
Citation: Zhou, X.; Jiang, Q.; Wang,

K.; Wang, S. Analysis of Horizontal

Cylinder Load under Different

Conditions in Regards to Waves and

Flows. J. Mar. Sci. Eng. 2024, 12, 1101.

https://doi.org/10.3390/

jmse12071101

Academic Editor: Marco Petti

Received: 26 May 2024

Revised: 23 June 2024

Accepted: 24 June 2024

Published: 28 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Analysis of Horizontal Cylinder Load under Different
Conditions in Regards to Waves and Flows
Xiaoguo Zhou 1,*, Qingdian Jiang 1, Kai Wang 2 and Shuqi Wang 1

1 School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology,
Zhenjiang 212100, China

2 Wuhan Second Ship Design & Research Institute, Wuhan 430064, China
* Correspondence: zhouxg@just.edu.cn; Tel.:+86-138-5298-1438

Abstract: A numerical simulation based on the CFD method is used to study the interaction between
a horizontal cylinder and wave flow. Firstly, a two-dimensional numerical calculation model of
both a fixed and a rigid moving cylinder, with a free surface under varying wave flow conditions, is
created. In the established model, the loads on the horizontal cylinder under different submergence
depths, flow velocities, cylinder sizes, wave periods, and k values (spring stiffness) are analyzed and
calculated. The results show that, when the cylinder is close to the free surface, its hydrodynamic load
under wave flow conditions is more sensitive to changes in submergence depth, which essentially
affects wave reflection and blockage. At different flow velocities, k values, cylinder radii, and
arm lengths, the main frequency of the Fourier transform of the cylinder motion curve remains
unchanged; however, the main frequency does change with the wave period and submergence depth.
The efficiency of rotary cylindrical energy harvesting is influenced by various factors, among which
an initial increase and then decrease are observed with a gradually increasing k value, arm length,
period, and radius, in addition to an observed decrease with increasing flow velocity.

Keywords: horizontal cylinder; free surface; load analysis; rigid moving cylinder; hydrodynamic load

1. Introduction

The vast ocean contains abundant marine biological and mineral resources. In the
equipment employed for developing such resources, a horizontal cylinder is a commonly
used structure, which is often affected by the combined effects of ocean currents and waves
in practical applications, resulting in adverse effects. In new types of ocean current energy,
vortex-induced vibration can also be used for power generation. The study of the force and
motion of cylindrical structures under wave current conditions is of great significance for
the design and safety of ocean structures and further research on power generation devices.

Reichl [1,2] conducted a numerical simulation study on the vortex field around a
cylinder, utilizing different submergence depths near the free surface under the action of
flow. The results showed that the vortex field around the cylinder changed significantly
with the change in submergence depth, and the smaller the submergence depth, the more
asymmetric the vortex field. In addition, the influence of changes in the Froude number on
the free surface and vortex field was also studied. Wu and Young [3] conducted numerical
simulation research on the oscillatory motion of a horizontal cylinder in a stationary fluid;
they presented the changes in the vortex field during cylinder motion, comparing and
verifying the simulated force results with previously obtained results. This study focuses on
the validation of numerical methods; the analysis of the fluid field characteristics around the
cylinder is not extensively discussed, and the strong nonlinear phenomena in the selected
operating conditions are not obvious. In the study of horizontal cylinders under differing
wave current conditions, Bozkaya [4] used a self-developed finite volume method program
to numerically simulate the vortex field around a vibrating cylinder in the flow. The study
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mainly focused on the influence of two variables—the cylinder’s vibration frequency and
submergence depth—on the vortex field around the cylinder.

Xiao [5] conducted numerical simulations to investigate the interaction between soli-
tary waves and horizontal cylinders. In this study, the factor of flow was considered, and
the differences and similarities in the vortex field around the cylinder under the action of
solitary waves were compared and analyzed under the following conditions: forward flow,
no flow, and reverse flow. In addition, the influence of flow on the force of the cylinder
was analyzed by comparing its force values under three different conditions. The research
results indicate that the combined force of waves and currents is not equal to the superposi-
tion of both wave and current forces, while the influence of current on the horizontal force
is particularly significant.

