Agroclimatic Indicator Analysis Under Climate Change Conditions to Predict the Climatic Suitability for Wheat Production in the Upper Blue Nile Basin, Ethiopia
Abstract
:1. Introduction
2. Methodology
2.1. Data
2.2. GAEZ and Agroclimatic Indicators
2.2.1. GAEZ
2.2.2. Thermal Regime
2.2.3. Annual Moisture Availability Index (P/PET)
2.2.4. Length of the Growing Season
2.2.5. Suitability Class Index (SI)
Acronym | Suitability Description |
---|---|
VS | Very suitable land: prime land offering the best condition for crop production |
S | Suitable land: good land for crop production |
MS | Moderately suitable land: Moderate land with substantial climate and/or soil/terrain conditions for crop production |
mS | Marginally suitable land: less suitable for the production of crops |
vmS | Very marginally suitable land: very little (low) suitable land for crop production |
NS | Not suitable land: not suitable for the production of crops |
3. Results
3.1. Climate Change over the UBNB
3.2. Impacts on Moisture and Thermal Conditions
3.3. Impacts on Length of Growing Season
3.4. Impacts on the Land Suitability of Wheat
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gowda, P.; Steiner, J.L.; Olson, C.; Boggess, M.; Farrigan, T.; Grusak, M.A. Agriculture and Rural Communities. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; pp. 391–437. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Webber, H.; Asseng, S.; Boote, K.; Durand, J.L.; Ewert, F.; Martre, P.; MacCarthy, D.S. Climate change impacts on crop yields. Nat. Rev. Earth Environ. 2023, 4, 831–846. [Google Scholar] [CrossRef]
- Fuglie, K. Climate change upsets agriculture. Nat. Clim. Chang. 2021, 11, 294–295. [Google Scholar] [CrossRef]
- Ortiz-Bobea, A.; Ault, T.R.; Carrillo, C.M.; Chambers, R.G.; Lobell, D.B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Chang. 2021, 11, 306–312. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Singh, S.K.; Jalota, S.K.; Ray, S.S. Agro-Climatic Sensitivity Analysis for Sustainable Crop Diversification. Environ. Monit. Assess. 2023, 195, 10789. [Google Scholar]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, C.; Lennard, C.; Padgham, J.; Urquhart, P.; Descheemaeker, K.K.E. Africa. In Climate Change 2022: Impacts, Adaptation, and Vulnerability; IPCC Sixth Assessment Report (AR6); Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2022; Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 23 May 2024).
- Sloat, L.L.; Davis, S.J.; Gerber, J.S.; Moore, F.C.; Ray, D.K.; West, P.C.; Mueller, N.D. Climate adaptation by crop migration, Climate adaptation by crop migration. Nat. Commun. 2020, 11, 1243. [Google Scholar] [CrossRef]
- Zhao, W.; Yu, X.; Jiao, C.; Xu, C.; Liu, Y.; Wu, G. Increased association between climate change and vegetation index variation promotes the coupling of dominant factors and vegetation growth. Sci. Total Environ. 2021, 767, 144669. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, Y.H.; Zhu, Z.; Liu, Y.; Liu, Z.; Huang, M.; Janssens, I.A.; Piao, S. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Chang. Biol. 2016, 22, 3702–3711. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, Y.; Wu, W.; Zhou, Y.; Wang, X.; Huang, H.; Li, Z. Spatio-temporal variation of drought within the vegetation growing season in North Hemisphere. Water 2020, 12, 2146. [Google Scholar] [CrossRef]
- Hudson, A.S.; Smith, W.K.; Moore, D.J.P.; Valerie, T. Length of growing season is modulated by Northern Hemisphere jet stream variability. Int. J. Climatol. 2022, 42, 5644–5660. [Google Scholar] [CrossRef]
- Devonald, M.; Jones, N.; Gebru, A.I.; Yadete, W. Rethinking climate change through a gender and adolescent lens in Ethiopia. Clim. Dev. 2022, 16, 176–186. [Google Scholar] [CrossRef]
- BMZ, PIK, GIZ and KfW. (German Federal Ministry for Economic Cooperation and Development, Potsdam Institute for Climate Impact Research, Deustche Gesellschaft für Internationale Zusammenarbeit, and Kreditanstalt fu¨r Wiederaufbau). Climate Risk Profile: Ethiopia. 2020. Available online: https://www.adaptationcommunity.net/wp-content/uploads/2021/02/GIZ_Climate-risk-profile-Ethiopia_EN_final.pdf (accessed on 23 May 2024).
