as an
indicator of photosynthetic activity. The R band data facilitated the assessment of
vegetation biomass and overall health, while the RE band, being highly sensitive to
physiological changes, revealed subtle differences in plant growth. The NIR band
reflectance was particularly valuable for evaluating wheat water content and biomass
accumulation. Previous studies suggest that the G, R, RE, and NIR bands, along with
their combinations, hold significant potential for reflecting plant health and canopy
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structural changes [19]. However, there is a lack of systematic evaluation regarding
the sensitivity and efficacy of these bands or combinations for different growth stages.
Particularly, how to leverage multispectral data to distinguish stage-specific features
amid the dynamic changes of the wheat growth cycle remains a scientific challenge.

(2) How can wheat growth be comprehensively monitored from a spatiotemporal per-
spective to support precision agricultural decision-making? The wheat growth cycle
exhibits significant temporal and spatial heterogeneity. Temporally, dynamic changes
in spectral characteristics across stages reveal canopy activity, health status, and
stress conditions [20]. Spatially, the uniformity of canopy spectral reflectance, texture
features, and localized anomalies within fields provide critical inputs for precision
management [21]. Spectral data, texture information, and spatial distribution patterns
contribute to precision management by offering insights into the wheat canopy’s
health, nutrient levels, and environmental conditions. These data are essential for
making informed decisions regarding targeted fertilization, irrigation adjustments,
and disease monitoring. However, existing research on integrating temporal moni-
toring with spatial distribution characteristics is insufficient, making it challenging
to achieve systematic monitoring of the entire wheat growth cycle. This limitation
not only constrains the application potential of remote sensing data in precision
agriculture but also hinders a deeper understanding of the wheat growth process.

This study develops a comprehensive monitoring framework for the entire wheat
growth cycle using UAV remote-sensing technology, addressing the two core scientific
questions outlined above. Specifically, the research focuses on the following three aspects:

(1) We selected the G, R, RE, and NIR bands based on the spectral characteristics of wheat
growth stages. Reflectance, entropy, variance, and other metrics were combined
to quantify canopy health status and growth characteristics [22]. The sensitivity
and efficacy of spectral band combinations in stage identification were thoroughly
analyzed, providing foundational data for monitoring model development.

(2) We constructed dynamic feature models using multitemporal UAV remote-sensing
data collected across seven growth stages for temporal monitoring and recognition.
These models revealed spectral change trends and growth inflection points, providing
insights into the spectral response patterns of wheat growth [23]. Temporal analysis
clarified the dynamic characteristics of growth, offering a basis for yield prediction
and stress diagnosis.

(3) By utilizing segmented mapping and spatial distribution models, the study analyzed
the spectral uniformity and localized anomalies of the wheat canopy within fields [24].
The results of the distribution analysis informed precision farming strategies, includ-
ing targeted fertilization, irrigation adjustments, and disease monitoring.

In response to the growing interest in deep-learning applications for hyperspectral and
multispectral remote sensing, we have expanded the manuscript to include a comparison
with recent deep-learning methods. Studies have shown the effectiveness of convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and other advanced deep-
learning techniques in analyzing hyperspectral and multispectral data for crop monitoring.
These methods have demonstrated promising results, particularly in feature extraction,
classification, and prediction tasks. In contrast, our approach focuses on integrating tem-
poral and spatial dynamics through UAV-based multispectral remote sensing, offering a
comprehensive monitoring framework for wheat growth [25]. By comparing our method-
ology with these recent deep-learning models, we highlight the unique contributions and
advantages of our model in precision agriculture applications, emphasizing its ability to
track dynamic crop changes over time and space. The innovations of this study include:
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The key innovation of this study lies in leveraging the temporal dimension to capture
dynamic spectral changes across multiple critical growth stages, providing a more detailed
and precise understanding of crop development compared to static analyses. The devel-
opment of a spectral band combination analysis method based on multispectral remote
sensing significantly enhances the accuracy of growth stage feature extraction [26,27]. The
integration of temporal and spatial modeling establishes a comprehensive spatiotemporal
monitoring framework for the entire wheat growth cycle. The linkage of monitoring results
with precision agricultural management offers practical guidance for field management
decisions [8]. This research provides valuable theoretical foundations and technical support
for dynamic monitoring and comprehensive management of wheat growth, contributing to
improved crop yields, resource efficiency, and sustainable agricultural practices.

Through these contributions, this research provides theoretical foundations and tech-
nical support for dynamic monitoring and comprehensive management of wheat growth
while also serving as a reference for growth monitoring in other crops. Future directions em-
phasize integrating hyperspectral data with complementary remote-sensing technologies
like LiDAR and thermal imaging to enhance multi-source analysis. Real-time monitoring
platforms and open-access frameworks for data sharing and algorithm refinement are
essential for fostering collaboration and scalability. Advances in machine learning tailored
to hyperspectral applications will further optimize agricultural monitoring and resource
management, driving innovation in precision agriculture.

UAV remote-sensing technology is crucial for agricultural monitoring and paves the
way for future intelligent agricultural production [11,28,29]. The findings of this study not
only advance the scientific development of wheat growth monitoring but also offer a tech-
nical roadmap and application paradigm for the innovation and dissemination of modern
agricultural technologies. Future research should aim to integrate multisource remote-
sensing data across larger areas to further explore the complex dynamics of crop growth,
thereby enhancing the intelligence and efficiency of agricultural production systems.

2. Materials and Methods
2.1. The Study Area

The wheat experimental base of the Hebei Academy of Agriculture and Forestry Sci-
ences (114◦42′51.92′′–114◦43′29.61′′ E, 37◦56′36.36′′–37◦56′22.87′′ N) was selected as the
study area (Figure 1). Located at an average altitude of 55 m above sea level, the base covers
approximately 7.2 hectares (0.072 square kilometers). As one of China’s premier institu-
tions for wheat research, the base leverages the unique natural resources and agricultural
advantages of Hebei Province to establish a comprehensive research system encompassing
wheat breeding, cultivation techniques, and pest and disease management [30,31] within a
semi-humid and semi-arid region characterized by a warm temperate continental monsoon
climate. The average annual temperature is 13.3 ◦C, with summer peaks averaging 26.9 ◦C
and winter lows averaging −2.4 ◦C. Annual precipitation averages 534.6 mm, mainly con-
centrated in July and August, resulting in uneven seasonal distribution. The region features
light and medium loam soils, suitable for agriculture but with some areas exhibiting lower
nutrient content. Agricultural management practices, including modern park development
and soil pollution control, help ensure agricultural product quality. These environmental
and agricultural factors significantly impact wheat growth and were considered in the
experimental design.

The base focuses on the growth mechanisms, quality improvement, and stress resis-
tance of wheat, aiming to drive sustainable development and technological innovation
in the wheat industry [32]. Within the base, the research team conducts large-scale ex-
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periments and data collection to systematically analyze wheat growth patterns and yield
performance under various environmental conditions [33].

Agriculture 2025, 15, x FOR PEER REVIEW 5 of 31 
 

 

 

Figure 1. Location of wheat growing area in experimental field. The study area is located 20 km 
southeast of Shijiazhuang, the capital of Hebei Province. 