Bai [6] conducted a numerical simulation study on the interaction between regular
waves and a horizontal cylinder, comparing the motion laws of the vortex field around
the cylinder under both downstream and upstream conditions. The results showed that
the wave and current jointly act as the vortex field, while the vortex leakage frequency is
controlled by the frequency of the waves; that is, vortex shedding occurs in each wave cycle,
which is different from the conventional cylinder flow problem, where vortex shedding
only occurs after it matures.

Gu et al. [7] used a two-dimensional numerical simulation method to simulate a
cylinder with springs installed in a power generation device. The water depth varied from
0.1 m to 0.5 m, and the energy conversion rate was studied at different submergence depths.
The results showed that the free surface had a significant impact on the vortex-induced
vibration response, wherein a decrease in submergence depth from 0.5 m to 0.1 m gradually
suppressed the amplitude of vortex-induced vibration, leading to a decrease in the energy
conversion rate.

Zhao et al. [8] used the dimensionless Rortex/Liutex vortex identification method to
numerically simulate an infinitely long cylinder with a free surface, where Fr = 0.3 and
Re = 4.2 × 104. The results showed that in the wake region near the free surface, the
originally alternating shedding vortex street structure was strongly suppressed.

Wang et al. [9] proposed an upright flow-induced vibration energy harvesting system
and designed relevant experiments. The experimental data showed that the optimal layout
form for comparing the energy harvesting efficiency of cylinders under different spacing
uses 2D spacing.

Wang et al. [10] used the time-domain finite element method to solve the second-order
interaction problem between wave current and truncated double cylinders, calculating the
wave and hydrodynamic forces of the double cylinders under the combined action of wave
current. The results showed that the amplitude of the first-order horizontal and vertical
forces on the cylinder increased with the increase in the Froude number.

Zhang et al. [11] used the fourth-order exact finite volume approach to simulate the
interaction between solitary waves, uniform flows, and a horizontal cylinder near a free
surface. The accuracy of the solution method was verified through experimental data of
flow velocity under the interaction of solitary waves and flows. The results showed that
under the interaction of waves and flows, there was a significant correlation between the
vertical force on the cylinder and the flow velocity.

Lin et al. [12] used local and global empirical parameters and examined the influence
of retaining nonlinear acceleration terms on the Morison equation. The results showed that
the fitting effect was related to the position of the cylinder cross-section and had little effect
on the lower section of the cylinder; the actual force could also be well-fitted to the upper
section of the cylinder. After correcting the Morison equation, the prediction was more in
line with the actual value.

Through a large number of wave current interaction experiments, Yang et al. [13]
studied its influence on wave height and water velocity. The experimental results showed
that, when solitary waves propagate with the flow, the flow velocity near the static water
level is equal to the linear superposition of a single wave and single flow velocities.
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Zang et al. [14] experimentally studied the hydrodynamic response of a vertical
cylinder under wave action and flow wave composite action under finite water depth
conditions. The experiment found that the multi-frequency response of the cylinder in
the transverse flow direction is related to the natural frequency of the cylinder and the
frequency of the wave, while the displacement of the cylinder mainly depends on the ratio
of the natural frequency to the wave frequency, under wave action.

Xin et al. [15] proposed a method and verified its accuracy through numerical imple-
mentation, studying the coupling effect of waves on the hydrodynamic load of a cylinder
near a free surface. The results showed that changes in submergence depth and the direction
between waves and flow velocity play an important role in the cylinder’s load.

Huo et al. [16] used OpenFOAM and numerical methods to study the hydrodynamic
response under the combined action of waves and currents. A high-precision wave flow
was generated using a buoyancy-corrected k-omega SST turbulence model; the relationship
between shock pressure, relative wave height, and wave velocity was analyzed.

