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Abstract: The frequency characteristics of free surface elevation time histories of shallow-water
sloshing in a three-dimensional rectangular tank is presented. The numerical model for sloshing
motion uses an accurate velocity potential Boussinesq-type equation. A particular solution is adopted
to express the external excitations and a linear damping term is introduced to replace a friction effect
produced by tank walls. The excitation amplitude of the forced movement of the tank is tiny, while
the excitation frequency varies around the first resonance frequency. The numerical results show that
the wave energy in the rectangular tank under resonance is concentrated in the integer multiple of
excitation frequencies, the sum excitation frequencies, and the difference excitation frequencies.
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1. Introduction

Sloshing and its effects have become a crucial part of the structural and navigational
safety of liquid-carrying ships such as LNG or FPSO. In addition to preventing the hazards
due to sloshing, TLD and anti-rolling tanks that take advantage of the sloshing effect
are also concerns of researchers [1–4]. Different relative filling levels in tanks can lead to
significantly different regimes of liquid sloshing resonance. For intermediate water depth or
more filling level cases, the nonlinear standing waves, local impact loads, and wave breaking
phenomenon have been studied by the experimental methods [5–7], the numerical models
based on Navier–Stokes equations [8–10], and inviscid incompressible flow theories [11–13].

For the shallow-water sloshing resonance, new shallow-water equations were derived
by [14] under the assumption of inviscid vortical flow. The Boussinesq-type depth-averaged
equations were used in [15,16] for a two-dimensional shallow-water sloshing. The Fourier
decomposition was adopted for the reconstruction of the Boussinesq-type equations, and
an artificial viscosity term was used for dissipation. The time histories of free surface
elevations under the coupled sway-heave-roll excitation case were compared with the
results calculated by the Smoothed Particle Hydrodynamics method.

For the strong nonlinear shallow water sloshing motion usually accompanied by wave
breaking and hydraulic jump, the methods based on the Navier–Stokes equations and
experimental methods were widely adopted. The experimental study of nonlinear sloshing
characteristics in different shallow-water tanks was given in [17]. The results show that the
excitation amplitude and dispersion parameters can greatly affect the resonance frequency.
The hydraulic jump phenomenon in the shallow-water rectangular tank was analyzed
in [18]. The frequency range of occurrence of hydraulic jump in tanks with different aspect
ratios was discussed, and it has been found that the liquid depth plays a significant role.

Shallow-water sloshing in a rectangular tank was investigated in [19–21] by the
Boussinesq-type equations with velocity potential as the variable to be solved. The Fourier
series was applied for the particular solution of velocity potential, and a linear damping
term was added in the dynamic boundary condition. The free surface profiles in tanks
under six degrees of freedom excitations were shown and the single-bump, double-bump,
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and triple-bump traveling waves can be found when the excitation frequency changes
around the first natural frequency. When the external excitations around the z-axis were
added, the swirling waves appeared and were coupled with the nonlinear traveling waves.

The free surface profiles of shallow-water sloshing have an extremely complex wave
compositions. In this paper, the power spectral densities of free surface elevations in tanks
are used to analyze the wave compositions of the complex free surface profiles. Firstly, the
numerical model based on the Boussinesq-type equations is built, and the linear damping
term is given. Then, the numerical model is validated by comparing some calculations
with experimental data in the literature. Finally, the power spectral densities of free surface
elevations in the tank which suffered from different forced movements are shown. The
results shown in this paper are useful for further understanding the regimes of nonlinear
shallow-water sloshing motions.

2. Mathematical Formulation
2.1. Statement of the Problem

Sloshing of liquid in a rectangular tank is considered, symbol l is the length of the
tank, b is the width, and h is the filling level. As shown in Figure 1, a Cartesian coordinate
system oxyz attached to the tank is adopted. xoy plane coincides with the still water plane
and the origin o with the center of it. The sides and bottom of the fluid are confined by the
tank walls, and the upper boundary is the free surface z = η(x, y, t). Assuming potential
flow, there is a velocity potential Φ(x, y, z, t) in the fluid region.

Figure 1. The coordinate system and rotation axis in a tank model.