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Yasuda, H.; Fenta, A.A.; Dile, Y.T.; Bayabil, H.K.; Tilahun, S.A. Examining the past 120 years’ climate dynamics of Ethiopia. Theor. Appl. Climatol. 2023, 154, 535–566. [Google Scholar] [CrossRef]
- World Bank Group. Climate Risk Profile: Ethiopia. 2021. Available online: https://documents.worldbank.org/pt/publication/documents-reports/documentdetail/099432006152216345/p171116024fa790c50b4ae091dd929c683b (accessed on 23 May 2024).
- Cherinet, A.A.; Yan, D.; Wang, H.; Song, X.; Qin, T.; Kassa, M.T.; Girma, A.; Dorjsuren, B.; Gedefaw, M.; Wang, H.; et al. Climate trends of temperature, precipitation and river discharge in the Abbay River basin in Ethiopia. J. Water Resour. Prot. 2019, 11, 1292–1311. [Google Scholar] [CrossRef]
- Byrne, M.P.; O’Gorman, P.A. The intensification of precipitation extremes and its impact on agricultural soils. Nat. Rev. Earth Environ. 2022, 3, 115–122. [Google Scholar]
- CASA/USAID. Climate Change Risk Profile—Ethiopia. 2024. Available online: https://www.climatelinks.org/resources/climate-risk-profile-ethiopia (accessed on 23 May 2024).
- Daba, M.H.; You, G. Modeling the impact of climate change on streamflow responses in the Awash River Basin, Ethiopia. J. Water Clim. Chang. 2020, 11, 416–431. [Google Scholar]
- Gelete, G.; Gokcekus, H.; Gichamo, T. Impact of climate change on the hydrology of Blue Nile basin, Ethiopia: A review. J. Water Clim. Chang. 2020, 11, 1539–1550. [Google Scholar] [CrossRef]
- Samy, A.; Ibrahim, M.G.; Mahmod, W.E.; Fujii, M.; Eltawil, A.; Daoud, W. Statistical assessment of rainfall characteristics in Upper Blue Nile Basin over the period from 1953 to 2014. Water 2019, 11, 468. [Google Scholar] [CrossRef]
- Worku, G.; Teferi, E.; Bantider, A.; Dile, Y.T. Statistical bias correction of regional climate model simulations for climate change projection in the Jemma sub-basin, upper Blue Nile Basin of Ethiopia. Theor. Appl. Climatol. 2020, 139, 1569–1588. [Google Scholar] [CrossRef]
- Malede, D.A.; Agumassie, T.A.; Kosgei, J.R.; Andualem, T.G.; Diallo, I. Recent Approachesto Climate Change Impacts on Hydrological Extremes in the Upper Blue Nile Basin, Ethiopia. Earth Syst. Environ. 2022, 6, 669–679. [Google Scholar] [CrossRef]
- Fenta, M.M.; Alemayehu, M.; Mengistu, D. Climate variability in the Blue Nile Basin and its implications for water and agriculture. J. Hydrol. Reg. Stud. 2023, 45, 101341. [Google Scholar] [CrossRef]
- Abate, S.G.; Anteneh, M.B. Assessment of agricultural land suitability for cereal crops based on the analysis of soil physico-chemical characteristics. Environ. Syst. Res. 2024, 13, 6. [Google Scholar] [CrossRef]
- Akpoti, K.; Kabo-Bah, A.T.; Zwart, S.J. Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis. Agric. Syst. 2019, 173, 172–208. [Google Scholar] [CrossRef]
- Ozsahin, E.; Ozdes, M. Agricultural land suitability assessment for agricultural productivity based on GIS modeling and multi-criteria decision analysis: The case of Tekirdağ province. Environ. Monit. Assess. 2022, 194, 41. [Google Scholar] [CrossRef] [PubMed]