The base focuses on the growth mechanisms, quality improvement, and stress re-
sistance of wheat, aiming to drive sustainable development and technological innovation 
in the wheat industry [32]. Within the base, the research team conducts large-scale exper-
iments and data collection to systematically analyze wheat growth patterns and yield per-
formance under various environmental conditions [33]. 

This research platform provides a solid foundation for understanding the dynamic 
growth processes of wheat, offering critical insights into yield optimization, disease re-
sistance, and adaptive management under changing agricultural environments [34]. 
Through interdisciplinary efforts and continuous innovation, the Hebei wheat experi-
mental base contributes to advancing China’s wheat production efficiency and sustaina-
bility. 

2.2. Data Sources and Processing 

Using the DJI Phantom 4 UAV (DJI Innovations, Shenzhen, Guangdong, China) 
equipped with six 1/2.9-inch CMOS sensors, including one color sensor for visible light 
imaging and five monochrome sensors for multispectral imaging, multispectral data of 
wheat at various growth stages were collected [35]. The multispectral sensors covered four 
key spectral bands: the G band with a central wavelength of 560 nm, the R band at 650 
nm, the RE band at 730 nm, and the NIR band at 840 nm [36]. We selected these bands to 
capture the spectral responses of crops, providing critical information on plant health, 
nutrient levels, and water status. Specifically, the RE and NIR bands demonstrated signif-
icant correlations with wheat growth status and biomass, offering essential indicators for 
crop monitoring [37]. We calibrated the reflectance data before and after each flight to 
ensure the accuracy of the spectral measurements. The panel was placed in representative 
locations within the study area, and preliminary measurements were made to adjust for 
any atmospheric conditions or sensor discrepancies. This process was repeated after each 
flight to ensure consistent data quality throughout the experiment. 

During the experiments, the UAV operated at a flight altitude of 20 m, balancing 
spatial resolution and coverage. The spatial resolution achieved by Phantom 4 was 0.01 
m, ensuring image clarity and detailed richness. This high-resolution imagery provided a 
reliable foundation for subsequent data analysis, enabling more accurate identification of 
wheat growth characteristics and potential issues [1]. 

To obtain accurate canopy reflectance values, the UAV data underwent a series of 
processing steps, including radiometric calibration, atmospheric correction, and regional 
cropping. Initially, metadata were extracted from the raw UAV imagery and parsed to 

Figure 1. Location of wheat growing area in experimental field. The study area is located 20 km
southeast of Shijiazhuang, the capital of Hebei Province.

This research platform provides a solid foundation for understanding the dynamic
growth processes of wheat, offering critical insights into yield optimization, disease resis-
tance, and adaptive management under changing agricultural environments [34]. Through
interdisciplinary efforts and continuous innovation, the Hebei wheat experimental base
contributes to advancing China’s wheat production efficiency and sustainability.

2.2. Data Sources and Processing

Using the DJI Phantom 4 UAV (DJI Innovations, Shenzhen, Guangdong, China)
equipped with six 1/2.9-inch CMOS sensors, including one color sensor for visible light
imaging and five monochrome sensors for multispectral imaging, multispectral data of
wheat at various growth stages were collected [35]. The multispectral sensors covered
four key spectral bands: the G band with a central wavelength of 560 nm, the R band
at 650 nm, the RE band at 730 nm, and the NIR band at 840 nm [36]. We selected these
bands to capture the spectral responses of crops, providing critical information on plant
health, nutrient levels, and water status. Specifically, the RE and NIR bands demonstrated
significant correlations with wheat growth status and biomass, offering essential indicators
for crop monitoring [37]. We calibrated the reflectance data before and after each flight to
ensure the accuracy of the spectral measurements. The panel was placed in representative
locations within the study area, and preliminary measurements were made to adjust for
any atmospheric conditions or sensor discrepancies. This process was repeated after each
flight to ensure consistent data quality throughout the experiment.

During the experiments, the UAV operated at a flight altitude of 20 m, balancing
spatial resolution and coverage. The spatial resolution achieved by Phantom 4 was 0.01 m,
ensuring image clarity and detailed richness. This high-resolution imagery provided a
reliable foundation for subsequent data analysis, enabling more accurate identification of
wheat growth characteristics and potential issues [1].

To obtain accurate canopy reflectance values, the UAV data underwent a series of
processing steps, including radiometric calibration, atmospheric correction, and regional
cropping. Initially, metadata were extracted from the raw UAV imagery and parsed to
identify key parameters such as central wavelengths, full width at half maximum (FWHM),
calibration coefficients, and coordinate information for each spectral band. This informa-
tion was then processed to ensure accurate calibration of the reflectance data, with each
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parameter being cross-referenced and validated for consistency across all data points [38].
The gray values were then converted into absolute radiance values, translating digital
numbers into physically meaningful apparent radiance values, thereby determining the
radiance at the sensor aperture [39]. Ground calibration data were collected synchronously
to perform atmospheric corrections, aiming to eliminate radiance errors caused by atmo-
spheric absorption and scattering and to derive true reflectance values for wheat. Finally,
distribution maps of wheat were imported and extraneous data were cropped, generating
multispectral images of wheat canopy reflectance [40]. The calibration method based on
the built-in solar sensor of the drone was not applied in this study. On the contrary, we
rely on a relative calibration method based on ground black and white cloth. These images
provided essential baseline data for monitoring growth status and ecological assessments,
ensuring the comparability of multispectral data collected across different periods. The
UAV images were processed using Photoscan software (3.11.0, Python Software Foundation,
Wilmington, DE, USA) to generate multispectral orthomosaics. The photogrammetric tools
and algorithms in Photoscan ensured high geometric accuracy during the image-stitching
process. For reflectance calibration, we used Python-based scripts to correct the raw re-
flectance values and account for atmospheric effects. Python-based scripts were used for
reflectance calibration, utilizing libraries such as numpy and scipy for data manipulation
and pyproj for coordinate transformations. For atmospheric correction, tools like Py6S
or similar atmospheric correction libraries were employed to account for atmospheric
scattering and absorption effects, ensuring the accuracy of the reflectance values. During
the post-processing phase, we applied segmentation methods to eliminate the influence
of ground reflectance and other potential sources of background noise, such as soil and
shadows. This process ensured that the reflectance data were attributable solely to the
vegetation cover, providing accurate measurements of plant health and growth.

In this study, UAV multispectral data were collected at seven time points between
March and June, corresponding to key stages of the wheat growth cycle, including the
Tillering, Jointing, Booting, Flowering, and Ripening stages [41]. This data acquisition
process aimed to comprehensively monitor the growth status and health of wheat at various
stages, facilitating a deeper analysis of growth patterns and influencing factors. At each
growth stage, UAV multispectral imaging technology was used to acquire high-resolution
hyperspectral reflectance data of the wheat canopy. Tillering Stage (March to early April):
Wheat begins tillering, forming multiple tillers, which enhance root systems and stems.
Jointing Stage (early April to late April): Stems elongate, and internodes grow, laying
the foundation for subsequent ear differentiation. Booting Stage (late April to mid-May):
Ears form and gradually mature. Flowering Stage (mid-May to late May): Ears begin
flowering and pollination occurs. Ripening Stage (late May to mid-June): Grains mature,
moisture content decreases, and plants prepare for harvest. Additional data collection
during the Jointing Stage included Pre-Jointing and Post-Jointing stages to capture the
dynamic changes in wheat growth comprehensively. We selected these time points to reflect
key transitions and growth dynamics throughout the wheat lifecycle [20] (Table 1).