Nonlinear free surface boundary conditions are adopted. With the Laplace equations
in fluid domain and boundary conditions at tank walls, the sloshing problem can be
described as:

∇2Φ = 0 (1)

∇Φ · n = v0 · n + w · [r× n] = v · n (2)

ηt − v · ∇η −Φz + ηxΦx + ηyΦy = 0 (3)

Φt − v · ∇Φ +
1
2
∇Φ · ∇Φ + gη = 0 (4)

The symbol ∇ is the three-dimensional gradient operator defined as ∇ = (∂/∂x, ∂/∂y,
∂/∂z). r is the position vector, and n is the normal vector at the tank wall, and points tank
outside. g is gravitational acceleration and v = v0 + w× r = [va, vb, vc] represents the
forced motion of the rectangular tank.
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The translatory velocity along (x, y, z) coordinate axes is expressed as v0 = [v1, v2, v3].
However, for the convenience of computation, the rotation axes of the angular velocity
w = [w1, w2, w3] are different. The dotted lines in Figure 1 show the rotation axis of the
three angular velocity components, which are (x, 0,−h), (0, y,−h), and z-axes, respectively.

2.2. Numerical Techniques

A linear damping term for replacing friction effect produced by tank walls is applied.
According to [20], the linearized velocity potential Φn is approximated by

Φn = −anφn(x, y, z) sin(ωnt + θ) (5)

n represents the sloshing mode, and the parameter ε is estimated by

ε =
g

ωn

√
ν

2ωn

∫ ∫
SC
∇φn · ∇φndS∫ ∫

SF
φ2

ndS
(6)

ε = 2ωn

√
ν

2ωn

1
bl
(l + b + b

λnl − 2λnh
sinh 2λnh

) λn = nπ/l (7)

Here, an is the amplitudes and ωn the natural frequency. SC and SF represent the tank
wall area and linear free surface area, respectively. ν is the kinematic viscosity. The velocity
potential is divided into two parts Φ = φ + ϕ, where φ is a disturbance potential and ϕ is
a particular solution satisfying the Laplace equation and boundary condition at the tank
wall and bottom. According to [20], the particular solution considering the 6-DOF motion
of the tank can be constructed as follows:

ϕ = xv1 + yv2 + zv3 + w1 ϕ1 + w2 ϕ2 + w3 ϕ3 (8)

ϕ1 = −z(y− b/2) +
∞

∑
n=1

βn cos(γny)
2 sinh γn(z− h)

γn cosh(γnh)
(9)

ϕ2 = −z(x− l/2) +
∞

∑
n=1

αn cos(λnx)
2 sinh λn(z− h)

λn cosh(λnh)
(10)

ϕ3 =
∞

∑
n=1

αn cos(λnx)
sinh λn(y− b/2)
λn cosh(λnb/2)

+
∞

∑
n=1

βn cos(γny)
sinh γn(x− l/2)
γn cosh(γnl/2)

(11)

where λn = nπ/l, αn = −4l/(n2π2), γn = nπ/b, and βn = −4b/(n2π2). Based on the
superposition principle, the decomposition of velocity potential leads to a simple boundary
condition ∇φ · n = 0, which contributes to solving φ by the Boussinesq-type approach.
More details can be found in [19].

With initial conditions known, the time stepping process of Φ and η can be advanced
by Equations (3) and (4). The central difference scheme and fourth-order Runge–Kutta
method are used for spatial derivative calculation and temporal iteration, respectively.

3. Validation

The numerical model including the linear damping term has been valid and applied
for the shallow-water sloshing in [19–21]. Comparison is made between the present results
with the mode n of the particular solution equal to 9 and the experimental data given in [22].
According to [22], the time histories of wave elevations were measured by the resistance
wave gauges fixed on the tank made of lucite, and a wetting agent was added to the water
for reducing the influence of surface tension.
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The geometric parameters of the tank are l = 0.6095 m, b = 0.23 m, and h = 0.06 m. The
harmonic movement of the tank occurs just in the x-direction, such that Xtank = Asin(ωt).
The amplitude A is set to 0.196 cm, and excitation frequencies ω are chosen to be around
the first natural frequency ωr, which was obtained from the linear solution for sloshing in
the tank. As shown in Figure 2, a uniform grid with 31 nodes in the length direction and
11 nodes in the width direction is employed for calculation. The time step is set to 0.06,
and the simulation has been over 100 periods to ensure that the sloshing motion reached
a stable state.