Ning et al. [17] established a two-dimensional nonlinear numerical wave tank based
on the time-domain high-order boundary element method, using a four-point method to
decompose the high bound and free harmonics propagating upstream and downstream
along obstacles. The second-order analysis of the experimental results indicates that the
resonance characteristics are related to the ratio of the diameter of the cylinder to the
wavelength of its second bound mode.

Saincher et al. [18] analyzed the interaction between nonlinear waves and currents on
ships and their effects on cylindrical hydrodynamic loads. Experiments have shown that
wave and local action current loads can be linearly superimposed on structures and are
unaffected by wave characteristics and resistance velocity.

Zhou et al. [19] established a numerical model of wave flow based on the CFD method
and verified its accuracy with experimental data. By studying the hydrodynamic character-
istics of a horizontal cylinder under different spring stiffness conditions, the results showed
that with the increase in k value, the vibration amplitude of the cylinder first increased and
then decreased. When the vibration amplitude reached its peak, the vibration frequency
was consistent with the wave frequency, resulting in resonance.

Belloli et al. [20] compared the characteristics of vortex-excited vibration and subcritical
vibration in the critical flow state. Manish A. [21] established a dual-degree-of-freedom
model, and experimental results showed that the model could capture the jump in lateral
flow response when a cylinder was freely moving along the crossflow direction in medium
and low quality ratio cases; for high quality ratio, the response was not affected by the
free movement along the flow direction, and it was found that the cause of the lateral
vibration jump in the dual-degree-of-freedom system was the additional damping in the
flow direction.

Sirohi [22] installed a D-shaped hemispherical truncated cone at the lower end of
a PZT piezoelectric cantilever beam and experimentally measured the electrical energy
generated by the prototype device, which was 325 mm long, in the wind speed range and
demonstrated the feasibility of collecting wind energy using the device; the power output
increased rapidly with the increase in wind speed. Abdelkefi [23] studied the wind-induced
galloping characteristics by means of a double-cantilever piezoelectric model, verified the
galloping starting speed of the test data through linear analysis, and studied the effects
of load resistance and wind speed on the power harvest, transverse displacement, and
voltage output level. The results show that the maximum power level and minimum lateral
displacement can be obtained when the load resistance is changed at a certain wind speed.

Overall, in the study of the above flow field, the main focus is on completely sub-
merged cylinders, with more consideration being given to the vertical motion of the
cylinders. Among them, the consideration of rotating cylinders is currently insufficient,
and there is little research regarding the strong interaction between free surfaces and cylin-
ders. Therefore, this paper focuses on the characteristics of the flow field around a rotating
cylinder near a free surface. By comparing the force conditions of a fixed and a rotating
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cylinder, the load characteristics of the cylinder under the combined action of waves and
currents are studied.

2. Model Establishment
2.1. Fluid Control Equation

The model uses the finite volume method to solve the Reynolds averaged N-S equation;
the control equation is as follows:

∂vi
∂xi

= 0 (1)

∂ρvi
∂t

+
∂ρvivj

∂xj
= − ∂p

∂xi
+ µ

∂

∂xj

(
∂vi
∂xj

+
∂vj

∂xi

)
+ ρg (2)

where vi and vj are the component of fluid particle velocity in the i and j directions,
respectively; t is time; p is the fluid pressure; ρ is the fluid density; µ is the viscosity
coefficient of the fluid; and g is the gravitational acceleration.

The free surface of the numerical model using the VOF method is captured, and the
volume fraction of each calculation unit is represented as follows [9], 0 is air, 1 is water, and
0 to 1 indicates the mixed state of water and air, also known as the free surface:

α =


0 air

0 ∼ 1 f ree sur f ace
1 water

(3)

The density and viscosity coefficient of the mixed fluid can be obtained using the
following formula:

ρ = αρw + (1 − α)ρa (4)

µ = αµw + (1 − α)µa (5)

where the subscript w represents the liquid phase and a represents the gas phase.
A reduced velocity is used to reflect the relationship between amplitude and flow

velocity, expressed as follows:

Ur =
U

D fn
(6)

where U is the inflow velocity, fn is the natural frequency of the cylinder, and D is the
diameter of the cylinder.

