Multidimensional Perspective of Sustainable Agroecosystems and the Impact on Crop Production: A Review
Abstract
:1. Introduction
2. Methodology
3. Crop Diversification
3.1. Cover Crops
3.2. Intercropping
3.3. Crop Rotation
3.4. Agroforestry
4. Sustainable Soil Management
5. Integrated Pest and Management
6. Sustainable Water Resource Management
7. Precision Agriculture in Agroecosystem Management
8. Comparative Aspects of Sustainable Agroecosystems
8.1. Cover Cropping
- Cost savings: natural pest control and improved soil health through water and nutrient retention, reducing the need for chemical inputs.
- Risk mitigation: diversifying crops helps to mitigate climate change and reduce crop losses.
8.2. Intercropping
- Higher yields: the combined yield of intercropped fields is often higher than that of monoculture fields.
- Risk mitigation: diversifying crops reduces the risk of total crop failure and stabilises income.
- Cost savings: natural pest control and improved soil health reduce the need for chemical inputs.
8.3. Crop Rotation
- Improved soil health: rotating crops enhances soil fertility and structure, leading to better yields.
- Reduced input costs: lower reliance on chemical fertilisers and pesticides due to improved soil and pest management.
- Increased resilience: crop rotation helps manage environmental stresses and reduces the risk of pest and disease outbreaks.
8.4. Agroforestry
- Increased productivity: trees can enhance soil fertility and water retention, leading to higher crop yields.
- Diversified income: farmers can earn additional income from timber, fruits, nuts, and other tree products.
- Reduced costs: agroforestry can reduce the need for chemical fertilisers and pesticides, lowering input costs.
8.5. Comparative Analysis
- Sustainability: agroforestry, intercropping, and crop rotation are more sustainable and environmentally friendly compared to conventional methods, which often lead to soil degradation and biodiversity loss.
- Long-term profitability: while conventional farming may offer higher short-term yields, sustainable practices like agroforestry, intercropping, and crop rotation can provide long-term economic benefits through improved soil health and reduced input costs.
- Risk management: diversified farming systems are generally more resilient to environmental and market fluctuations, reducing the risk of economic losses.
9. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Semeraro, T.; Scarano, A.; Leggieri, A.; Calisi, A.; De Caroli, M. Impact of Climate Change on Agroecosystems and Potential Adaptation Strategies. Land 2023, 12, 1117. [Google Scholar] [CrossRef]
- Kumawat, A.; Yadav, D.; Srivastava, P.; Babu, S.; Kumar, D.; Singh, D.; Vishwakarma, D.K.; Sharma, V.K.; Madhu, M. Restoration of agroecosystems with conservation agriculture for food security to achieve sustainable development goals. Land Degrad. Dev. 2023, 34, 3079–3097. [Google Scholar] [CrossRef]
- Sudarshan, S.; Niveditha, M.P.; Alekhya Gunturi, S.; Chethan Babu, R.T.; KB, C.K. Effects of intensive agricultural management practices on soil biodiversity and implications for ecosystem functioning: A review. Int. J. Res. Agron. 2024, 7, 166–169. [Google Scholar]
- FAO. Agriculture and Climate Change: Challenges and Opportunities at the Global and Local Level—Collaboration on Climate-Smart Agriculture; FAO, Food and Agriculture Organization: Rome, Italy, 2019; p. 52. [Google Scholar]
- Soria-Lopez, A.; Garcia-Perez, P.; Carpena, M.; Garcia-Oliveira, P.; Otero, P.; Fraga Corral, M.; Cao, H.; Prieto, M.A.; Simal-Gandara, J. Challenges for future food systems: From the Green Revolution to food supply chains with a special focus on sustainability. Food Front. 2023, 4, 9–20. [Google Scholar] [CrossRef]
- Vishnoi, S.; Goel, R.K. Climate smart agriculture for sustainable productivity and healthy landscapes. Environ. Sci. Policy 2024, 151, 103600. [Google Scholar] [CrossRef]
- Volken, S.; Bottazzi, P. Sustainable farm work in agroecology: How do systemic factors matter? Agric. Hum. Values 2024, 41, 1037–1052. [Google Scholar] [CrossRef]
- Purakayastha, T.J.; Bhaduri, D.; Kumar, D.; Yadav, R.; Trivedi, A. Soil and Plant Nutrition. In Trajectory of 75 Years of Indian Agriculture After Independence; Ghosh, P.K., Das, A., Saxena, R., Banerjee, K., Kar, G., Vijay, D., Eds.; Springer: Singapore, 2023. [Google Scholar]
- Bathaei, A.; Štreimikienė, D. A Systematic Review of Agricultural Sustainability Indicators. Agriculture 2023, 13, 241. [Google Scholar] [CrossRef]
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What is sustainable agriculture? A systematic review. Sustainability 2015, 7, 7833–7865. [Google Scholar] [CrossRef]
- Baldwin-Kordick, R.; De, M.; Lopez, M.D.; Liebman, M.; Lauter, N.; Marino, J.; McDaniel, M.D. Comprehensive impacts of diversified cropping on soil health and sustainability. Agroecol. Sust. Food Syst. 2022, 46, 331–363. [Google Scholar] [CrossRef]
- Wezel, A.; Herren, B.G.; Kerr, R.B.; Barrios, E.; Gonçalves, A.L.R.; Sinclair, F. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron. Sustain. Dev. 2020, 40, 4013. [Google Scholar]
- Duguma, A.L.; Bai, X. Contribution of Internet of Things (IoT) in improving agricultural systems. Int. J. Environ. Sci. Technol. 2024, 21, 2195–2208. [Google Scholar] [CrossRef]
- Chaurasia, J.; Maheshwatri, S.; Murana, S.; Barton, J. The Forrester Wave™: Enterprise Data Catalogs, Q3. Forrester. Available online: https://atlan.com/forrester-wave-enterprise-data-catalogs-2024/ (accessed on 20 February 2025).