Figure 2. The uniform grid on the free surface in the three−dimensional tank.

The maximum transient dimensionless amplitudes at the tank wall versus normalized
excitation frequencies are compared in Figure 3, where Exp represents the experimental
data and Num the numerical results. The excitation frequencies divided by ωr = 3.8924 s−1

ranged from 0.9 to 1.12. The maximum value of the response curve appears around
ω/ωr = 1.05 in experiment data while 1.06 in numerical data. The curves rise when
approaching the maximum value from the left, but there is a sudden short pullback around
ω/ωr = 0.97. Moving away from the maximum value from the right side, the curve drops
sharply at first and then tends to decrease slowly. Overall, there are two discontinuities
in the response curve. These discontinuities are produced by the effects of nonlinearities
which result in a rapid change of sloshing motion form. More details about the sloshing
motions can be found in [20].

In general, the results of the numerical model agree well with the experimental results.
However, there were inconsistencies in the results from ω/ωr = 1.03 to 1.07. In addition to
the occurrence of local breaking on free surface, the sensitivity of sloshing motion to the
excitation frequency accounts for it. However, the correct prediction about location of the
two discontinuities still shows that our numerical model has a good ability to capture the
change of sloshing form caused by the variation of excitation frequency.
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Figure 3. Variation of the maximum transient amplitudes divided by the water depth with excitation
frequencies around the first natural frequency. (a) table; (b) figure.

4. Results and Discussion

Based on the former numerical model, the free surface profiles in the rectangular
tank are simulated. The sway, roll, coupled sway and roll, coupled surge and sway,
coupled surge-sway-roll-pitch, and coupled surge (v1)-sway (v2)-roll (w1)-pitch (w2)-yaw
(w3) excitations are considered.

4.1. The Sway Excitations

A three-dimensional square tank with l = b = 0.5875 m and h = 0.03 m is considered.
A uniform grid with 31 nodes in the length direction and 11 nodes in the width direction
is employed for calculation. The time step is set to 0.06, and the simulation has been over
100 periods to ensure that the sloshing motion reached a stable state.

The translatory external excitations along the y-axis are adopted here. The excitation
amplitude is 0.001 m, and the excitation frequencies vary between 0.92 ω1 to 1.08 ω1. Here,
ω1 = 2.8881 s−1 is the lowest natural frequency. According to the previous research, the
violent sloshing motions appear in the vicinity of the lowest natural frequency and the
transformation of free surface wave patterns happens. The time–history curves of the
relative free surface elevation of the tank wall under different cases are displayed in Figures
4 and 5. The free surface elevations η divided by the still water depth h give the ordinate
values and T are the excitation periods. From 0.92 ω1 to 1.08 ω1, several typical free surface
wave patterns are shown in Figures 4 and 5, including linear standing waves, nonlinear
single-bump traveling waves, nonlinear double-bump traveling waves, and nonlinear
triple-bump traveling waves.

As shown in Figures 6 and 7, the power spectral densities of time histories of free
surface elevations at an observation point within 600 s are calculated. The Matlab function
pwelch is used, and the frequencies divided by the excitation frequencies give the values of
abscissa. As shown in the figures, the wave energy is distributed in the integer multiple of
excitation frequencies. It should be noted that the rule can be applied to all the excitation
frequencies from 0.92 ω1 to 1.08 ω1. For the excitation frequencies 0.92 ω1 and 1.08 ω1, the
linear standing waves lead to the single frequency energy distribution. For the nonlinear
double-bump traveling wave (Figure 5a) and triple-bump traveling wave (Figure 4c),
the wave energy can be found on the double, triple, and higher multiple of excitation
frequencies, but the main wave energy still focuses on the excitation frequency. In Figure
7b, the wave energy located on the double excitation frequency is higher than that on the
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excitation frequency, which leads to the nonlinear single-bump traveling waves (Figure
5b). Different free surface wave patterns in Figures 4 and 5 are due to the superposition of
different wave components (Figures 6 and 7). The frequency distribution rule of the wave
components has been found, but the amplitude distribution rule should be studied further.
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Figure 4. Dimensionless free surface elevations time histories of pure sway cases under different
excitation frequencies: (a) ω/ω1 = 0.92; (b) ω/ω1 = 0.94; (c) ω/ω1 = 0.96.
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Figure 5. Dimensionless free surface elevations time histories of pure sway cases under different
excitation frequencies: (a) ω/ω1 = 0.98; (b) ω/ω1 = 1.02; (c) ω/ω1 = 1.08.
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Figure 6. The frequency spectrum of pure sway cases under different excitation frequencies:
(a) ω/ω1 = 0.92; (b) ω/ω1 = 0.94; (c) ω/ω1 = 0.96.
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Figure 7. The frequency spectrum of pure sway cases under different excitation frequencies:
(a) ω/ω1 = 0.98; (b) ω/ω1 = 1.02; (c) ω/ω1 = 1.08.