These data provided critical information for analyzing the growth characteristics of
wheat at this specific time point [42]. The true-color image offered an overview of the
wheat’s appearance and general health status. By integrating and analyzing these spec-
tral bands, we gained a comprehensive understanding of the growth dynamics of wheat
at this stage (Figure 2). This multifaceted approach not only highlights the physiologi-
cal and structural characteristics of the crop but also supports precise monitoring of its
developmental status.
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Table 1. Overview of wheat growth stages and collection dates. This table displays the collection
dates of drone multispectral data for wheat at different growth stages from March to May 2024,
facilitating the subsequent analysis of wheat growth dynamics and health status.

Serial
Number

Date

Different Growth Stages of Wheat

Tillering
Stage

Pre-
Jointing

Stage

Jointing
Stage

Post-
Jointing

Stage

Booting
Stage

Flowering
Stage

Ripening
Stage

1 11 March 2024
√

2 1 April 2024
√

3 23 April 2024
√

4 30 April 2024
√

5 9 May 2024
√

6 21 May 2024
√

7 28 May 2024
√
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Figure 2. Multispectral bands and true color images of wheat growth characteristics. This set of
images displays the reflectance characteristics of wheat on 11 March 2024, for the G, R, RE, and NIR
bands. By comparing the images from each band, we can clearly observe the growth status, health
levels, and physiological characteristics of wheat at this growth stage, providing intuitive visual
support for further analysis.

2.3. Spectral Algorithm

In response to the suggestion that the operation between spectral bands should in-
volve more complex combinations similar to vegetation indices, we have elaborated on
the basis and theoretical underpinnings of these combinations in the spectral algorithm.
These combinations are derived from biophysical and biochemical principles of crop physi-
ology, specifically focusing on chlorophyll absorption, canopy structure, and water content
dynamics, which are critical for understanding crop growth and health.

The G band is highly sensitive to chlorophyll absorption, a key indicator of plant
photosynthesis, and is often used in calculating vegetation indices such as the Normalized
Difference Vegetation Index (NDVI). The R band, being another key indicator of chlorophyll
absorption, complements the G band, as its reflectance is inversely related to chlorophyll
content. The NIR band, which reflects the canopy’s structural properties and water content,
plays a significant role in understanding plant health, particularly in detecting variations
in leaf area and water stress. By combining these bands, we can enhance the detection of
complex physiological conditions, such as leaf density, canopy health, and water content.
For example, combinations of the G and NIR bands are particularly effective for monitoring
canopy health and leaf density, as the NIR band is sensitive to plant structure and the G
band responds to photosynthetic activity. Similarly, combining the RE and NIR bands has
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proven valuable in assessing plant health during stages of active growth or senescence, as
the RE band is sensitive to physiological changes in the plant, such as chlorophyll content
and leaf maturity.

Additionally, we have incorporated references to previous studies that validate the
use of these spectral combinations in remote-sensing applications. Vegetation indices such
as NDVI and the Enhanced Vegetation Index (EVI), which utilize the G, R, and NIR bands,
have been widely used to monitor plant health, water stress, and nitrogen content. These
indices have been shown to effectively capture variations in canopy health and biomass,
further supporting the use of multi-band combinations in our spectral algorithm. This
integration of biophysical principles and proven remote-sensing techniques enhances the
algorithm’s ability to track dynamic crop characteristics and monitor growth stages more
accurately. It allows for a more precise and comprehensive assessment of crop health, stress,
and physiological development across different stages of growth.

For remote-sensing images containing four spectral bands, various image feature
values can be calculated through different band combinations [39]. Specifically, the combi-
nations can be categorized into single-band, two-band, three-band, and four-band combi-
nations, resulting in a total of 15 possible combinations (Table 2).

(1) Single-band combinations: Selecting one band from the four available bands yields
C(4, 1) = 4 combinations. Single-band combinations are commonly used to extract
basic features such as brightness and reflectance. They are particularly effective
in analyzing the behavior of specific bands under particular conditions, such as
using the blue band for water monitoring because of its high absorption by water,
or the NIR band for vegetation analysis because of its strong sensitivity to plant
chlorophyll. Single-band analysis is often employed as an initial screening tool to
identify anomalies.

(2) Two-band combinations: Selecting two bands from the four yields C(4, 2) = 6 com-
binations. Two-band combinations are useful for analyzing relative relationships
between bands. For example, ratio analysis can highlight specific features of certain
land-cover types. These combinations are widely used for calculating ratio-based
indices, such as vegetation coverage monitoring. They are effective in distinguishing
different land-cover types and are particularly helpful for analyzing mixed pixels,
offering insights into the contributions of various land covers within a single pixel.

(3) Three-band combinations: Selecting three bands from the four results in C(4, 3) = 4
combinations. This approach is commonly used to compute specific composite in-
dices. Three-band combinations are suitable for deriving more complex indices and
extracting detailed features of land covers. By leveraging texture features from three
bands, these combinations enhance the understanding of land cover structures and
provide a deeper interpretation of surface properties.

(4) Four-band combinations: Utilizing all four bands yields C(4, 4) = 1 combination.
Four-band combinations provide comprehensive information, making them ideal
for analyzing complex scenarios. These combinations are particularly suited for
applications requiring multidimensional data, offering richer information to support
fine-grained classification and analysis. Four-band combinations enable an integrated
approach to understanding the relationships among spectral features, facilitating
holistic and detailed analyses.

These band combinations and their respective feature extraction capabilities play a
crucial role in advancing the understanding and interpretation of complex remote-sensing
datasets, supporting diverse applications from anomaly detection to precise land-cover
classification [19,43].
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Table 2. Different band combinations and calculation formulas for remote-sensing images. The table
displays various transformation methods for single band, dual band, triple band, and quadruple
band, facilitating analysis and extraction of image features.

Serial Number Transformation Method Process Formulas

1 Single-band G Xi = RG
2 Single-band NIR Xi = RNIR
3 Single-band R Xi = RR
4 Single-band RE Xi = RRE
5 Dual-band G-NIR Xi = RG/RNIR
6 Dual-band G-R Xi = RG/RR
7 Dual-band G-RE Xi = RG/RRE
8 Dual-band NIR-R Xi = RNIR/RR
9 Dual-band NIR-RE Xi = RNIR/RRE
10 Dual-band R-RE Xi = RR/RRE
11 Triple-band G-NIR-R Xi = RG + RNIR + RR
12 Triple-band G-NIR-RE Xi = RG + RNIR + RRE
13 Triple-band G-R-RE Xi = RG + RR + RRE
14 Triple-band NIR-R-RE Xi = RNIR + RR + RRE
15 Quadruple-band G-NIR-R-RE Xi = RG + RNIR + RR + RRE

Note: Xi is the processed spectral reflectivity; Ri the reflectivity corresponding to the wavelength.