2.2. Establishing a Computational Model

A cylindrical solution domain containing background and overlapping grids is es-
tablished, as shown in Figures 1 and 2. The diameter, D, of the cylinder in the solution
domain is 0.1 m; the cylinder is defined as a wall with a water depth, d, of 1 m; the flow
velocity is 0.25 m/s; the total number of grids is 228,600; and the solution time step is
0.002 s. A total of 10 boundary layers were set around the cylinder, and multiple refinement
is carried out near the free surface on the grid division. The left side is the velocity inlet,
and the velocity is given as required; the right and top sides are pressure outlets and yield
relative pressures, while the bottom side and cylinder surface are the wall boundary. To
simulate cylindrical motion, the cylinder is set as a rigid body and is given a spring stiffness
and damping ratio. According to Ref. [24], the turbulence model is selected as the RNG
turbulence model. There are three commonly used numerical discretization methods: the
finite element method, the finite difference method, and the finite volume method. The
numerical model adopted in this paper is the finite volume method, and the model is
a two-dimensional model with two degrees of freedom, the horizontal x direction and
the vertical z direction. The model is simplified, and no other deformation is taken into
account [25].
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Figure 1. Computational domain model.

Figure 2. Grid model.

On the basis of the fixed model, a refined region is incorporated into the rotating
motion model to ensure that the cylinder’s movement remains within this refined region.
Additional parameters, such as the moment of inertia and the center of gravity, are included
in the cylinder parameters, while maintaining an unchanged damping ratio equal to 0.02.
The virtual rod fixed point is positioned horizontally downstream from the cylinder and
connected to it through a volumetric coupling function. The virtual rod is rigid, allowing
the cylinder to rotate around this fixed point. Furthermore, an adjustable rotation torque
for the cylinder has been integrated into the model.

2.3. Grid Convergence Analysis

According to the relevant literature on numerical calculations, the grid size affects the
accuracy of the numerical calculations, especially in the direction of wave propagation and
wave height. Therefore, while ensuring computational accuracy and reducing the number
of grids and the simulation time, this section starts with a convergence verification of the
grid in the wave region, with the aim of obtaining a more accurate wave simulation with
the least number of grids.

In this section, three types of meshing are used for the numerical wave flume, wave
simulation is carried out under the same operating conditions, and finally, the lowest
amount of mesh and an increased accuracy are obtained by comparing the simulated
values. Due to the complexity of fluid changes, a more precise grid is required to capture
the changes in the flow field. Therefore, this paper has set up five layers of grids around
the wave situation; the closer the grid is to the free surface, the denser it is. Table 1 shows
the specific dimensions of three types of grid refinement. This simulation is conducted
under wave conditions of S = 0 and A = 0.05 m, with a unified time step of 0.002 s. The
altimeter settings are as follows: altimeter 1 is located at 1.65 L in the working area, and
altimeter 2 is located at 1.85 L.
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Table 1. Grid parameters.

Grid Number of Grids within
the Wavelength Range

Number of Grids within
the Wave Height Range

Total Number of
Two-Dimensional Grids

1 80 15 1.82 × 105

2 100 20 2.28 × 105

3 120 25 2.72 × 105

Figure 3 shows the wave height–time history curves of two different wave altimeters
under three different grids within a time period of 18 s~25 s. By comparing the data in the
figure, it can be concluded that the waves under the three grids are consistent in terms of
wave height and period. In summary, the results of Grid 3 and Grid 2 are consistent, while
there are some differences between the results of Grid 1 and Grid 2, i.e., Grids 2 and 3 meet
the convergence requirements. Therefore, considering computational accuracy and cost,
Grid 2 is chosen as the final computational grid.

Figure 3. Comparison of wave height–time history curves with different grid numbers.