- Pierre, J.F.; Latournerie-Moreno, L.; Garruña, R.; Jacobsen, K.L.; Laboski, C.A.M.; Us-Santamaría, R.; Ruiz-Sánchez, E. Effect of Maize–Legume Intercropping on Maize Physio-Agronomic Parameters and Beneficial Insect Abundance. Sustainability 2022, 14, 12385. [Google Scholar] [CrossRef]
- Hassan, T.; Rashid, G. Biofertilisers and Biopesticides: Approaches Towards Sustainable Development. In Microbiomes for the Management of Agricultural Sustainability; Dar, G.H., Bhat, R.A., Mehmood, M.A., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Mutyambai, D.M.; Mutua, J.M.; Kessler, A.; Jalloh, A.A.; Njiru, B.N.; Chidawanyika, F.; Dubois, T.; Khan, Z.; Mohamed, S.; Niassy, S.; et al. Push-pull cropping system soil legacy alter maize metabolism and fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance through tritrophic interactions. Plant Soil 2024, 498, 685–697. [Google Scholar] [CrossRef]
- Lankford, B.; Pringle, C.; McCosh, J.; Shabalala, M.; Hess, T.; Knox, J.W. Irrigation area, efficiency and water storage mediate the drought resilience of irrigated agriculture in a semi-arid catchment. Sci. Total Environ. 2023, 859, 16026. [Google Scholar]
- Kganyago, M.; Adjorlolo, C.; Mhangara, P.; Tsoeleng, L. Optical remote sensing of crop biophysical and biochemical parameters: An overview of advances in sensor technologies and machine learning algorithms for precision agriculture. Comput. Electron. Agric. 2024, 218, 108730. [Google Scholar] [CrossRef]
- Çakmakçı, R.; Haliloglu, K.; Türkoğlu, A.; Özkan, G.; Kutlu, M.; Varmazyari, A.; Bocianowski, J. Effect of different Plant Growth-Promoting Rhizobacteria on biological soil properties, growth, yield and quality of oregano (Origanum onites L.). Agronomy 2023, 13, 2511.16. [Google Scholar] [CrossRef]
- Manning, P.; Loos, J.; Barnes, A.D.; Batáry, P.; Bianchi, F.J.; Buchmann, N.; Tscharntke, T. Transferring biodiversity-ecosystem function research to the management of ‘real-world’ ecosystems. Adv. Ecol. Res. 2019, 61, 323–356. [Google Scholar]
- Yang, H.; Zhang, W.; Li, L. Intercropping: Feed more people and build more sustainable agroecosystems. Front. Agric. Sci. Eng. 2021, 8, 373–386.18. [Google Scholar]
- Hernández-Ochoa, I.M.; Gaiser, T.; Kersebaum, K.-C.; Webber, H.; Seidel, S.J.; Grahmann, K.; Ewert, F. Model-based design of crop diversification through new field arrangements in spatially heterogeneous landscapes. A review. Agron. Sustain. Dev. 2022, 42, 74. [Google Scholar] [CrossRef]
- Yu, R.; Yang, H.; Xing, X.; Zhang, W.; Lambers, H. Belowground processes and sustainability in agroecosystems with intercropping. Plant Soil. 2022, 476, 263–288.20. [Google Scholar] [CrossRef]
- Koudahe, K.; Allen, S.C.; Djaman, K. Critical review of the impact of cover crops on soil properties. Int. Soil Water Conserv. Res. 2022, 10, 343–354. [Google Scholar] [CrossRef]
- Han, G.; Niles, M.T. An adoption spectrum for sustainable agriculture practices: A new framework applied to cover crop adoption. Agric. Syst. 2023, 212, 103771. [Google Scholar] [CrossRef]
- Roesch-McNally, G.E.; Basche, A.D.; Arbuckle, J.G.; Tyndall, J.C.; Miguez, F.E.; Bowman, T.; Clay, R. The trouble with cover crops: Farmers’ experiences with overcoming barriers to adoption. Renew. Agric. Food Syst. 2018, 33, 322–333. [Google Scholar] [CrossRef]
- Van Eerd, L.L.; Chahal, I.; Peng, Y.; Awrey, J.C. Influence of cover crops at the four spheres: A review of ecosystem services, potential barriers, and future directions for North America. Sci. Total Environ. 2023, 858, 159990. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Cover crops and carbon sequestration: Lessons from US studies. Soil Sci. Soc. Am. J. 2022, 86, 501–519. [Google Scholar] [CrossRef]
- Ishtiaque, A. US farmers’ adaptations to climate change: A systematic review of adaptation-focused studies in the US agriculture context. Environ. Res. Clim. J. 2023, 2, 022001. [Google Scholar] [CrossRef]
- McClelland, S.C.; Paustian, K.; Schipanski, M.E. Management of cover crops in temperate climates influences soil organic carbon stocks: A meta-analysis. Ecol. Appl. 2021, 31, e02278. [Google Scholar] [CrossRef]
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. Cover Crops for Sustainable Cropping Systems: A Review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- Apio, A.T.; Thiam, D.R.; Dinar, A. Farming Under Drought: An Analysis of the Factors Influencing Farmers’ Multiple Adoption of Water Conservation Practices to Mitigate Farm-Level Water Scarcity. J. Agric. Appl. Econ. 2023, 55, 432–470. [Google Scholar] [CrossRef]
- Feng, W.; Ge, J.; Rodríguez, A.R.S.; Zhao, B.; Wang, X.; Peixoto, L.; Zang, H. Oat/soybean strip intercropping benefits crop yield and stability in semi-arid regions: A multi-site and multi-year assessment. Field Crops Res. 2024, 318, 109560. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Eskandari, H. A General Overview on Intercropping and Its Advantages in Sustainable Agriculture. J. Appl. Environ. Biol. Sci. 2011, 1, 482–486. [Google Scholar]
- Ma, Q.; Wu, Y.; Liu, Y.; Shen, Y.; Wang, Z. Interspecific interaction and productivity in a dryland wheat/alfalfa strip intercropping. Field Crops Res. 2024, 309, 109335. [Google Scholar] [CrossRef]
- Alarcón-Segura, V.; Grass, I.; Breustedt, G.; Rohlfs, M.; Tscharntke, T. Strip intercropping of wheat and oilseed rape enhances biodiversity and biological pest control in a conventionally managed farm scenario. J. Appl. Ecol. 2022, 59, 1513–1523. [Google Scholar] [CrossRef]
- Du, J.B.; Han, T.F.; Gai, J.Y.; Yong, T.W.; Xin, S.U.N.; Wanf, X.C.; Yang, W.Y. Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability. J. Integr. Agric. 2018, 17, 47–754. [Google Scholar] [CrossRef]
- Chi, B.; Liu, J.; Dai, J.; Li, Z.; Zhang, D.; Xu, S.; Dong, H. Alternate intercropping of cotton and peanut increases productivity by increasing canopy photosynthesis and nutrient uptake under the influence of rhizobacteria. Field Crops Res. 2023, 302, 109059. [Google Scholar] [CrossRef]
- Dong, L.; Lu, Y.; Lei, G.; Huang, J.; Zeng, W. Improve the Simulation of Radiation Interception and Distribution of the Strip-Intercropping System by Considering the Geometric Light Transmission. Agronomy 2024, 14, 227. [Google Scholar] [CrossRef]
- Lv, Q.; Chi, B.; He, N.; Zhang, D.; Dai, J.; Zhang, Y.; Dong, H. Cotton-based rotation, intercropping, and alternate intercropping increase yields by improving root–shoot relations. Agronomy 2023, 13, 413. [Google Scholar] [CrossRef]