2.4. Feature Extraction Algorithm

When extracting UAV imagery of wheat at different growth stages, it is essential
to design a series of feature extraction algorithms to accurately identify and analyze the
growth status and health levels of the crop [2,44]. These algorithms target different growth
stages, focusing on extracting key features such as color, texture, and shape, to better
understand the growth dynamics of wheat. This study selected 15 indicators (Table 3) that
comprehensively reflect the image characteristics during the wheat growth process from
various perspectives. These indicators enable an in-depth analysis of growth status, health
levels, and growth patterns, providing valuable data support for precision agriculture. By
employing a combination of image processing techniques, including statistical analysis,
machine learning, and deep learning, the accuracy and efficiency of feature extraction can
be significantly enhanced, laying a solid data foundation for subsequent growth monitoring
and management [45].

The variables included in Table 3 were selected based on their established relevance in
remote sensing and image analysis, particularly for crop monitoring. These variables, such
as entropy, contrast, and texture variance, are critical for capturing key aspects of canopy
health, structural complexity, and dynamic changes that occur across different growth
stages of crops. In remote-sensing applications, entropy measures the complexity of pixel-
value distributions within an image, providing insights into the structural heterogeneity of
the canopy. Higher entropy values typically reflect more complex canopy structures, which
are indicative of dynamic changes in plant health and growth. Contrast, on the other hand,
quantifies the difference in pixel intensities between adjacent areas in the image. This metric
is valuable for detecting variations in canopy texture, which are associated with differences
in plant health, leaf area, and vegetation stress. Texture variance measures the variability
in pixel values across the image, reflecting the degree of canopy complexity. Variance is
sensitive to changes in canopy architecture and is particularly useful for detecting early
signs of stress, such as nutrient deficiencies or disease.
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Table 3. Statistical measures and their implications for image analysis. This table summarizes key
statistical measures used in image analysis, highlighting their formulas, meanings, and applications
for evaluating various aspects of image quality and texture.

Serial Number Calculate Indicators Process Formulas Meaning and Purpose

1 Mean µ = 1
N ∑N

i=1 Bi

The average value of pixel values
reflects the overall brightness of the
image. Used to evaluate the brightness
level of images.

2 Variance σ2 = 1
N ∑N

i=1 (Bi − µ)2

The degree of dispersion of pixel
values reflects the contrast of an image.
Used for analyzing the brightness
distribution of images.

3 Standard Deviation σ2 =
√

σ2

The square root of variance represents
the degree of fluctuation in pixel
values. To evaluate the stability of
image brightness.

4 Entropy H = −∑N
i=1 p(Bi)log2 p(Bi)

The uncertainty of pixel value
distribution, the higher the entropy
value, the more complex the image.
Used for image complexity and
texture analysis.

5 Skewness S = 1
N ∑N

i=1

(
Bi−µ

σ

)3

The symmetry of pixel value
distribution, with positive skewness
indicating right skewness and negative
skewness indicating left skewness.
Used for analyzing the deviation of
brightness distribution.

6 Kurtosis K = 1
N ∑N

i=1

(
Bi−µ

σ

)4
− 3

The sharpness of pixel value
distribution, with high peak indicating
the data set. Used to analyze the
concentration of
brightness distribution.

7 Brightness Range Rg = Bmax − Bmin

The difference in pixel values in an
image represents the dynamic range.
To evaluate the contrast and dynamic
range of images.

8 Root Mean Square RMS =
√

1
N ∑N

i=1 B2
i

The root mean square of pixel values
reflects the brightness intensity of an
image. To measure the overall intensity
of image brightness.

9 Brightness
Concentration Rc = ∑i p(Bi)·Bi

The weighted average of pixel values
represents the degree of concentration
of brightness. Used for analyzing
image brightness distribution.

10 Contrast Rtm = ∑
i,j
(i − j)2P(i, j)

The average value of the texture matrix
reflects the texture features.To evaluate
the texture features of images.

11 Texture Variance Rtv = 1
N ∑i,j(P(i, j)− Rtm)

2

The variance of the texture mean
represents the degree of texture
dispersion. To evaluate the consistency
of image texture.

12 Frequency Entropy H f = −∑i filog2 fi

The entropy value of the frequency
distribution of pixel values reflects the
diversity of brightness. To evaluate the
diversity of image
brightness distribution.
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Table 3. Cont.

Serial Number Calculate Indicators Process Formulas Meaning and Purpose

13 Texture Entropy Ht = −∑i,j P(i, j)log2P(i, j)

The entropy value of the texture matrix
represents the complexity of the
texture. To evaluate the texture
complexity of images.

14 Energy E = ∑i,j P(i, j)2

It is the total energy calculated through
the feature matrix in texture feature
extraction. To evaluate the richness of
information in the image.

15 Brightness Correlation C = ∑i,j Bi·Bj/N

An indicator that describes the
relationship between the brightness
values of different pixels in an image.
To evaluate the consistency and
similarity of image
brightness distribution.

Note: µ is the mean value of pixels; N is the total number of pixels; i is the pixel number; Bi is the i-th pixel value;
σ2 is the variance; H is the entropy; p(Bi) is the probability of the i-th pixel value; S is the skewness; K is the
kurtosis; Rg is the brightness range; Bmax and Bmin are the maximum and minimum pixel values, respectively;
RMS is the root mean square; Rc is the brightness centration; Rtm is the contrast; P(i, j) is the pixel values of
texture matrix; Rtv is the texture variance; H f is the frequency entropy; fi is the probability of the i-th pixel
value; Ht is the texture entropy; E is the energy value; C is the Brightness Correlation; Bi and Bj are the pixels to
be calculated.

These selected variables play an essential role in accurately assessing crop health, iden-
tifying stress conditions, and monitoring growth transitions. By leveraging these metrics,
the analysis provides a comprehensive understanding of canopy dynamics, enabling more
precise monitoring of crop development. The inclusion of these variables is supported by
extensive research in the field, where similar metrics have been demonstrated to improve
the accuracy of crop monitoring and yield prediction models. Relevant studies have shown
that these variables are particularly effective in distinguishing different growth stages and
detecting anomalies related to plant health and environmental factors. By incorporating
these well-established metrics into the spectral algorithm, this study enhances the ability
to capture subtle changes in crop physiology and offers a more robust framework for
monitoring crop health throughout the growing season. The updated manuscript further
clarifies the rationale for selecting these variables, and references to relevant studies have
been included to substantiate their use in remote-sensing and crop monitoring applications.

By extracting features from UAV imagery collected during seven distinct growth
stages, we can capture the dynamic growth patterns of wheat [39]. The analysis of these
features facilitates the identification of differences between growth stages, predicts wheat
growth trends, and informs the development of appropriate management strategies. Using
a data-driven approach allows for more effective crop monitoring, optimized resource
allocation, and improvements in both wheat yield and quality [36]. These efforts collectively
contribute to advancing the application of precision agriculture, ensuring sustainable and
efficient crop production.