- Sys, C.; Van Ranst, E.; Debaveye, J. Land Evaluation: Principles in Land Evaluation and Crop Production Calculations; General Administration for Development Cooperation: Brussels, Belgium, 1991; Publ. No. 7. [Google Scholar]
- Fischer, G.; Nachtergaele, F.O.; van Velthuizen, H.T.; Chiozza, F.; Franceschini, G.; Henry, M.; Muchoney, D.; Tramberend, S. Global Agro-Ecological Zones v4—Model Documentation; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Brun, P.; Zimmermann, N.E.; Hari, C.; Loïc, P.; Karger, D.N. CHELSA-BIOCLIM+ A novel set of global climate-related predictors at kilometre-resolution. Earth Syst. Sci. Data 2022, 14, 5573–5603. [Google Scholar] [CrossRef]
- Berg, P.; Photiadou, C.; Simonsson, L.; Sjokvist, E.; Thuresson, J.; Mook, R. Temperature and Precipitation Climate Impact Indicators from 1970 to 2100 Derived from European Climate Projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS); Climate Data Store: Reading, UK, 2021. [Google Scholar] [CrossRef]
- Available online: http://apdrc.soest.hawaii.edu/index.php (accessed on 10 September 2024).
- Tian, Z.; Yang, X.; Sun, L.; Fischer, G.; Lianga, Z.; Pang, J. Agroclimatic conditions in China under climate change scenarios projected from regional climate models. Int. J. Climatol. 2014, 34, 2988–3000. [Google Scholar] [CrossRef]
- Gebremedhin, B.; Hoekstra, D.; Tegegne, A. Integrated rainwater management strategies in the Ethiopian Highlands. Agric. Water Manag. 2021, 249, 106755. [Google Scholar] [CrossRef]
- El Sabagh, A.; Islam, M.S.; Skalicky, M.; Ali Raza, M.; Singh, K.; Anwar Hossain, M.; Hossain, A.; Mahboob, W.; Iqbal, M.A.; Ratnasekera, D.; et al. Salinity stress in wheat (Triticum aestivum L.) in the changing climate: Adaptation and management strategies. Front. Agron. 2021, 3, 661932. [Google Scholar] [CrossRef]
- Mekonnen, D.F.; Duan, Z.; Rientjes, T.; Disse, M. Analysis of combined and isolated effects of land-use and land-cover changes and climate change on the Upper Blue Nile River Basin’s streamflow. Hydrol. Earth Syst. Sci. 2018, 22, 6187–6207. [Google Scholar] [CrossRef]
- Roth, V.; Liersch, S.; Koch, H.; Hattermann, F.F. Climate change impacts on the water resources of the Upper Blue Nile Basin. J. Water Clim. Chang. 2018, 9, 156–171. [Google Scholar]
- Mengistu, D.T.; Anagnostou, E.N.; Nikolopoulos, E.I. Assessing the impact of climate change on water resources in the Upper Blue Nile River Basin using a coupled hydrologic and climate model. J. Hydrol. 2021, 603, 126893. [Google Scholar] [CrossRef]
- Tariku, T.B.; Gan, T.Y.; Li, J.; Qin, X. Impact of climate change on hydrology and hydrologic extremes of Upper Blue Nile River Basin. J. Water Resour. Plan. Manag. 2021, 147, 04020104. [Google Scholar] [CrossRef]
- Takele, G.S.; Gebrie, G.S.; Gebremariam, A.G.; Engida, A.N. Future climate change and impacts on water resources in the Upper Blue Nile basin. J. Water Clim. Chang. 2022, 13, 908. [Google Scholar] [CrossRef]