- Baker, C.; Modi, A.T.; Nciizah, A.D. Weeding Frequency Effects on Growth and Yield of Dry Bean Intercropped with Sweet Sorghum and Cowpea under a Dryland Area. Sustainability 2021, 13, 12328. [Google Scholar] [CrossRef]
- Zou, X.X.; Shi, P.X.; Zhang, C.J.; Si, T.; Wang, Y.F.; Zhang, X.J.; Wang, M.L. Rotational strip intercropping of maize and peanuts has multiple benefits for agricultural production in the northern agropastoral ecotone region of China. Eur. J. Agron. 2021, 129, 126304. [Google Scholar] [CrossRef]
- Zou, X.; Liu, Y.; Huang, M.; Li, F.; Si, T.; Wang, Y.; Shi, P. Rotational strip intercropping of maize and peanut enhances productivity by improving crop photosynthetic production and optimizing soil nutrients and bacterial communities. Field Crops Res. 2023, 291, 108770. [Google Scholar] [CrossRef]
- Qian, X.; Zhou, J.; Luo, B.; Dai, H.; Hu, Y.; Ren, C.; Zeng, Z. Yield advantage and carbon footprint of oat/sunflower relay strip intercropping depending on nitrogen fertilization. Plant Soil 2022, 481, 581–594. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, J.; Ge, J.; Nie, J.; Zhao, J.; Xue, Z.; Zeng, Z. Intercropping improves soil ecosystem multifunctionality through enhanced available nutrients but depends on regional factors. Plant Soil 2022, 480, 71–84. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Wang, Y.; Zhang, H.; Zhu, Q.; Yan, B.; Luo, G. Intercropping regulation of soil phosphorus composition and microbially-driven dynamics facilitates maize phosphorus uptake and productivity improvement. Field Crops Res. 2022, 287, 108666. [Google Scholar] [CrossRef]
- Nasar, J.; Zhao, C.J.; Khan, R.; Gul, H.; Gitari, H.; Shao, Z.; Yang, J. Maize-soybean intercropping at optimal N fertilization increases the N uptake, N yield and N use efficiency of maize crop by regulating the N assimilatory enzymes. Front. Plant Sci. 2023, 13, 1077948. [Google Scholar] [CrossRef]
- Stone, T.F.; Alford, J.; Bečvářová, P.H.; Eisa, M.A.; El-Naggar, A.H.; Carpio Espinosa, M.J.; Frąc, M.; Álvaro-Fuentes, J.; García-Gil, J.C.; Krabbe, K.; et al. Food system strategies to increase grain legume-cereal intercropping in Europe. Agroecol. Sustain. Food Syst. 2025, 49, 518–542. [Google Scholar]
- Moreira, B.; Gonçalves, A.; Pinto, L.; Prieto Lage, M.Á.; Carocho, M.; Caleja, C.; Barros, L. Intercropping systems: An opportunity for environment conservation within nut production. Agriculture 2024, 14, 1149. [Google Scholar] [CrossRef]
- Maitra, S.; Jnana Bharati Palai, J.B.; Manasa, P.; Kumar, D.P. Potential of Intercropping System in Sustaining Crop Productivity. Int. J. Agric. Environ. Biotechnol. 2019, 12, 39–45. [Google Scholar] [CrossRef]
- Librán-Embid, F.; Olagoke, A.; Martin, E.A. Combining Milpa and Push-Pull Technology for sustainable food production in smallholder agriculture. A review. Agron. Sustain. Dev. 2023, 43, 4548. [Google Scholar] [CrossRef]
- Erdei, A.L.; David, A.B.; Savvidou, E.C.; Džemedžionaitė, V.; Chakravarthy, A.; Molnár, B.P.; Dekker, T. The push–pull intercrop Desmodium does not repel but intercepts and kills pests. Elife 2024, 13, e88695. [Google Scholar] [CrossRef]
- Lang, J.; Ramos, S.E.; Reichert, L.; Amboka, G.M.; Apel, C.; Chidawanyika, F.; Schuman, M.C. Push–Pull Intercropping Increases the Antiherbivore Benzoxazinoid Glycoside Content in Maize Leaf Tissue. ACS Agric. Sci. Technol. 2024, 4, 1074–1082. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, Y.; Wang, Q.; Liu, X.; Fu, Y.; Zhang, Y.; Chen, J. Push–pull plants in wheat intercropping system to manage Spodoptera frugiperda. J. Pest. Sci. 2023, 96, 1579–1593. [Google Scholar] [CrossRef]
- Maitra, S.; Sahoo, U.; Sairam, M.; Gitari, H.I.; Rezaei-Chiyaneh, E.; Battaglia, M.L.; Hossain, A. Cultivating sustainability: A comprehensive review on intercropping in a changing climate. Res. Crops 2023, 24, 702–715. [Google Scholar] [CrossRef]
- El-Mehy, A.A.; Shehata, M.A.; Mohamed, A.S.; Saleh, S.A.; Suliman, A.A. Relay intercropping of maize with common dry beans to rationalize nitrogen fertilizer. Front. Sustain. Food Syst. 2023, 7, 1052392. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Hamid, A.; Ahmad, T.; Siddiqui, M.H.; Hussain, I.; Ali, S.; Ahmad, Z. Forage sorghum-legumes intercropping effect on growth, yields, nutritional quality and economic returns. Bragantia 2018, 78, 82–95. [Google Scholar] [CrossRef]
- Wang, X.; Shen, L.; Liu, T.; Wei, W.; Zhang, S.; Tuerti, T.; Li, L.; Zhang, W. Juvenile plumcot tree can improve fruit quality and economic benefits by intercropping with alfalfa in semi-arid areas. Agric. Syst. 2023, 205, 103590. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, H.; Zhang, W.; Bezemer, T.M.; Liang, W.; Li, Q.; Li, L. Interspecific interactions between crops influence soil functional groups and networks in a maize/soybean intercropping system. Agric. Ecosyst. Environ. 2023, 355, 1085. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jørnsgaard, B.; Kinane, J.; Jensen, E.S. Grain legume–cereal intercropping: The practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew. Agric. Food Syst. 2008, 23, 3–12. [Google Scholar] [CrossRef]
- Raza, M.A.; Zhiqi, W.; Yasin, H.S.; Gul, H.; Qin, R.; Rehman, S.U.; Mahmood, A.; Iqbal, A.; Ahmed, Z.; Luo, S.; et al. Effect of crop combination on yield performance, nutrient uptake, and land use advantage of cereal/legume intercropping systems. Field Crops Res. 2023, 304, 109144. [Google Scholar] [CrossRef]
- Toker, P.; Canci, H.; Turhan, I.; Scherzinger, M.; Kordrostami, M.; Yol, E. The advantages of intercropping to improve productivity in food and forage production–A review. Plant Prod. Sci. 2024, 27, 155–169. [Google Scholar] [CrossRef]
- Mwebaze, P.; Macfadyen, S.; De Barro, P.; Bua, A.; Kalyebi, A.; Bayiyana, I.; Tairo, F.; John Colvin, J. Adoption Determinants of Improved Cassava Varieties and Intercropping among East and Central African Smallholder Farmers. J. Agric. Appl. Econ. Assoc. 2024, 3, 292–310. [Google Scholar] [CrossRef]
- Ha, T.M.; Manevska-Tasevska, G.; Jäck, O.; Weih, M.; Hansson, H. Farmers’ intention towards intercropping adoption: The role of socioeconomic and behavioural drivers. Int. J. Agric. Sustain. 2023, 21, 2270222. [Google Scholar] [CrossRef]
- Tanveer, A.; Ikram, R.M.; Ali, H.H. Crop Rotation: Principles and Practices. In Agronomic Crops; Hasanuzzaman, M., Ed.; Springer: Singapore, 2019. [Google Scholar]