4.2. The Roll Excitations

The three-dimensional rectangular tank used in Section 4.1 is adopted here and the
following sections. The excitation amplitude is 0.001 rad and frequencies vary between
0.92 ω1 and 1.08 ω1. According to the numerical results, the free surface wave patterns of
different excitation frequencies are similar to that in the tank excited by the sway motions.
In Figures 8 and 9, the time histories of relative free surface elevations and the power
spectral densities with different excitation frequencies 0.96 ω1, 0.98 ω1 and 1.02 ω1 are
given. The power spectral densities of free surface elevations are likewise distributed in
the integer multiple of excitation frequencies. In addition, the amplitude distribution rule
is similar to that in Section 4.1.
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Figure 8. Dimensionless free surface elevations time histories of pure roll cases under different
excitation frequencies: (a) ω/ω1 = 0.96; (b) ω/ω1 = 0.98; (c) ω/ω1 = 1.02.
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Figure 9. The frequency spectrum of pure roll cases under different excitation frequencies:
(a) ω/ω1 = 0.96; (b) ω/ω1 = 0.98; (c) ω/ω1 = 1.02.
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4.3. Coupled Sway and Roll Excitations

The amplitudes of sway excitations are 0.001 m and of roll excitations are 0.001 rad.
The sway and roll motions are excited at the same frequencies, which ranged from 0.92 ω1
to 1.08 ω1. According to the numerical results, the wave amplitudes excited by the coupled
sway and roll motions are much lower than that excited by the single sway motions or
single roll motions. Meanwhile, the resonance frequency interval is narrower and closer to
the natural frequency ω1. The conclusion and details can be found in [20]. For cases excited
by the combined motion of sway and roll, the distribution positions of wave energy are
also on the integer multiple of excitation frequencies (Figure 10). As shown in Figure 10c,
the wave energy distribution indicates the linear standing waves present in the tank when
the coupled excitation frequency equals 1.02 ω1. However, the strong nonlinear traveling
waves can be observed under cases excited by the single sway motions or single roll motions
at the same excitation frequency.

Next, the excitation frequency of sway motion is valued differently from the excitation
frequency of roll motion. The sway excitation frequency is set to 1.02 ω1 and the roll
excitation frequency is selected to 0.9 ω1. The excitation amplitudes are equal to 0.001 m
and 0.001 rad. The power spectral densities of free surface elevations in the case of a sway
and roll excitations are displayed in Figure 11a. In addition, the frequencies divided by the
lowest natural frequency ω1 give the values of abscissa. As shown in Figure 11a, the wave
energy distribution is not only on the integer multiple of excitation frequencies but also on
the sum excitation frequencies and difference excitation frequencies. Figure 11a is enlarged,
and the details are shown in Figures 11b and 12. In Figure 11b, the locations of integer
multiple of 0.9 and 1.02 are marked by the red ◦ and ∗, respectively, which means the integer
multiple (N = 1–5) of sway excitation frequency 1.02 ω1 and roll excitation frequency 0.9 ω1
are denoted. Parts of power spectral density curves predictably coincide with the locations
of integer multiple of excitation frequencies. In Figure 12a, the sum excitation frequency
locations (0.9 + 1.02) ω1, (0.9 × 2 + 1.02) ω1, (0.9 + 1.02 × 2) ω1, (0.9 × 2 + 1.02 × 2) ω1,
(0.9 × 3 + 1.02) ω1, (0.9 + 1.02 × 3) ω1, (0.9 × 3 + 1.02 × 2) ω1, (0.9 × 2 + 1.02 × 3) ω1,
(0.9 × 4 + 1.02) ω1, (0.9 + 1.02 × 4) ω1 are marked by the red +. In addition, parts of power
spectral density curves coincide with the sum excitation frequency locations. In Figure 12b,
the difference excitation frequency locations (1.02 − 0.9 + 1.02) ω1, (1.02 − 0.9 + 1.02 × 2)
ω1, (1.02 − 0.9 + 1.02 × 3) ω1, (1.02 − 0.9 + 1.02 × 4) ω1 and (1.02 − 0.9 + 1.02 × 5) ω1
are denoted by the red ×. The rest of power spectral density curves are located on these
difference excitation frequencies. In summary, when the excitation frequencies of sway and
roll motions are different, the power spectral density distributions of free surface elevation
are compound, including the integer multiple of excitation frequencies, the sum excitation
frequencies, and the difference excitation frequencies.
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Figure 10. The frequency spectrum of coupled sway and roll cases under different excitation frequen-
cies: (a) ω/ω1 = 0.98; (b) ω/ω1 = 1.0; (c) ω/ω1 = 1.02.