2.5. Data Post-Processing Methods

In multi-temporal remote-sensing monitoring, the spectral reflectance characteristics
and spatial texture information of wheat at different growth stages vary dynamically
throughout the growth process [12]. These features can reflect critical growth parameters
such as leaf area index (LAI), vegetation coverage, and health status. However, due to
the differing calculation methods and physical meanings of remote-sensing features, there
are significant differences in their dimensions and value ranges. For instance, brightness
may range from 0 to 65,535, whereas contrast and entropy are typically represented as
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small decimal values. Directly using these feature data for modeling and analysis may lead
to certain features being either excessively amplified or completely ignored in the model,
thereby reducing the accuracy and scientific validity of the analysis results [46].

The primary purpose of normalization is to map different feature values into a unified
range (typically [0, 1]) while preserving the trends of feature variations. The calculation
formula is:

x′ =
x − min(x)

max(x)− min(x)
(1)

In the formula, x represents the original feature value, min(x) is the minimum value
of the feature column, max(x) is the maximum value of the feature column, and x′ is the
normalized feature value. This processing method eliminates the interference caused by
differences in dimensions, ensuring that all features have equal importance in subsequent
analyses [23]. Additionally, normalization improves the training efficiency and convergence
speed of models, thereby enhancing the predictive performance of wheat growth models.

By normalizing various features extracted from UAV remote-sensing data, a reliable
foundation is provided for quantitative comparisons of wheat growth conditions across
different growth stages [47]. The normalized feature data intuitively reflect the temporal
variation patterns of wheat growth, aiding in the identification of key growth characteristics
at different stages and providing a scientific basis for precision agricultural management.
Furthermore, this data processing approach improves the generalizability of analyses, en-
abling models to adapt to data from different regions and wheat varieties. This adaptability
supports large-scale remote-sensing monitoring and crop production decision-making [7].

Wheat growth models built using normalized feature data not only provide higher
accuracy for monitoring growth but also offer critical data support for yield prediction,
disaster warning, and precision agricultural management [47]. This ensures that remote-
sensing applications can effectively support sustainable and efficient agricultural practices
at multiple scales.

2.6. Statistical Analysis

In this study, we performed all statistical analyses using Python (version 3.12.3),
utilizing the scipy, statsmodels, and numpy libraries for conducting the necessary tests.
Due to the research objectives and the nature of the data, we employed t-tests to evaluate
the relationships between variables and test our hypotheses. These methods were selected
based on their ability to analyze the impact of independent variables on a dependent
variable, which directly aligns with the goals of our study.

For the assumptions underlying the statistical tests, we performed the following
diagnostic checks: we assessed the normality of the data using the Shapiro–Wilk test and
visually examined histogram plots. The assumption of homogeneity of variance was tested
using Levene’s test, ensuring that the variability between groups was consistent. In cases of
regression analysis, we examined residual plots to check for linearity and homoscedasticity.
The significance level was set at p < 0.05 for all tests, in accordance with standard practice
in our field. All analyses were performed with careful consideration of the assumptions
and methods selected, ensuring the robustness and validity of our findings.

3. Results
3.1. Remote-Sensing Feature Calculation Results Under 15 Band Combinations

We constructed heatmaps and boxplots to analyze the feature distribution and varia-
tion patterns of UAV remote-sensing data. Heatmaps visually present the dynamic trends
of various features over time during the wheat growth process through variations in color
intensity, reflecting the spatiotemporal changes in spectral and texture features across
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different growth stages [17]. This visualization approach allows for the rapid identification
of significant feature value change intervals, highlighting key features that influence the
growth process. Additionally, boxplots describe the distribution range, central tendency,
and outliers of each feature, illustrating the stability and variability of features at different
time intervals [15].

Different band combinations show significant differences and complementarities in
monitoring the dynamic growth of wheat, providing critical insights for comprehensively
evaluating canopy characteristics and health status [7,48] (Figure 3). The left panel of
Figure 3 shows the normalized calculation results of different feature values. The purpose
of this visualization is to standardize the feature values, eliminating the impact of varying
scales or units between different variables. By normalizing the values, it becomes easier to
compare the relative changes in each feature, regardless of their original magnitudes. This
approach allows for a clearer understanding of how each feature behaves over time and
provides a uniform basis for comparing different spectral characteristics. Normalization
ensures that the data’s trends and patterns are not skewed by differences in their value
ranges, making the analysis more reliable and interpretable. The right panel, on the other
hand, displays the normalized calculation results of different feature values across the seven
growth stages (1–7). This visualization is crucial because it illustrates how the spectral
characteristics of the crop evolve at each specific growth stage. By presenting the normal-
ized feature values for each growth stage, this panel provides insights into the temporal
dynamics of canopy health, leaf area, and stress levels. The comparison across growth
stages allows for a better understanding of the crop’s physiological changes throughout its
life cycle, helping to pinpoint critical periods for intervention (e.g., fertilization, irrigation)
and stress monitoring. Overall, this approach enhances the ability to track crop growth
with higher precision and supports targeted agricultural management strategies.

The G band is most sensitive to vegetation activity during the Jointing and Booting
stages, characterized by high brightness values (mean reaching 0.80) and low texture com-
plexity (variance around 0.05), making it suitable for reflecting the spectral characteristics of
vigorous growth stages. The NIR band excels in assessing water stress and canopy health,
with entropy values reaching 1.2 under disease stress, indicating changes in canopy texture
complexity. The R band primarily reflects the spectral stability of the canopy during the
ripening stage, with root-mean-square values dropping to 0.5 in the late growth stages,
while kurtosis and contrast reveal the stability of spectral reflectance. The RE band strongly
indicates nitrogen absorption and health monitoring, with median brightness reaching 0.85
during the Jointing stage.

Band combinations further enhance sensitivity and stability in detecting wheat growth
characteristics [34,43]. The G + NIR combination achieves a mean value of 0.85 during
the Jointing stage, making it suitable for reflecting canopy density and activity. The G
+ R combination shows increasing contrast over time, reflecting the dynamic changes in
canopy structure during the growth stages. The G + RE combination responds strongly
to spectral variations in wheat, while the NIR + R combination is better suited for health
monitoring, with skewness peaking at 0.5 during the Grain Filling stage. Three-band
combinations, such as G + NIR + R and G + NIR + RE, further enhance the dynamic
response to vigorous growth and decline stages. Meanwhile, the four-band combination (G
+ NIR + R + RE) offers the most comprehensive assessment of texture and spectral changes
across the entire growth cycle. These findings demonstrate that single bands are suitable for
monitoring specific stages, while multi-band combinations enable full-cycle monitoring of
wheat growth characteristics [19]. This provides scientific support for precision agricultural
management, disease monitoring, and yield prediction.
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Figure 3. Multidimensional visualization analysis of wheat growth dynamics using UAV remote
sensing. (a) G band: Reflects high vegetation activity, suitable for monitoring canopy changes.
(b) NIR: Indicates healthy growth and water stress conditions. (c) R: Represents stability during the
maturity stage. (d) RE band: Suitable for monitoring nitrogen uptake and plant health. (e) G + NIR:
Reflects chlorophyll content and canopy density. (f) G + R: Demonstrates dynamic changes in canopy
structure. (g) G + RE: Suitable for spectral dynamics monitoring. (h) NIR + R: Reflects disease stress
and healthy areas. (i) NIR + RE: Indicates water stress and healthy conditions. (j) R + RE: Reflects
maturity characteristics. (k) G + NIR + R: Useful for monitoring disease stress. (l) G + NIR + RE:
Tracks spectral changes across growth stages. (m) G + R + RE: Monitors texture changes in the canopy.
(n) NIR + R + RE: Suitable for disease-stress monitoring. (o) G + NIR + R + RE: Ideal for dynamic
analysis across the growth cycle.