- Smith, M.E.; Vico, G.; Costa, A.; Bowles, T.; Gaudin, A.C.M.; Hallin, S.; Watson, C.A.; Alarcòn, R.; Berti, A.; Blecharczyk, A.; et al. Increasing crop rotational diversity can enhance cereal yields. Commun. Earth Environ. 2023, 4, 89. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, Y.; Li, Y.; Chen, L.; Chen, Y.; Su, P. Changes in soil microbial biomass, diversity, and activity with crop rotation in cropping systems: A global synthesis. Appl. Soil. Ecol. 2023, 186, 104815. [Google Scholar] [CrossRef]
- De Bruyn, M.; Nel, A.; van Niekerk, J. The effect of crop rotation on agricultural sustainability in the North-Western Free State, South Africa. Afr. J. Agric. Res. 2024, 5, 32–45. [Google Scholar]
- Mwila, M.; Silva, J.V.; Kalala, K.; Simutowe, E.; Ngoma, H.; Nyagumbo, I.; Mataa, M.; Thierfelder, C. Do rotations and intercrops matter? Opportunities for intensification and diversification of maize-based cropping systems in Zambia. Field Crops Res. 2024, 314, 0378–4290. [Google Scholar] [CrossRef]
- Liang, C.A.; Du, G.; Faye, B. The influence of cultivated land transfer and Internet use on crop rotation. Front. Sustain. Food Syst. 2023, 7, 1172405. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, Z.; Chen, Y.; Wang, Y.; Feng, S. Crop rotation and diversification in China: Enhancing sustainable agriculture and resilience. Agriculture 2024, 14, 1465. [Google Scholar] [CrossRef]
- Yang, X.; Xiong, J.; Du, T.; Ju, X.; Gan, Y.; Li, S.; Butterbach-Bahl, K. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nat. Commun. 2024, 15, 198. [Google Scholar] [CrossRef]
- Ouda, S.; Zohry, A.E.-H.; Noreldin, T. Crop Rotation: An Approach to Secure Future Food; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Li, J.; Huang, L.; Zhang, J.; Coulter, J.A.; Li, L.; Gan, Y. Diversifying crop rotation improves system robustness. Agron. Sustain. Dev. 2019, 39, 38. [Google Scholar] [CrossRef]
- Shah, K.K.; Modi, B.; Pandey, H.P.; Subedi, A.; Aryal, G.; Pandey, M.; Shrestha, J. Diversified crop rotation: An approach for sustainable agriculture production. J. Adv. Agric. 2021, 1, 8924087. [Google Scholar] [CrossRef]
- Fahad, S.; Chavan, S.B.; Chichaghare, A.R.; Uthappa, A.R.; Kumar, M.; Kakade, V.; Poczai, P. Agroforestry systems for soil health improvement and maintenance. Sustainability 2022, 14, 4877. [Google Scholar] [CrossRef]
- Terasaki Hart, D.E.; Yeo, S.; Almaraz, M.; Beillouin, D.; Cardinael, R.; Garcia, E.; Cook-Patton, S.C. Priority science can accelerate agroforestry as a natural climate solution. Nat. Clim. Change 2023, 13, 1179–1190. [Google Scholar] [CrossRef]
- Kpoviwanou, M.R.J.H.; Sourou, B.N.K.; Ouinsavi, C.A.I.N. Challenges in adoption and wide use of agroforestry technologies in Africa and pathways for improvement: A systematic review. Trees For. People 2024, 7, 200642. [Google Scholar] [CrossRef]
- Bogale, G.A.; Bekele, S.E. Sustainability of agroforestry practices and their resilience to climate change adaptation and mitigation in Sub-Saharan Africa: A review. J. Landsc. Ecol. 2023, 42, 179–192. [Google Scholar] [CrossRef]
- Datta, P.; Behera, B. India’s approach to agroforestry as an effective strategy in the context of climate change: An evaluation of 28 state climate change action plans. Agric. Syst. 2024, 214, 103840. [Google Scholar] [CrossRef]
- Ghimire, M.; Khanal, A.; Bhatt, D.; Dahal, D.D.; Giri, S. Agroforestry systems in Nepal: Enhancing food security and rural livelihoods–a comprehensive review. Food Energy Secur. 2024, 13, e524. [Google Scholar] [CrossRef]
- Thiesmeier, A.; Zander, P. Can agroforestry compete? A scoping review of the economic performance of agroforestry practices in Europe and North America. For. Policy Econ. 2023, 150, 102939. [Google Scholar]
- Coulibalya, J.Y.; Chiputwaa, B.; Nakelseb, T.; Kundhland, G. Adoption of agroforestry and the impact on household food security among farmers in Malawi. Agric. Syst. 2017, 155, 52–56. [Google Scholar] [CrossRef]
- Ahmad, S.; Xu, H.; Ekanayake, E.M.B.P. Socioeconomic Determinants and Perceptions of Smallholder Farmers towards Agroforestry Adoption in Northern Irrigated Plain, Pakistan. Land 2023, 12, 813. [Google Scholar] [CrossRef]
- Purwaningsih, R.; Junun, S.; Setiawan, M. Trees and Crops Arrangement in the Agroforestry System Based on Slope Units to Control Landslide Reactivation on Volcanic Foot Slopes in Java, Indonesia. Land 2020, 9, 327. [Google Scholar] [CrossRef]
- Tega, M.; Bojago, E. Determinants of smallholder farmers’ adoption of agroforestry practices: Sodo Zuriya District, southern Ethiopia. Agrofor. Syst. 2024, 98, 1–20. [Google Scholar] [CrossRef]
- Stubblefield, K.; Smith, M.; Lovell, S.; Wilson, K.; Hendrickson, M.; Cai, Z. Factors affecting Missouri land managers’ willingness-to-adopt agroforestry practices. Agrofor. Syst. 2025, 99, 16. [Google Scholar] [CrossRef]
- Zaca, F.N.; Ngidi, M.S.C.; Chipfupa, U.; Ojo, T.O.; Managa, L.R. Factors influencing the uptake of agroforestry practices among rural households: Empirical Evidence from the KwaZulu-Natal Province, South Africa. Forests 2023, 2, 2056. [Google Scholar] [CrossRef]
- Chappa, L.R.; Nungula, E.Z.; Makwinja, Y.H.; Ranjan, S.; Sow, S.; Alnemari, A.M.; Gitari, H.I. Outlooks on major agroforestry systems. In Agroforestry; John and Wiley and Sons: Hoboken, NJ, USA, 2024; pp. 21–48. [Google Scholar]
- Daneel, M.; Engelbrecht, E.; Fourie, H.; Ahuja, P. The host status of Brassicaceae to Meloidogyne and their effects as cover and biofumigant crops on root-knot nematode populations associated with potato and tomato under South African field conditions. J. Crop Prot. 2018, 110, 198–206. [Google Scholar] [CrossRef]
- Garba, I.I.; Bell, L.W.; Chauhan, B.S.; Williams, A. Optimizing ecosystem function multifunctionality with cover crops for improved agronomic and environmental outcomes in dryland cropping systems. Agric. Syst. 2024, 214, 103821. [Google Scholar] [CrossRef]
- Torun, H. The use of cover crop for weed suppression and competition in limited-irrigation vineyards. Phytoparasitica 2024, 52, 10. [Google Scholar] [CrossRef]
- Smit, E.H.; Strauss, J.A.; Pieter, A.; Swanepoel, P.A. Utilisation of cover crops: Implications for conservation agriculture systems in a mediterranean climate region of South Africa. Plant Soil. 2021, 462, 207–218. [Google Scholar]
- Singh, A.; Ghimire, R.; Acharya, P. Soil profile carbon sequestration and nutrient responses varied with cover crops in irrigated forage rotations. Soil. Till Res. 2024, 238, 106020. [Google Scholar] [CrossRef]
- Carneiro, M.P.; de Souza, Z.M.; Farhate, C.V.V.; Cherubin, M.R.; Panosso, A.R. Effect of cover crops and tillage systems on soil quality and sugarcane yield. Soil. Use Manage 2024, 40, e13048. [Google Scholar] [CrossRef]