J. Mar. Sci. Eng. 2022, 10, 1792 9 of 13

0 1 2 3 4 5 6 7

 / 
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
o

w
e

r 
sp

e
ct

ra
l d

e
n

si
ty

10 -5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

 / 
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
o

w
e

r 
sp

e
ct

ra
l d

e
n

si
ty

10 -5

(a) (b)

Figure 11. The frequency spectrum of coupled sway and roll cases under different excitation fre-
quencies. excitation frequency: (a) ω/ω1 = 1.02, excitation amplitude : 0.001 m (sway); excitation
frequency : ω/ω1 = 0.90, excitation amplitude : 0.001 rad (roll); (b) integer multiple.
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Figure 12. The frequency spectrum of coupled sway and roll cases under different excitation frequen-
cies. excitation frequency : ω/ω1 = 1.02, excitation amplitude : 0.001 m (sway); excitation frequency :
ω/ω1 = 0.90, excitation amplitude : 0.001 rad (roll). (a) sum frequency; (b) difference frequency.

4.4. Coupled Surge and Sway Excitations with Different Amplitudes

The surge and sway motions have the same excitation frequency 1.02 ω1 but different
excitation amplitudes. The direction of external combined excitation is not along the
diagonal of oxy plane in the tank since the surge motion has a 0.001 m excitation amplitude,
while the sway motion has a 0.002 m excitation amplitude. The power spectral densities
of free surface elevations at four tank corners (l/2, b/2), (−l/2, b/2), (l/2,−b/2) and
(−l/2,−b/2) marked by A, B, C and D are shown in Figures 13 and 14. As shown in the
figures, the power spectral density distributions at the corners A and D are the same, and
the wave energy locates on the integer multiple of excitation frequency 1.02 ω1. The power
spectral densities of the other two tank corners B and C are also the same. There is an
angle between the direction of combined excitations and the diagonal of oxy plane. The
diagonal component of combined excitations is dominant. As shown in Figures 13 and 14,
the spectral densities located on the excitation frequency at the corners A and D are much
higher than that at the corners B and C.
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Figure 13. The frequency spectrum of coupled surge and sway cases under different excitation
frequencies:. excitation frequency : ω/ω1 = 1.02, excitation amplitude : 0.001 m (surge); excitation
frequency : ω/ω1 = 1.02, excitation amplitude : 0.002 m (sway). (a) corner A; (b) corner B.

0 2 4 6 8 10

 / (1.02 
1
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
o

w
e

r 
sp

e
ct

ra
l d

e
n

si
ty

10 -4

0 2 4 6 8 10

 / (1.02 
1
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
o

w
e

r 
sp

e
ct

ra
l d

e
n

si
ty

10 -4

(a) (b)

Figure 14. The frequency spectrum of coupled surge and sway cases under different excitation
frequencies. excitation frequency : ω/ω1 = 1.02, excitation amplitude : 0.001 m (surge); excitation
frequency : ω/ω1 = 1.02, excitation amplitude : 0.002 m (sway). (a) corner C. (b) corner D.