3.2. Remote-Sensing Analysis of Seven Growth Stages of Wheat

Using UAV-based remote-sensing technology, the seven critical growth stages of wheat
can be precisely monitored to assess vegetation coverage, canopy structure, health sta-
tus, and growth dynamics [1]. The analysis of these time-series data not only reveals the
physiological characteristics of each stage but also provides scientific guidance for disease
warning, precision fertilization, and yield prediction [8]. Feature extraction across these
growth stages facilitates optimized crop management, enhances agricultural productivity,
and promotes the application of remote-sensing technology in precision agriculture, thereby
offering robust data support for sustainable agricultural development by optimizing re-
source use, improving crop yield predictions, enabling early detection of pests and diseases,
and supporting more precise decision-making for irrigation, fertilization, and pest control
(Figure 4).

Figure 4 illustrates the spectral characteristics of wheat across different growth stages,
represented through a radar chart. Each segment of the radar chart corresponds to a specific
growth stage (1–7), with the various axes reflecting different spectral features or variables,
such as the reflectance values from different spectral bands (G, R, RE, NIR). The chart
displays how these features evolve over time as the crop progresses through its growth
stages, providing a clear visual representation of changes in the spectral properties of wheat
at each critical growth phase.

The purpose of Figure 4 is to facilitate the comparison of spectral changes at differ-
ent growth stages, highlighting key shifts in crop characteristics like canopy health, leaf
area, and stress levels. By using a radar chart, the figure effectively communicates the
multidimensional nature of crop growth dynamics and helps identify important growth
transitions. This enables a better understanding of how the crop’s spectral features evolve,
which is crucial for precision agriculture and supports decisions related to intervention
timing and stress detection. In Figure 4, the highlighted line emphasizes the key trends
or significant variations in spectral characteristics at each growth stage. This line allows
readers to easily track the most notable shifts in the crop’s spectral features, such as changes
in canopy health, chlorophyll content, or plant stress levels. It also helps identify critical
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growth stages where substantial transitions occur, facilitating a more focused analysis of
the crop’s development and making it easier to correlate spectral data with physiological
changes for informed crop management decisions.
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tion in canopy reflectance intensity. 
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Figure 4. Radar chart of key spectral band features for remote-sensing identification of wheat growth
stages. (a) Tillering Stage: The canopy coverage is relatively low, with the G band’s mean value
stabilizing at 0.65 and variance approximately 0.05, reflecting low canopy activity characteristics.
(b) Pre-Jointing Stage: Canopy coverage increases significantly, with the G + NIR band’s root-mean-
square (RMS) value reaching 0.70, indicating a significant improvement in chlorophyll concentration
and canopy density. (c) Jointing Stage: Canopy structure becomes complex, with the NIR band
entropy reaching a peak of 1.2, reflecting a significant increase in plant texture complexity. (d) Post-
Jointing Stage: Canopy activity stabilizes, but canopy fluctuations increase. The variance of the
NIR + R band peaks at 0.12, indicating increased canopy variability. (e) Booting Stage: Canopy
activity strengthens, with the energy value of the G + NIR band reaching 0.90, demonstrating strong
concentration in canopy spectral reflectance. (f) Flowering Stage: Canopy coverage reaches its
maximum, with the brightness concentration of the G + R + RE band combination peaking at 0.75,
reflecting maximum canopy uniformity and reflectivity. (g) Ripening Stage: Canopy activity declines,
and the median brightness of the NIR + R + RE band combination drops to 0.55, indicating a reduction
in canopy reflectance intensity.

(1) Tillering Stage: Canopy coverage is relatively low during this stage, and the NIR
band is most sensitive to vegetation activity changes. The mean value is maintained
between 0.60 and 0.70, while the variance is stable around 0.05. During this stage,
vegetation reflectance is low and texture characteristics are simple, indicating that
tillers have not fully developed, and the canopy has not yet formed a high-density
coverage. Therefore, the spectral characteristics of the NIR band can effectively
identify the low-activity state of the tillering canopy, making it an important basis for
monitoring this stage.

(2) Pre-Jointing Stage: This is a transitional stage from Tillering to Jointing, during which
canopy coverage increases significantly. The Root-Mean-Square (RMS) value of the
G + NIR combination rapidly rises to about 0.70, indicating a significant increase
in chlorophyll concentration and canopy density. The G band reflects enhanced
spectral reflectance of canopy leaves, while the NIR band captures the trend of canopy
structural changes. The combination of these two bands can accurately distinguish
the spectral characteristics of the Pre-Jointing stage, making it the core monitoring
method for this period.

(3) Jointing Stage: This stage marks a critical turning point in wheat growth, characterized
by a significant increase in canopy structural complexity. The entropy value of the
G + R combination peaks during this stage (approximately 1.2). Entropy reflects
the complexity of canopy texture, while the G band is highly sensitive to vegetation
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growth status and canopy health. During this stage, canopy coverage increases rapidly,
spectral uniformity decreases, and texture complexity intensifies. The peak entropy
value during this period makes it a key feature for distinguishing the jointing stage.

(4) Post-Jointing Stage: In this stage, wheat plants have completed jointing, and canopy
activity tends to stabilize, although texture fluctuations increase. The variance of
the G + R + RE combination peaks during this stage (approximately 0.12), reflecting
possible stress conditions and canopy fluctuations. The G band captures changes in
leaf physiological health, while the R and RE bands are sensitive to leaf aging and
stress responses. The combination of these bands can effectively identify the canopy
state characteristics of the Post-Jointing stage.

(5) Booting Stage: This is a vigorous growth period during which canopy activity further
strengthens, while texture features tend to stabilize. The energy of the NIR + RE
combination reaches its maximum value (approximately 0.90) during this stage, re-
flecting the concentration and uniformity of canopy spectral reflectance. The NIR
band indicates high chlorophyll content, while the RE band captures further increases
in canopy density. The peak energy value makes this metric an important basis for
distinguishing the Booting stage.

(6) Flowering Stage: During this stage, canopy coverage reaches its peak, and spectral and
texture features exhibit high uniformity and reflectivity. The Brightness Concentration
of the NIR + RE combination peaks at approximately 0.75, reflecting the highest levels
of canopy reflectance intensity and uniformity. The NIR band indicates chlorophyll
activity, the RE band captures canopy health features, and the RE band is sensitive to
nitrogen absorption during the Flowering stage, making it an effective method for
precise identification of this stage.

(7) Ripening Stage: During the Ripening stage, canopy activity decreases significantly,
spectral characteristics stabilize, and leaf aging becomes apparent. The median bright-
ness of the NIR + RE combination drops to approximately 0.55, indicating a decline
in canopy reflectance intensity. The NIR band captures the decline in canopy water
content and health, the R band highlights the spectral characteristics of leaf aging,
and the RE band reflects stable nitrogen absorption. Multi-band combinations enable
precise identification of vegetation states during the Ripening stage.