- Besen, M.R.; Ribeiro, R.H.; Bratti, F.; Locatelli, J.L.; Schmitt, D.E.; Piva, J.T. Cover cropping associated with no-tillage system promotes soil carbon sequestration and increases crop yield in Southern Brazil. Soil. Till Res. 2024, 242, 106162. [Google Scholar] [CrossRef]
- Raza, M.A.; Din, A.M.U.; Shah, G.A.; Zhiqi, W.; Feng, L.Y.; Gul, H.; Zhongming, M. Legume choice and planting configuration influence intercrop nutrient and yield gains through complementarity and selection effects in legume-based wheat intercropping systems. Agric. Syst. 2024, 220, 104081. [Google Scholar] [CrossRef]
- Buakong, W.; Suwanmanee, P.; Ruttajorn, K.; Asawatreratanakul, K.; Leake, E.J. Sustainable rubber production intercrop with Mixed fruits to improve physiological factors, productivity, and income. J. Sci. Tech. Rep. 2024, 276, e25494. [Google Scholar] [CrossRef]
- Kinyua, M.W.; Kihara, J.; Bekunda, M.; Bolo, P.; Mairura, F.S.; Fischer, G.; Mucheru-Muna, M.W. Agronomic and economic performance of legume-legume and cereal-legume intercropping systems in Northern Tanzania. Agric. Syst. 2023, 205, 103589. [Google Scholar] [CrossRef]
- Farah, A.J.; Adam, A.M.; Farah, A.A. Assessing the Impact of Intercropping on Maize and Cowpea Yields in Aynayaskax Village, Garowe District, Puntland, Somalia. EJTAS 2024, 2, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Huertas, J.; Parras-Alc’antara, L.; Gonz’alez-Rosado, M.; Lozano-García, B. Intercropping in rainfed Mediterranean olive groves contributes to improving soil quality and soil organic carbon storage. Agric. Ecosyst. Environ. 2024, 361, 108826. [Google Scholar] [CrossRef]
- Dzvene, A.R.; Gura, I.; Tesfuhuney, W.; Walker, S.; Ceronio, G. Effect of intercropping maize and sunn hemp at different times and stand densities on soil properties and crop yield under in-field rainwater harvesting (IRWH) tillage in semi-arid South Africa. Plant Soil 2024, 505, 363–379. [Google Scholar] [CrossRef]
- Sanfo, A.; Zampaligre’, N.; Kulo, A.E.; Some’, S.; Traore’, K.; Rios, E.F.; Dubeux, J.C.B.; Boote, K.J.; Adesogan, A. Performance of food–feed maize and cowpea cultivars under monoculture and intercropping systems: Grain yield, fodder biomass, and nutritive value. Front. Anim. Sci. 2023, 3, 998012. [Google Scholar] [CrossRef]
- Dimande, P.; Arrobas, M.; Rodrigues, M.A. Intercropped Maize and Cowpea Increased the Land Equivalent Ratio and Enhanced Crop Access to More Nitrogen and Phosphorus Compared to Cultivation as Sole Crops. Sustainability 2024, 16, 1440. [Google Scholar] [CrossRef]
- Nurgi, N.; Tana, T.; Dechassa, N.; Tesso, B.; Alemayehu, Y. Effect of spatial arrangement of faba bean variety intercropping with maize on yield and yield components of the crops. Heliyon 2023, 9, 6. [Google Scholar] [CrossRef]
- Wang, J.; Yin, M.; Duan, Y.; Wang, Y.; Ma, Y.; Wan, H.; Kang, Y.; Qi, G.; Jia, Q. Enhancing Water and Soil Resources Utilization via Wolfberry–Alfalfa Intercropping. Plants 2024, 13, 2374. [Google Scholar] [CrossRef]
- Leoni, F.; Carlesi, S.; Triacca, A.; Koskey, G.; Croceri, G.; Antichi, D.; Moonen, A. A three-stage approach for co-designing diversified cropping systems with farmers: The case study of lentil-wheat intercropping. Ital. J. Agron. 2023, 18, 2207. [Google Scholar] [CrossRef]
- Samaddar, S.; Schmidt, R.; Tautges, N.E.; Scow, K. Adding alfalfa to an annual crop rotation shifts the composition and functional responses of tomato rhizosphere microbial communities. Appl. Soil Ecol. 2021, 167, 104102. [Google Scholar] [CrossRef]
- Pofu, K.M.; Mashela, P.W.; Venter, S.L. Dry bean cultivars with the potential for use in potato–dry bean crop rotation systems for managing root-knot nematodes in South Africa. South Afr. J. Plant Soil 2019, 36, 315–317. [Google Scholar] [CrossRef]
- Guo, C.; Yang, C.; Fu, J.; Song, Y.; Chen, S.; Li, H.; Ma, C. Effects of crop rotation on sugar beet growth through improving soil physicochemical properties and microbiome. Ind. Crops Prod. 2024, 212, 118331. [Google Scholar] [CrossRef]
- Qi, D.; Wu, Z.; Chen, B.; Zhang, X.; Yang, C.; Fu, Q. Integrative cultivation pattern, distribution, yield and potential benefit of rubber based agroforestry system in China. Ind. Crops Prod. 2024, 220, 119228. [Google Scholar] [CrossRef]
- Vaupel, A.; Küsters, M.; Toups, J.; Herwig, N.; Bösel, B.; Beule, L. Trees shape the soil microbiome of a temperate agrosilvopastoral and syntropic agroforestry system. Sci. Rep. 2025, 15, 550. [Google Scholar] [CrossRef]
- Tilinti, B.; Negash, M.; Asfaw, Z.; Woldeamanuel, T. Variations in carbon stocks across traditional and improved agroforestry in reference to agroforestry and households’ characteristics in southeastern Ethiopia. Heliyon 2025, 11, e42127. [Google Scholar] [CrossRef]
- Kimaro, O.D.; Desie, E.; Verbist, B.; Kimaro, D.N.; Vancampenhout, K.; Feger, K.H. Soil organic carbon stocks and fertility in smallholder indigenous agroforestry systems of the north-eastern mountains, Tanzania. Geoderma Reg. 2024, 36, e00759. [Google Scholar] [CrossRef]
- dos Santos Nascimento, M.; Barreto-Garcia, P.A.B.; Monroe, P.H.M.; Pereira, M.G.; Barros, W.T.; Nunes, M.R. Carbon in soil macroaggregates under coffee agroforestry systems: Modeling the effect of edaphic fauna and residue input. Appl. Soil Ecol. 2024, 202, 105604. [Google Scholar] [CrossRef]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical Fertilizers and Their Impact on Soil Health. In Microbiota and Biofertilizers; Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R., Eds.; Springer: Cham, Switzerland, 2021; Volume 2. [Google Scholar]
- Szymańska, M.; Gubiec, W.; Smreczak, B.; Ukalska-Jaruga, A.; Sosulski, T. How Does Specialization in Agricultural Production Affect Soil Health? Agriculture 2024, 14, 424. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Asyakina, L.K.; Serazetdinova, Y.R.; Frolova, A.S.; Velichkovich, N.S.; Prosekov, A.Y. Microorganisms for Bioremediation of Soils Contaminated with Heavy Metals. Microorganisms 2023, 11, 864. [Google Scholar] [CrossRef] [PubMed]
- Jote, C.A. The impacts of using inorganic chemical fertilizers on the environment and human health. Organ. Med. Chem. Int. J. 2023, 13, 555864. [Google Scholar]
- Shahid, M.; Khan, M.S.; Singh, U.B. Pesticide-tolerant microbial consortia: Potential candidates for remediation/clean-up of pesticide-contaminated agricultural soil. Environ. Res. 2023, 236, 116724. [Google Scholar] [CrossRef]