4.5. Coupled Surge-Sway-Roll-Pitch Excitations

In this section, the coupled surge-swing-roll-pitch excitation is researched. The exci-
tation amplitude of the translational motion excitation (surge and sway) is 0.001 m and
0.001 rad of the rotational excitation (roll and pitch). The excitation frequency of the coupled
motions is selected to be 0.98 ω1. The power spectral density of free surface elevations at the
tank corner (l/2, b/2) is shown in Figure 15. The wave energy distribution in the tank can
be found on the integer multiple of excitation frequency 0.98 ω1. Using the same excitation
frequency and amplitude, the superposition of results under coupled sway-roll excitations
and coupled surge-pitch excitations equal results of the coupled surge-sway-roll-pitch case.
However, the free surface height at the corner of the tank cannot be obtained by the same
superposition due to the combined effect of multiple excitations. Compared to the results
in Figure 10a, the spectral density due to coupled surge-sway-roll-pitch excitations cannot
be calculated by the double spectral density due to coupled sway-roll excitations.

4.6. Coupled Surge-Sway-Roll-Pitch-Yaw Excitations

The excitation frequencies of surge, sway, roll, and pitch motions are equal to ω1.
For the yaw excitations, the excitation frequency is calculated by ω2

r = gν tanh νh and
ν =

√
(π/l)2 + (π/b)2. The excitation amplitude of the translational motion(surge and

sway) excitation is 0.001 m and 0.001 rad of the rotational excitation (roll, pitch and
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yaw). The power spectral densities of free surface elevations at the tank corners (l/2, b/2;
−l/2, b/2) are calculated. Because the lowest natural frequencies of yaw excitation
ωr = 4.0672 s−1 and others are different, the abscissa is valued by the frequency.

As shown in Figure 16a, the integer multiple of excitation frequency (ω1) is marked by
red ∗, and the integer multiple of excitation frequency (ωr) is denoted by red o. The sum
excitation frequencies ω1 + ωr and 2ω1 + ωr are expressed by red +. The wave energy
distribution of the free surface elevations at the tank corner A (l/2, b/2) can be found clearly.
At the other corner B (−l/2, b/2), the wave energy is focused on the integer multiple of
excitation frequency ωr and excitation frequency ω1 doubling. The power spectral density
at the excitation frequency ω1 can not be found because the corner is not located on the
direction of coupled surge-sway-roll-pitch excitations.
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Figure 15. The frequency spectrum of coupled surge−sway−roll−pitch excitations cases at the tank
corner under different excitation frequencies. Excitation frequency is 0.98 ω1.
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Figure 16. The frequency spectrum of coupled surge−sway−roll−pitch−yaw excitations cases at
the tank corner under under different excitation frequencies. (a) corner A: (l/2, b/2); (b) corner B:
(−l/2, b/2).

5. Conclusions

The shallow-water sloshing resonance in the three-dimensional tank was researched
by Boussinesq-type equations with the linear damping term. The power spectral densities
of free surface elevations in tank under resonance were analyzed for different external
excitations which include single degree of freedom and multiple degrees of freedom
excitations. Research on the sloshing phenomenon of external excitation frequency near
the first natural frequency shows that: (1) According to the Figures 7, 9, and 10, whether
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it is a single degree of freedom excitation or two degrees of freedom excitations with
the same excitation frequency, the power spectral density distributions are mainly at the
integer multiple of excitation frequencies. (2) Combining the curves in Figures 11 and 12,
when the excitation frequencies of two directions are different, the power spectral density
is distributed in the difference excitation frequencies and sum excitation frequencies in
addition to the integral multiple excitation frequency. (3) The coupling effect of external
excitation on sloshing motion is highly nonlinear. By comparing Figures 15 and 10a, it can
be found that the spectral density due to coupled surge-sway-roll-pitch excitations cannot
be calculated by the double spectral density due to coupled sway-roll excitations. (4) At
present, the power spectral densities of the free surface elevations has been given, and the
power spectral densities of the forces should be consistent with it. The wave loads on the
tank walls should be further studied.

Understanding the energy spectrum characteristics of sloshing motion can serve to
establish a reduced-order model in the future, in which we can focus on these frequencies
of the main distribution of sloshing energy. The amplitude distribution rules of power
spectral densities should be studied further.
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