- Zeleke, T.T.; Damtie, B. Temporal and Spatial Climate Variability and Trends Over Abay (Blue Nile) River Basin. In Social and Ecological System Dynamics, AESS Interdisciplinary Environmental Studies and Sciences Series; Stave, K., Goshu, G., Aynalem, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 59–75. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, R.P.; Kumar, M. Addressing wheat yield stagnation through heat-resistant genotypes under climate extremes. Field Crops Res. 2023, 297, 108832. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. The role of moisture indices in wheat productivity under climate change scenarios. Agric. Water Manag. 2022, 271, 107794. [Google Scholar]
- Lal, R.; Bouma, J.; Fleskens, L. Soil erosion under extreme precipitation: Implications for land degradation and crop productivity. Soil Tillage Res. 2023, 230, 105180. [Google Scholar]
- Hoffmann, M.P.; Hurni, H.; Herweg, K. Erosion control strategies in Sub-Saharan Africa: Lessons for climate resilience. Land Degrad. Dev. 2023, 34, 481–496. [Google Scholar] [CrossRef]
- Taye, M.; Sahlu, D.; Zaitchik, B.F.; Neka, M. Evaluation of satellite rainfall estimates for meteorological drought analysis over the upper Blue Nile basin, Ethiopia. Geosciences 2020, 10, 352. [Google Scholar] [CrossRef]
- Conway, D. The Climate and Hydrology of the Upper Blue Nile River. Geogr. J. 2000, 166, 49–62. Available online: http://www.jstor.org/stable/823053 (accessed on 23 May 2024). [CrossRef]
- Tesfaye, K.; Seid, J.; Getnet, M.; Mamo, G. Agriculture under a changing climate in Ethiopia: Challenges and opportunities for research. Ethiop. J. Agric. Res. 2016, 67–86. [Google Scholar]
- Simane, B.; Zaitchik, B.; Foltz, J.D. Agroecosystem Specific Climate Vulnerability Analysis: Application of the Livelihood Vulnerability Index to a Tropical Highland Region. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 39–65. [Google Scholar] [CrossRef]
- Tessema, I.; Simane, B. Vulnerability analysis of smallholder farmers to climate variability and change: An agro–ecological system–based approach in the Fincha’a sub–basin of the upper Blue Nile Basin of Ethiopia. Ecol. Process. 2019, 8, 5. [Google Scholar] [CrossRef]
- Gashaw, T.; Wubaye, G.; Worqlul, A.; Dile, Y.; Mohammed, J.; Birhan, D.; Tefera, G.; van Oel, P.; Haileslassie, A.; Chukalla, A.; et al. Local and regional climate trends and variabilities in Ethiopia: Implications for climate change adaptations. Environ. Chall. 2023, 13, 100794. [Google Scholar] [CrossRef]
- Samy, A.; Anwar, A.S.; Zakey, S.M.; Robaa, S. The influence of two land-surface hydrology schemes on the regional climate of Africa using the RegCM4 model. Theor. Appl. Climatol. 2019, 136, 1535–1548. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change (2023): Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- Bryan, E.; Ringler, C.; Okoba, B.; Roncoli, C.; Silvestri, S.; Herrero, M. Adapting agriculture to climate change in Kenya and Ethiopia: Household strategies and determinants. J. Environ. Manag. 2021, 279, 111663. [Google Scholar] [CrossRef]
- Van Ittersum, M.K.; Van Bussel, L.G.; Wolf, J.; Grassini, P.; Van Wart, J.; Guilpart, N.; Claessens, L.; De Groot, H.; Wiebe, K.; Mason-D’Croz, D.; et al. Can sub-Saharan Africa feed itself? Proc. Natl. Acad. Sci. USA 2022, 119, e2202072119. [Google Scholar] [CrossRef]
- Land Evaluation, Toward a Revised Framework; Land and Water Discussion Paper 6; Food and Agriculture Organization: Rome, Italy, 2007.