- Asadu, C.O.; Ezema, C.A.; Ekwueme, B.N.; Onu, C.E.; Onoh, I.M.; Adejoh, T.; Ezeorba, T.P.C.; Ogbonna, C.C.; Otuh, P.I.; Okoye, J.O.; et al. Enhanced efficiency fertilizers: Overview of production methods, materials used, nutrients release mechanisms, benefits and considerations. J. Environ. Pollut. Manag. 2024, 1, 32–48. [Google Scholar] [CrossRef]
- Chen, M.; Schievano, A.; Bosco, S.; Montero-Castaño, A.; Tamburini, G.; Pérez-Soba, M. Makowski. D. Evidence map of the benefits of enhanced-efficiency fertilisers for the environment, nutrient use efficiency, soil fertility, and crop production. Environ. Res. Lett. 2023, 18, 4. [Google Scholar] [CrossRef]
- Rafeeq, H.; Riaz, Z.; Shahzadi, A.; Gul, S.; Idress, F.; Ashraf, S.; Hussain, A. Bioremediation Strategies as Sustainable Bio-Tools for Mitigation of Emerging Pollutants. In Microbes Based Approaches for the Management of Hazardous Contaminants; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2024; pp. 42–64. [Google Scholar]
- Mokrani, S.; Houali, K.; Yadav, K.K.; Arabi, A.I.A.; Eltayeb, L.B.; Alreshidi, M.A.; Benguerba, Y.; Cabral-Pinto, M.M.S.; Nabti, E. Bioremediation techniques for soil organic pollution: Mechanisms, microorganisms, and technologies—A comprehensive review. Ecol. Eng. 2024, 207, 107338. [Google Scholar] [CrossRef]
- Tagliabue, F.; Marini, E.; De Bernardi, A.; Vischetti, C.; Casucci, C. A Systematic Review on Earthworms in Soil Bioremediation. Appl. Sci. 2023, 13, 10239. [Google Scholar] [CrossRef]
- Prakash, P.; Chandran, S.S. Nano-Phytoremediation of Heavy Metals from Soil: A Critical Review. Pollutants 2023, 3, 360–380. [Google Scholar] [CrossRef]
- Yadav, R.; Singh, G.; Santal, A.R.; Singh, N.P. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources. J. Environ. Manag. 2023, 336, 117730. [Google Scholar] [CrossRef]
- Dara, S.K. The new integrated pest management paradigm for the modern age. J. Integr. Pest Manag. 2019, 10, 12. [Google Scholar] [CrossRef]
- Daraban, G.M.; Hlihor, R.-M.; Suteu, D. Pesticides vs. Biopesticides: From Pest Management to Toxicity and Impacts on the Environment and Human Health. Toxics 2023, 11, 98. [Google Scholar]
- Nosratti, I.; Korres, N.E.; Cordeau, S. Knowledge of Cover Crop Seed Traits and Treatments to Enhance Weed Suppression: A Narrative Review. Agronomy 2023, 13, 1683. [Google Scholar] [CrossRef]
- Nath, C.P.; Singh, R.G.; Choudhary, V.K.; Datta, D.; Nandan, R.; Singh, S.S. Challenges and Alternatives of Herbicide-Based Weed Management. Agronomy 2024, 14, 126. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Fan, R.; Naz, H.; Bamisile, B.S.; Hafeez, M.; Ghani, M.I.; Chen, X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front. Physiol. 2023, 13, 1112. [Google Scholar] [CrossRef]
- Zhou, W.; Arcot, Y.; Medina, R.F.; Bernal, J.; Cisneros-Zevallos, L.; Akbulut, M.E. Integrated pest management: An update on the sustainability approach to crop protection. ACS Omega 2024, 9, 41130–41147. [Google Scholar] [CrossRef]
- He, H.M.; Liu, L.N.; Munir, S.; Bashir, N.H.; Yi, W.A.N.G.; Jing, Y.A.N.G.; LI, C.Y. Crop diversity and pest management in sustainable agriculture. J. Integr. Agric. 2019, 18, 1945–1952. [Google Scholar] [CrossRef]
- Subedi, B.; Poudel, A.; Aryal, S. The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. J. Agric. Food Res. 2023, 14, 100733. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A.; Fayose, C.A.; Adeyemi, U.T.; Gbadegesin, L.A.; Omole, R.K.; Johnson, R.M.; Uthman, Q.O.; Babalola, O.O. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef]
- Smagghe, F.; Spooner-Hart, R.; Chen, Z.; Donovan-Mak, M. Biological control of arthropod pests in protected cropping by employing entomopathogens: Efficiency, production and safety. Biological Control. 2023, 186, 105337. [Google Scholar] [CrossRef]
- Yousef, H.A.; Fahmy, H.M.; Arafa, N.F.; Abd Allah, M.Y.; Tawfik, Y.M.; Halwany, K.K.E.; El-Ashmanty, B.A.; Al-anany, F.S.; Mohamed, M.A.; Bassi, M.E. Nanotechnology in pest management: Advantages, applications, and challenges. Int. J. Trop. Insect Sci. 2023, 43, 1387–1399. [Google Scholar] [CrossRef]
- Ofuya, T.I.; Okunlola, A.I.; Mbata, G.N. A Review of Insect Pest Management in Vegetable Crop Production in Nigeria. Insects 2023, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Rustia, D.J.A.; Lee, W.C.; Lu, C.Y.; Wu, Y.F.; Shih, P.Y.; Chen, S.K.; Chung, J.Y.; Lin, T.T. Edge-based wireless imaging system for continuous monitoring of insect pests in a remote outdoor mango orchard. Comput. Electron. Agric. 2023, 211, 108019. [Google Scholar] [CrossRef]
- Chouhan, S.; Kumari, S.; Kumar, R.; Chaudhary, P.L. Climate Resilient Water Management for Sustainable Agriculture. Int. J. Environ. Clim. 2023, 13, 411–426. [Google Scholar] [CrossRef]
- Hoover, D.L.; Abendroth, L.J.; Browning, D.M.; Saha, A.; Snyder, K.; Wagle, P.; Witthaus, L.; Baffaut, C.; Biederman, J.A.; Bosch, D.D.; et al. Indicators of water use efficiency across diverse agroecosystems and spatiotemporal scales. Sci. Total Environ. 2023, 864, 160992. [Google Scholar] [CrossRef]
- Elmulthum, N.A.; Zeineldin, F.I.; Al-Khateeb, S.A.; Al-Barrak, K.M.; Mohammed, T.A.; Sattar, M.N.; Mohmand, A.S. Water Use Efficiency and Economic Evaluation of the Hydroponic versus Conventional Cultivation Systems for Green Fodder Production in Saudi Arabia. Sustainability 2023, 15, 822. [Google Scholar] [CrossRef]
- Togneri, R.; Prati, R.; Nagano, H.; Kamienski, C. Data-driven water need estimation for IoT-based smart irrigation: A survey. Expert Syst. Appl. 2023, 225, 120194. [Google Scholar] [CrossRef]
- Petrović, B.; Bumbálek, R.; Zoubek, T.; Kuneš, R.; Smutný, L.; Bartoš, P. Application of precision agriculture technologies in Central Europe-review. J Agr Food Res. 2024, 15, 101048. [Google Scholar] [CrossRef]
- Agrawal, A.V.; Magulur, L.P.S.; Priya, G.; Kaur, A.; Singh, G.; Boopathi, S. Handbook of Research on Data Science and Cybersecurity Innovations in Industry 4.0 Technologies; IGI Global: Hershey, PA, USA, 2023; pp. 524–540. [Google Scholar]
- Koshariya, A.K.; Kalaiyarasi, D.; Jovith, A.A.; Sivakami, T.; Hasan, D.S.; Boopathi, S. AI-Enabled IoT and WSN-Integrated Smart Agriculture System. In Artificial Intelligence Tools and Technologies for Smart Farming and Agriculture Practices; IGI Global: Hershey, PA, USA, 2023. [Google Scholar] [CrossRef]
- Akintuyi, O.B. Adaptive AI in precision agriculture: A review: Investigating the use of self-learning algorithms in optimizing farm operations based on real-time data. Res. J. Multidiscip. Stud. 2024, 7, 016–030. [Google Scholar]
- Li, X.; Hou, B.; Zhang, R.; Liu, Y. A Review of RGB Image-Based Internet of Things in Smart Agriculture. IEEE Sens. J. 2023, 23, 24107–24122. [Google Scholar] [CrossRef]