3.3. Spectral Band Mapping for Different Growth Stages of Wheat

The practical impact of the model lies in its ability to provide real-time, high-resolution
monitoring of wheat growth stages, health, and stress conditions through UAV-based
multispectral remote sensing (Figure 5). This model can significantly improve precision
agriculture by enabling early detection of diseases, water stress, and nutrient deficiencies,
allowing for timely interventions. Additionally, the insights provided by the model can
assist in optimizing agricultural practices such as irrigation, fertilization, and pest control,
leading to more efficient use of resources, increased crop yields, and reduced environmental
impact. By offering actionable data for informed decision-making, the model contributes to
enhancing the sustainability and productivity of agricultural systems.

Based on the key characteristic bands or band combinations selected for different
growth stages of wheat (e.g., G, NIR, RE, and their combinations), mapping analysis was
conducted for the seven critical growth stages of wheat [49]. The selection of characteristic
bands is rooted in growth characteristics such as canopy coverage, leaf spectral reflectance
properties, and texture complexity at each growth stage. These features not only reflect
the optical response changes of wheat during growth but also reveal plant health and
growth patterns through spatial-spectral characteristics [42]. Mapping provides a visual
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representation of the spectral reflection patterns of wheat at different growth stages, offering
scientific insights for assessing plant growth status.

Multispectral sensors mounted on UAVs were employed to capture images during
the seven typical growth stages [10]. By integrating the selected characteristic bands,
quantitative identification of different growth stages was achieved. G band: Sensitive to
canopy leaf activity, it reflects changes in chlorophyll concentration. NIR band: Captures
canopy structural features and physiological health status. RE band: Strongly indicates
nitrogen absorption and leaf maturity. R band: Highly sensitive to leaf aging and stress
responses [35]. Quantitative extraction and mapping analysis of spectral reflection features
for each growth stage reveal dynamic changes in canopy activity, plant health, and texture
complexity throughout the wheat growth process. This approach provides a clear and
scientific basis for evaluating the growth status of wheat plants [50].
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Figure 5. Spectral mapping atlas of wheat characteristic bands at different growth stages. (a) Tillering
Stage: Dominated by the G band, reflecting low canopy coverage and weak vegetation activity.
Spectral differences between regions are minimal, indicating uniform low activity across the area.
(b) Pre-Jointing Stage: The G + NIR band combination shows rapid increases in canopy coverage and
significant enhancement in plant activity. Localized differences start to emerge, indicating uneven
growth within the region. (c) Jointing Stage: The NIR band highlights increased canopy complexity,
with distinct regional textures. The areas with peak entropy values correspond to zones of active
growth. (d) Post-Jointing Stage: The NIR + R band combination emphasizes canopy variability, poten-
tially indicating localized stress or physiological anomalies within the region. (e) Booting Stage: The
G + NIR band combination presents high canopy density characteristics, with concentrated spectral
energy reflecting this vigorous growth phase. (f) Flowering Stage: The G + R + RE band combination
illustrates the maximum canopy coverage, with brightness-concentrated regions corresponding to
healthy and active canopy zones. (g) Ripening Stage: The NIT + R + RE band combination reflects
declining canopy activity, reduced spectral uniformity, and prominent signs of leaf aging, marking
the final growth phase.
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The implementation of UAV-based multispectral remote sensing in agricultural man-
agement can lead to significant cost reductions and increased operational efficiency. By
minimizing the need for labor-intensive field surveys, this approach streamlines data collec-
tion, saving both time and resources. Additionally, the model’s ability to accurately monitor
crop health and detect stress or disease at early stages enables targeted interventions, such
as optimized irrigation and fertilization, which reduces the overall use of resources. Early
detection of crop issues also prevents potential yield losses and reduces the reliance on
chemical treatments, leading to further cost savings and contributing to more sustainable
and efficient farming practices.

4. Discussion
With the rapid development of precision agriculture, UAV remote-sensing technology

has gained widespread attention for crop growth monitoring. Compared with traditional
ground survey methods, UAV remote sensing provides refined and dynamic monitor-
ing methods for crop growth processes through multispectral and high-resolution im-
agery [12,29]. Particularly in the full growth cycle of wheat, the canopy spectral reflectance
characteristics and spatial texture properties exhibit significant spatiotemporal changes,
revealing crop growth status, health levels, and stress conditions. By extracting key band
or band combination features, remote sensing can quantitatively identify the growth char-
acteristics of wheat at different growth stages [17]. The spatio-temporal data obtained from
UAV imagery can be directly incorporated into GIS platforms for spatial analysis, allowing
farmers and agronomists to visualize crop health, growth patterns, and field variability at a
detailed level. This integration enables precise mapping of canopy conditions, which can
be used to identify areas requiring targeted interventions, such as irrigation, fertilization, or
pest control. Furthermore, the data can be linked to existing agricultural management sys-
tems, enhancing decision-making processes. By combining real-time spectral information
with other farm management data, such as soil health, weather conditions, and historical
crop performance, these systems can provide actionable insights for optimizing resource
use, reducing waste, and improving crop yields. This integration of remote-sensing data
with GIS and management systems can streamline agricultural practices, support precision
farming strategies, and contribute to more sustainable and efficient agricultural opera-
tions. Combined with temporal analysis and spatial modeling, it offers a comprehensive
monitoring solution for the entire growth cycle.

(1) Technical Methods for Key Band Selection and Feature Extraction

The spectral characteristics of wheat exhibit significant dynamic changes at different
growth stages, with specific bands or band combinations sensitively reflecting the physio-
logical properties and growth conditions of the canopy. Multispectral sensors mounted
on UAVs provide the data foundation for band selection and feature extraction through
high spectral resolution acquisition [45]. During the tillering stage, the G band is a key
band due to its sensitivity to chlorophyll activity, reflecting the low canopy coverage state.
During the jointing stage, the NIR band captures the rapid increase in canopy structural
complexity, representing texture complexity. During the Booting and Flowering stages,
combinations such as G + NIR and G + R + RE accurately reveal plant health and spectral
concentration. For these bands, UAV remote sensing employs multispectral mapping
techniques based on band reflectance, combined with metrics such as mean value, entropy,
and variance, to quantitatively extract and dynamically monitor the growth characteristics
of wheat. Furthermore, band weight analysis using machine-learning algorithms (e.g.,
random forests or support vector machines) optimizes band combinations and improves
the accuracy of growth stage classification. Technical discussions indicate that band se-
lection and feature extraction are core elements of remote-sensing monitoring for wheat
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growth stages, laying the theoretical and technical foundation for subsequent applications
in precision agriculture [22,29,51].

(2) Characteristics of Distribution and Precision Agriculture Management.