- Mbow, C.; Rosenzweig, C.; Tubiello, F.; Benton, T.; Herrero, M.; Pradhan, P.; Barioni, L.; Krishnapillai, M.; Liwenga, E.; Rivera-Ferre, M.; et al. IPCC Special Report on Land and Climate Change. Chapter 5: Food Security; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Pan, G.; Pan, J. Research in crop land suitability analysis based on GIS. Comput. Technol. Agric. 2012, 365, 314–325. [Google Scholar]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A. Big GIS analytics framework for agriculture supply chains: A literature review identifying the current trends and future perspectives. Comput. Electron. Agric. 2018, 155, 103–120. [Google Scholar] [CrossRef]
- Safdar, M.; Shahid, M.A.; Yang, C.; Rasul, F.; Tahir, M.; Raza, A.; Sabi, R.M. Climate Smart Agriculture and Resilience. In Emerging Technologies and Marketing Strategies for Sustainable Agriculture; Garwi, J., Masengu, R., Chiwaridzo, O., Eds.; IGI Global: Hershey, PA, USA, 2024; pp. 28–52. [Google Scholar] [CrossRef]
- Bhanuwanti, A.D.; Khursheed, S.; Lal, A.A.; Saad, R.; Umesh, T.; Himansha, K. Aroosa Climate Smart Agriculture: Innovating Sustainable Practices for a Changing Climate. J. Sci. Res. Rep. 2024, 30, 568–576. [Google Scholar] [CrossRef]
- Ouyang, H.; Tang, X.; Zhang, R.; Baklanov, A.; Brasseur, G.; Kumar, R.; Han, Q.; Luo, Y. Resilience Building and Collaborative Governance for Climate Change Adaptation in Response to a New State of More Frequent and Intense Extreme Weather Events. Int. J. Disaster Risk Sci. 2023, 14, 162–169. [Google Scholar] [CrossRef]
- Cooper, P.J.; Dimes, J.; Rao, K.P.C.; Shapiro, B.; Shiferaw, B.; Twomlow, S. Coping better with current climatic variability in the rainfed farming systems of sub-Saharan Africa. Agric. Water Manag. 2020, 97, 24–35. [Google Scholar] [CrossRef]
- Asfew, M.; Bedemo, A. Impact of Climate Change on Cereal Crops Production in Ethiopia. Adv. Agric. 2022, 2022, 2208694. [Google Scholar] [CrossRef]
Data Source | Description | Time Period | References |
---|---|---|---|
CHELSA | High-resolution climatologies for Earth’s land surface areas. | Baseline: 1981–2010 Future: 2011–2041, 2041–2070, 2071–2100 from the below GCMs | [31] https://crudata.uea.ac.uk/cru/data/hrg/ (Access date: 15 July 2024) |
C3S Climate Data Store (CDS) | Provided climate data for historical baseline and future periods. | Baseline: 1981–2010 Future: 2011–2041, 2041–2070, 2071–2100 | [32] https://cds.climate.copernicus.eu/ (Access date: 15 July 2024) |
CRU TS 4.04 | Climatic Research Unit Time Series database with high temporal resolution. | Baseline: 1981–2010 | [33] https://crudata.uea.ac.uk/cru/data/hrg/ (Access date: 15 July 2024) |
GFDL-ESM4 | NOAA Geophysical Fluid Dynamics Laboratory Earth System Model 4. | Future: 2011–2041, 2041–2070, 2071–2100 | https://www.gfdl.noaa.gov/earth-system-esm4/ (Access date: 15 July 2024) |
UKESM1-0-LL | Met Office Hadley Centre Earth System Model 1. | Future: 2011–2041, 2041–2070, 2071–2100 | https://ukesm.ac.uk/ (Access date: 15 July 2024) |
MPI-ESM1.2-HR | Max Planck Institute for Meteorology Earth System Model. | Future: 2011–2041, 2041–2070, 2071–2100 | https://www.mpimet.mpg.de/en/science/models/mpi-esm (Access date: 15 July 2024) |