- Kasera, R.K.; Gour, S.; Acharjee, T.A. comprehensive survey on IoT and AI-based applications in different pre-harvest, during-harvest and post-harvest activities of smart agriculture. Comput. Electron. Agric. 2024, 216, 108522. [Google Scholar] [CrossRef]
- Rivera, G.; Porras, R.; Florencia, R.; Sánchez-Solís, J.P. LiDAR applications in precision agriculture for cultivating crops: A review of recent advances. Comput. Electron. Agric. 2023, 7, 107737. [Google Scholar] [CrossRef]
- Kim, J.; Chung, Y.S. A short review of RGB sensor applications for accessible high-throughput phenotyping. J. Crop Sci. Biotechnol. 2021, 24, 495–499. [Google Scholar] [CrossRef]
- Sangeetha, S.K.B.; Mani, P.; Maheshwari, V.; Jayagopal, P.; Kumar, M.S.; Muhammad, S. Design and Analysis of Multilayered Neural Network-Based Intrusion Detection System in the Internet of Things Network. Comput. Intell. Neurosci. 2022, 2022, 9423395. [Google Scholar] [CrossRef]
- Erekalo, K.T.; Pedersen, S.M.; Christensen, T.; Denver, S.; Gemtou, M.; Fountas, S.; Isakhanyan, G. Review on the contribution of farming practices and technologies towards climate-smart agricultural outcomes in a European context. Smart Agric. Technol. 2024, 7, 100413. [Google Scholar] [CrossRef]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Adamides, G.; Kalatzis, N.; Stylianou, A.; Marianos, N.; Chatzipapadopoulos, F.; Giannakopoulou, M.; Neocleous, D. Smart farming techniques for climate change adaptation in Cyprus. Atmosphere 2020, 11, 557. [Google Scholar] [CrossRef]
- Benzaouia, M.; Hajji, B.; Rabhi, A.; Benzaouia, S.; Mellit, A. Real-time Super Twisting Algorithm based fuzzy logic dynamic power management strategy for Hybrid Power Generation System. J. Energy Storage 2023, 65, 107316. [Google Scholar] [CrossRef]
- Dlamini, P.P.; Momi, S.; Chizema, T.; Van Grenuen, D. Implementing a cost-effective soil monitoring system using wireless sensor networks to enhance farming practices for small-scale farmers in developing economy countries. World J. Agric. For. Sci. 2024, 2, 14–22. [Google Scholar]
- Langa, R.M.; Moeti, M.N. An IoT-Based Automated Farming Irrigation System for Farmers in Limpopo Province. J. Innov. Inf. Technol. Appl. 2024, 6, 12–27. [Google Scholar]
- Mogale, T.E.; Ayisi, K.K.; Munjonji, L.; Kifle, Y.G.; Mabitsela, K.E. Understanding the Impact of the Intercropping System on Carbon Dioxide (CO2) Emissions and Soil Carbon Stocks in Limpopo Province, South Africa. Int. J. Agron. 2023, 2022, 6307673. [Google Scholar] [CrossRef]
- Hilbeck, A.; Tisselli, E.; Crameri, S.; Sibuga, K.P.; Constantine, J.; Shitindi, M.J.; Kilasara, M.; Churi, A.; Sanga, C.; Kihoma, L.; et al. Examining the continued intention of using the Ugunduzi app in farmer-led research of agroecological practices among smallholder farmers in selected areas, Tanzania. Afr. J. Sci. Technol. Innov. Dev. 2023, 15, 720–730. [Google Scholar] [CrossRef]
Knowledge Area | Justification | Applicable Predominant Resource Base (References) |
---|---|---|
| Stabilisation of biodiversity at a farm level | 1, 3, 4, 6, 7 [15] |
| Soil carbon sequestration and health | 1, 3, 4, 6, 7 [16] |
| Minimising vulnerability of the biosphere | 1, 2, 3, 4, 6, 7 [17] |
| Optimisation of resilient crop productivity | 1, 2, 5, 6, 7 [18] |
| Confirmation of existing basis for future advanced technologies | 1, 2, 4, 5, 6, 7 [19] |
Practices | Countries | Impact on Agroecosystem | Impact on Crop Production | Contribution to Climate Change Mitigation | References |
---|---|---|---|---|---|
Cover cropping potatoes and tomatoes with Brassicaceae plants such as oil seed radish and rocket salad | S. Africa | Reduced population densities of the root-knot nematodes M. incognita and M. javanica | Increase in crop biomass | Not specified | Daneel et al. [91] |
Cover cropping legume or oat crops | Australia | N cycling and fixation, C cycling, water conservation, pest reduction up to 75% and 51% for oats and legumes | Cover crop biomass production and food production profitability | Reduced pesticides | Garba et al. [92] Torun [93] |
Cover cropping wheat with a legume | S. Africa | Soil quality was improved and N fixation | Wheat grain yield was between 2108 and 2580 kg ha−1 | Decreased use of N fertilisers after improved N fixation | Smit et al. [94] |
Cover cropping sorghum and maize with annual ryegrass, winter triticale, turnip, daikon radish, and pea | Mexico | Improved organic carbon and nitrogen in the soil and increased soil fertility | Improved crop yields | Increased carbon stocks in the soil (0–80 cm) were up to 7–22% greater | Singh et al. [95] |
Cover cropping sugar cane with millet | Brazil | Improved soil quality and soil carbon stabilisation | Maintenance of sugar cane yields at 100 Mg ha−1 over time | Increased carbon sequestration | Carneiro et al. [96] |
Cover cropping maize with winter cover crops common vetch, fodder radish, and black oat | Brazil | Soil organic increase, total nitrogen, and total phosphorus | Vetch increased maize yield in conventional tillage and reduced tillage treatments by 10–38% and 26–34%, respectively | Soil carbon stocks increased under no-tillage system | Besen et al. [97] |
Wheat/soybean, wheat/pea, and wheat/chickpea intercropping | Pakistan | N and P increase in the soil | Intercropped chickpea, soybean, and pea achieved 67–71%, 55–62%, and 62–70% of their sole system yield. Intercropped wheat with chickpea, soybean, and pea produced 66–69%, 57–62%, and 62–66% of sole wheat yield, respectively | Not specified | Raza et al. [98] |
Intercropping rubber with timber trees, rubber with timber and fruit trees, rubber with timber, fruit, and shrub trees | Thailand | Improved the soil quality | The rubber, timber, fruit, and shrub tree intercropping model had the highest latex yield at 1866.31 kg/ha/year and dry rubber content at 40.11% | Reduced temperature (lowered light intensity) and increased humidity | Buakong et al. [99] |
Legume–legume intercrop (doubled-up legume) and an innovation involving two maize rows intercropped with two legume species (Mbili-Mbili) | Tanzania | Improved soil fertility, weed control, decrease in pests and crop diseases | Doubled-up legume rotations were both the highest and lowest relative to other intercropping options, depending on the starting phase, and Mbili-Mbili intercropping system had a high net revenue of a mean of USD 623 per hectare | Higher radiation interception | Kinyua et al. [100] |