UAV remote sensing provides sub-meter spatial resolution, enabling detailed mon-
itoring and analysis of wheat canopy characteristics at the field scale [35,47]. Through
multispectral imagery and mapping with characteristic bands, the spatial distribution
characteristics and uniformity of canopy coverage within fields can be reflected. For in-
stance, during the post-jointing stage, the variance of the NIR + R band highlights localized
anomalous areas, suggesting potential water stress or disease occurrences. During the
flowering stage, regions with high brightness concentration in the G + R + RE band corre-
spond to fields with good canopy health. These spatial distribution characteristics support
precision agriculture management decisions, including precision fertilization, differential
irrigation, and early pest and disease monitoring. Furthermore, combining UAV remote
sensing with spatial analysis methods (e.g., NDVI-based zonal management or clustering
analysis) enables hierarchical management within fields, improving resource utilization
efficiency [46,52]. Additionally, with the integration of remote-sensing technology and
geographic information systems (GIS), spatiotemporal dynamic models can be established
to quantify the variation process of growth spatial distribution, providing data support for
real-time diagnosis of crop health and production planning [44].

(3) Monitoring over Time and Modeling the Growth Cycle.

The high-frequency monitoring capability of UAV remote sensing allows the entire
growth cycle of wheat, from tillering to maturity, to be continuously recorded and analyzed.
In the temporal dimension, spectral data reflect the key processes of plant growth [9,29,52].
For example, from the Tillering to Jointing stages, the reflectance of the G band increases
significantly, reflecting an increase in chlorophyll content, while the entropy of the NIR
band peaks during the jointing stage, revealing the turning point of canopy complexity.
Extracting spectral characteristics over time can identify growth inflection points and
critical stages of wheat. Further temporal modeling, such as dynamic NDVI curve fitting
or biomass modeling based on remote-sensing features, provides a basis for predicting
growth trends and yield estimation. Temporal monitoring can also identify abnormal
growth phenomena, such as localized spectral anomalies during the flowering stage, which
may indicate early signals of disease or stress. This dynamic monitoring capability in the
temporal dimension advances agricultural monitoring from static description to dynamic
modeling, laying a foundation for scientific management throughout the agricultural
production cycle [39].

(4) Technical Limitations and Future Development Directions

Although UAV remote sensing demonstrates significant advantages in extracting
wheat growth stage information, it still has certain limitations. In terms of spatial resolu-
tion, although UAVs can provide high-resolution imagery, field heterogeneity may cause
localized data biases [41,53]. In the temporal dimension, weather conditions (e.g., cloudy or
rainy days) may affect multi-temporal data acquisition, resulting in discontinuity in tempo-
ral data. Additionally, the diversity of band selection and the complexity of data processing
pose higher demands on algorithm design and computational resources. To address these
issues, future development directions should include: integrating ground-based, UAV, and
satellite remote-sensing data to build multi-scale fusion models for comprehensive spa-
tiotemporal monitoring; introducing deep-learning technologies to enhance the accuracy of
growth stage identification through feature extraction from hyperspectral data; optimizing
data acquisition processes to improve the automation and intelligence of remote-sensing



Agriculture 2025, 15, 326 26 of 30

monitoring; and developing open agricultural remote-sensing analysis platforms to pro-
mote technology dissemination and application in precision agriculture [20,54]. Through
these advancements, UAV remote sensing will further drive the digital transformation of
agricultural production, enabling efficient monitoring and management of crop growth.

In recent years, drones have become increasingly important in precision agriculture,
offering a cost-effective and efficient solution for high-resolution crop monitoring. UAV
technology has revolutionized how we gather spatial and temporal data on crops, allowing
for detailed analysis of canopy health, growth dynamics, and environmental stressors.
Recent reviews have highlighted the advantages of drones, including their flexibility, low
operational costs, and ability to cover large areas with high spatial resolution. As a result,
drones are increasingly integrated into crop management systems, helping farmers make
more informed decisions regarding irrigation, fertilization, and pest control.

However, despite their advantages, the use of UAVs in agriculture is not without
limitations. Key challenges include flight operating conditions such as weather, altitude,
and flight time, which can affect the quality and consistency of the data collected. For
example, adverse weather conditions like strong winds or precipitation can hinder flight
stability, leading to incomplete or inaccurate data. Similarly, the operational altitude of
UAVs can limit their coverage area, while the flight time is often constrained by battery life,
requiring careful planning for large-scale field surveys. These factors must be considered
when employing drones in precision agriculture to ensure optimal data collection and
analysis. One limitation of this study is that the data were collected over a single year
(March–June 2024). While the results provide valuable insights into wheat growth and
the effectiveness of UAV remote sensing for precision agriculture, the findings may not
fully account for interannual variability due to factors such as climate, soil conditions,
and management practices. To improve the robustness and generalizability of the results,
future studies should consider the use of multiyear data to assess the consistency of the
observed trends and further validate the applicability of these methods across different
environmental conditions.

The study was conducted in a single region with wheat as the focus crop, which may
limit the broader applicability of the results to other regions or crops. While the findings
provide valuable insights into the dynamic spectral characteristics of wheat across different
growth stages, future research should expand to include diverse geographic regions and
a variety of crop types. This would allow for a more comprehensive understanding
of the temporal and spatial dynamics of canopy spectral features, thus improving the
generalizability of UAV-based multispectral remote sensing techniques. By extending the
scope of the study, the effectiveness of the monitoring framework could be evaluated across
different environmental conditions and crop systems, offering valuable information for
precision agriculture on a global scale.

5. Conclusions
This study, conducted at the Wheat Experimental Base of the Hebei Academy of Agri-

culture and Forestry Sciences, systematically analyzed the canopy spectral characteristics
of wheat across seven critical growth stages using UAV-based multispectral remote sensing
technology. By employing four spectral bands—G, R, RE, and NIR—and their combinations,
this study mapped and quantified wheat growth states and health features during different
growth stages [6,43]. The results revealed that the key spectral bands are highly sensitive to
dynamic changes in the wheat canopy at various stages of wheat growth. For example, the
G band highlighted low canopy coverage during the tillering stage, the NIR band showed
significant increases in canopy structural complexity during the jointing stage, and the
G + NIR combination reflected enhanced canopy density and concentrated spectral energy
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during the booting stage [7,34]. Through band mapping, temporal analysis, and spatial
distribution modeling, this study comprehensively demonstrated the spectral reflection
dynamics and health conditions of wheat during its growth process. The findings indicate
that multi-band combinations effectively enhance monitoring accuracy and information
extraction efficiency, providing reliable technical means for full-cycle monitoring of wheat
growth. Temporal monitoring identified critical growth inflection points and dynamic fea-
tures, while spatial modeling offered targeted zonal decision-making support for precision
agricultural management [12].

This research provides a scientific basis for precision agricultural management of
wheat, achieving high-accuracy monitoring across the entire growth cycle and offering data
support for disease warning, resource optimization, and yield improvement in agricultural
production. Future efforts should focus on integrating ground-based observations and
hyperspectral technology to build multi-source remote-sensing data-fusion models, further
promoting the application and development of agricultural remote-sensing technology on
a broader scale.
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Abbreviations

NDVI Normalized Difference Vegetation Index
CI Chlorophyll Index
G Green Band
NIR Near Infrared Band
R Red Band
RE Red Edge Band
VA Variance
SD Standard Deviation
EN Entropy
SK Skewness
KU Kurtosis
BR Brightness Range
RM Root Mean Square
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BC Brightness Concentration
CO Contrast
TV Texture Variance
FE Frequency Entropy
MA Mean Absolute Deviation
EG Energy
MB Median Brightness
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