IPSL-CM6A-LR | Institut Pierre-Simon Laplace Climate Modeling Centre Earth System Model. | Future: 2011–2041, 2041–2070, 2071–2100 | http://www.ipsl.fr/en/ (Access date: 15 July 2024) |
MRI-ESM2.0 | Meteorological Research Institute Earth System Model Version 2.0. | Future: 2011–2041, 2041–2070, 2071–2100 | https://www.jma.go.jp/jma/en/CPC/ESM/ESM.html (Access date: 15 July 2024) |
Historical | ssp370 | ssp585 | |||||||
---|---|---|---|---|---|---|---|---|---|
2020’s | 2050’s | 2080’s | 2020’s | 2050’s | 2080’s | ||||
No | Suitability Class | Index Range | Area (%) sq. km | Area (%) | Area (%) | Area (%) | Area (%) | Area (%) | Area (%) |
1 | Very high | >85 | 16,214.39 (9.27) | 17,961.04 (10.27) | 20,776.54 (11.88) | 22,363.02 (12.79) | 18,240.61 (10.43) | 16,810.71 (9.61) | 20,008.59 (11.44) |
2 | High | 70 < SI < 85 | 42,352.36 (24.21) | 35,466.11 (20.28) | 32,802.31 (18.75) | 31,579.74 (18.05) | 38,510.04 (22.02) | 32,768.68 (18.73) | 23,286.19 (13.31) |
3 | Good | 55 < SI < 70 | 39,811.33 (22.76) | 42,416.98 (24.25) | 39,377.18 (22.51) | 37,503.36 (21.44) | 39,124.38 (22.37) | 34,044.71 (19.46) | 29,764.52 (17.02) |
4 | Medium | 40 < SI < 55 | 17,690.37 (10.11) | 18,411.13 (10.53) | 19,391.01 (11.09) | 19,933.63 (11.40) | 19,128.46 (10.94) | 20,352.43 (11.64) | 18,358.97 (10.50) |
5 | Moderate | 25 < SI < 40 | 22,057.93 (12.61) | 23,485.63 (13.43) | 23,257.17 (13.30) | 23,886.92 (13.66) | 21,377.65 (12.22) | 23,877.37 (13.65) | 23,134.38 (13.23) |
6 | Marginal | 10 < SI < 25 | 3586.83 (2.05) | 3593.85 (2.05) | 4283.22 (2.45) | 3862.69 (2.21) | 3760.29 (2.15) | 6174.85 (3.53) | 9568.86 (5.47) |
7 | Not suitable | <10 | 1307.03 (0.75) | 1685.03 (0.96) | 3132.45 (1.79) | 3890.74 (2.22) | 2878.63 (1.65) | 8991.41 (5.14) | 18,898.33 (10.80) |
8 | No data | 29,213.47 (16.7) | 29,213.47 (16.7) | 29,213.47 (16.7) | 29,213.47 (16.7) | 29,213.47 (16.7) | 29,213.47 (16.7) | 29,213.47 (16.7) | |
9 | Water | 2676.99 (1.53) | 2676.99 (1.53) | 2676.99 (1.53) | 2676.99 (1.53) | 2676.99 (1.53) | 2676.99 (1.53) | 2676.99 (1.53) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demissew, W.L.; Zeleke, T.T.; Ture, K.; Mengistu, D.K.; Fufa, M.A. Agroclimatic Indicator Analysis Under Climate Change Conditions to Predict the Climatic Suitability for Wheat Production in the Upper Blue Nile Basin, Ethiopia. Agriculture 2025, 15, 525. https://doi.org/10.3390/agriculture15050525
Demissew WL, Zeleke TT, Ture K, Mengistu DK, Fufa MA. Agroclimatic Indicator Analysis Under Climate Change Conditions to Predict the Climatic Suitability for Wheat Production in the Upper Blue Nile Basin, Ethiopia. Agriculture. 2025; 15(5):525. https://doi.org/10.3390/agriculture15050525
Chicago/Turabian StyleDemissew, Wondimeneh Leul, Tadesse Terefe Zeleke, Kassahun Ture, Dejene K. Mengistu, and Meaza Abera Fufa. 2025. "Agroclimatic Indicator Analysis Under Climate Change Conditions to Predict the Climatic Suitability for Wheat Production in the Upper Blue Nile Basin, Ethiopia" Agriculture 15, no. 5: 525. https://doi.org/10.3390/agriculture15050525
APA StyleDemissew, W. L., Zeleke, T. T., Ture, K., Mengistu, D. K., & Fufa, M. A. (2025). Agroclimatic Indicator Analysis Under Climate Change Conditions to Predict the Climatic Suitability for Wheat Production in the Upper Blue Nile Basin, Ethiopia. Agriculture, 15(5), 525. https://doi.org/10.3390/agriculture15050525