Maize and cowpea intercropping | Somalia | Increased land equivalent ratio resulting in improved land use | Alternate intercropping produced the highest maize grain yield (3727.6 kg ha−1) followed by within-row intercropping system (3670.3 kg ha−1) where cowpea was planted within rows of maize. | Not specified | Farah et al. [101] |
Intercropping olive with Crocus sativus, Vicia sativa, Avena sativa in, and Lavandula intermedia with olive orchards | Spain | Soil-improved carbon storage, N fixation | No effects on crop yield specifications | Increased carbon sequestration in the soil | Aguilera-Huerts et al. [102] |
Intercropping maize and sunn hemp at different stand densities | S. Africa | Soil organic matter, nitrogen, potassium, and manganese were significantly enhanced by 39.7%, 19.0%, 21%, and 60.6%, respectively | Maize yields in the medium and high stand densities in the first season were significantly 15.3% and 34.3% higher than in the second season, respectively | Dzvene et al. [103] | |
Maize and cowpea intercropping | Burkina Faso, Mozambique | Weed reduction increased N fixation, increased phosphorous in the soil | Increased maize fodder biomass and grain yield in maize. Maize grain yield was 6.75 t ha−1 when intercropped, compared to 5.52 t ha−1 as a sole crop | Not specified | Sanfo et al. [104] Dimande et al. [105] |
Maize and faba bean intercropping | Ethiopia | Not specified | Maize intercropped with 25% of sole faba bean produced a significantly higher grain yield than 50% and 75% plant density. Similarly, 75% plant density of sole faba bean intercropped with maize produced the highest grain | Not specified | Nurgi et al. [106] |
Wolfberry intercropped with alfalfa | China | Improved water use efficiency (WUE) by the tree leaves, reduced soil water loss | Linear increase in Wolfberry growth in the rapid growth phase | Not specified | Wang et al. [107] |
Relay intercropping of winter durum wheat with lentil | Italy | Weed suppression, increased nutrient availability, and improved soil microbial matter | Increases in wheat and lentil grain yields were 2.0, 1.7, and 1.8 t/ha, whereas for lentil, the dry grain yield was, respectively, 0.38, 0.56, and 1.3 t/ha | Not specified | Leoni et al. [108] |
Tomato and alfalfa crop rotation | America | Enhanced soil nutrient availability, pest suppression | Improved quality yield of tomato crops | N and C soil fixation reducing atmospheric N and C | Samaddar et al. [109] |
Crop rotation of potato cultivars with dry bean cultivars | South Africa | Reduced levels of Meloidogyne pest by the nematode-resistant legume crops | Increased potato yields and reduced infestation by Meloidogyne spp | Not specified | Pofu et al. [110] |
Rubber dandelion and sugar beet crop rotation | China | Enhanced soil microbiome through increased abundance of Actinobacteria and Streptomyces, increased urease activity in the soil, N fixation, phosphorous and potassium increase | Increased sugar beet biomass | Not specified | Guo et al. [111] |
Agroforestry practice of planting rubber trees with different types of trees and fruit trees | China | Water and soil conservation increased light-use efficiency | Young agroforestry systems yield an annual output value of USD 269 million, while mature agroforestry systems contribute USD 110 billion from dry rubber and USD 455 million from integrative crops | Not specified | Qi et al. [112] |
Agrosilvopastoral system of trees, crops, and livestock and a syntropic agroforestry system of trees, shrub species, and forage crops | Germany | Improved soil microbiome and a reduction in plant diseases | Not specified | Soil organic carbon storage increases under syntropic agroforestry | Vaupel et al. [113] |
Homegarden agroforestry | Ethiopia | Improved soil properties such as pH and improved soil density | Fruit yield not specified, but improvement in stem density and tree height | The home gardens act as carbon sinks | Tilinti et al. [114] |
Ginger and mixed spices agroforestry | Tanzania | Improved soil fertility | Soil organic carbon sequestration | Kimaro et al. [115] | |
Coffee agroforestry systems: coffee with Grevillea robusta and coffee with banana | Brazil | Improved soil microfauna and improved organic matter | Not specified | Soil organic carbon storage | dos Santos Nascimento et al. [116] |
Technological Advancement | Application Approach | Country | Contribution to Agroecosystem | References |
---|---|---|---|---|
Data collection using sensors in the field using the Gaiasense system | Automatic field stations | Cyprus | Detection of soil moisture, temperature, humidity, wind, precipitation, and atmospheric pressure | Adamides et al. [157] |
Fuzzy logic (FL) controller, and long-range data transmission and monitoring via the LoRa protocol | Smart precision irrigation | Morocco | Saving water and energy | Benzaouia et al. [158] |
Wireless Sensor Networks (WSN) using Arduino UNO WiFi Rev2 board server | Soil monitoring system | South Africa | Monitoring of soil conditions, weather patterns, and crop development | Dlamini et al. [159] |
Data collection technology using Arduino ESP WiFi technology | Automated irrigation | South Africa | Detects soil moisture and assists in water use efficiency | Langa et al. [160] |
GMP343 used with MI70 data logger | Measurement of CO2 emissions | South Africa | Determination of carbon stocks between intercropping and monocropping systems | Mogale et al. [161] |
Ugunduzi Mobile App | To conduct field research | Tanzania | Monitoring maize and cassava crops through gathering, visualisation, and statistical analysis of soil fertility, conservation, and biodiversity | Hilbeck et al. [162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, Z.; Modi, A.T.; Kuria, S.K. Multidimensional Perspective of Sustainable Agroecosystems and the Impact on Crop Production: A Review. Agriculture 2025, 15, 581. https://doi.org/10.3390/agriculture15060581
Adams Z, Modi AT, Kuria SK. Multidimensional Perspective of Sustainable Agroecosystems and the Impact on Crop Production: A Review. Agriculture. 2025; 15(6):581. https://doi.org/10.3390/agriculture15060581
Chicago/Turabian StyleAdams, Zanele, Albert Thembinkosi Modi, and Simon Kamande Kuria. 2025. "Multidimensional Perspective of Sustainable Agroecosystems and the Impact on Crop Production: A Review" Agriculture 15, no. 6: 581. https://doi.org/10.3390/agriculture15060581
APA StyleAdams, Z., Modi, A. T., & Kuria, S. K. (2025). Multidimensional Perspective of Sustainable Agroecosystems and the Impact on Crop Production: A Review. Agriculture, 15(6), 581. https://doi.org/10.3390/agriculture15060581