2.4. Numerical Verification of Wave and Current Forces

Referring to the physical experimental values of Bai et al. [6], the wave current force
acting on a semi-submerged horizontal cylinder was verified. As shown in Figure 4, a
horizontal cylinder with a diameter of D = 0.06 m, a depth of d = 1.6 m, a flow velocity of
c = 0.2 m/s, an incident wave period of T = 0.7 s, and a wave height of H = 0.03 m was
partially submerged in water.

Figure 4. Schematic diagram of numerical water tank simulation.

The dimensionless processing of all force data in this paper is based on the buoyancy
experienced by a horizontal cylinder when completely submerged, where the vertical force
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needs to be deducted from the static buoyancy experienced by the cylinder at the initial
moment, as shown in Equations (7) and (8):

Fx
′ =

4Fx

ρgπD2l
(7)

Fz
′ =

4Fz

ρgπD2l
(8)

Based on the aforementioned verification, cell 2 and a time step of 0.002 s are selected
for numerical wave simulation. The simulated wave is a fifth-order wave with a period of
1.29 s and a wave height of 0.075 m. The comparison between the calculated and theoretical
values is depicted in Figure 5. It is evident from the figure that the simulated values closely
align with the theoretical values, thus affirming the accuracy of the model.

Figure 5. Comparison of calculated and theoretical values.

By selecting several cycles, the numerical results of the force acting on the cylinder are
compared with the experimental results, as shown in Figure 6; it was found that the model
has a high degree of agreement with the publicly available experimental data, proving that
it exhibits good computational accuracy for calculating the wave and current forces acting
on a partially submerged horizontal cylinder.

Figure 6. Wave current force on a horizontal cylinder.

2.5. Equation of Cylindrical Motion

This paper investigates the dynamic characteristics of a cylinder undergoing lateral
vibration in uniform flow. Using the overlapping grid of the STAR-CCM+ 2021.1 software
and combining it with the field function to simulate the lateral vibration of a cylinder, the
motion under different submergence depths and amplitudes is simulated by changing
the field function of the overlapping grid motion. The inflow velocity passing through a
cylinder is U, and the fluid density and motion viscosity coefficient are ρ and ν, respectively.
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The direction of inflow is from left to right; the corresponding coordinate system is set as x,
parallel to the direction of inflow, and z, perpendicular to the direction of inflow velocity.
The main consideration of this study is a cylinder with a diameter, D, of 0.1 m; a cylinder
density 1.2 times that of the fluid; and a water depth, d, of 1 m. A spring damping system
is used to control the undulating motion of a cylinder at different submergence depths and
flow velocities; its motion equation can be expressed as:

m
..
z + c

.
z + kz = Fz (9)

where z is the displacement of the object perpendicular to the direction of flow; m, c, and
k are the mass, damping, and spring stiffness coefficients per unit length of the cylinder,
respectively; and Fz is the hydrodynamic force of the z-coordinate axis.

2.6. Energy Capture Efficiency

In the process of flow-induced vibration, the oscillator is subjected to three forces in
the vertical direction—spring tension pressure, Fspr; structural and water flow resistance,
Fdamp; and fluid dynamic pressure, FFluid.

When the oscillator is below the equilibrium position and the direction of motion is
downward, its acceleration direction is upward. Therefore, the following equation can
be obtained:

mosca + Fspr + Fdamp = FFluid (10)

By reorganizing the above, the following equation can be obtained:

(mosc + ma)Y
′′
+ (c f luid + cstructure)Y′ + KY =

ρUΓ cos(2π fstt)
2

(11)

where c f luid is the additional damping of the fluid; cstructure is the total damping of the
vibrating structure; Γ is the intensity of discrete point vortices; U is the inflow velocity; D
and L are the diameter and length of the cylindrical oscillator, respectively; and ma is the
additional mass of the oscillator.

Moving the additional damping term of the fluid from the above equation to the right
side of the equation yields the following:

(mosc + ma)y
′′
+ cstructurey′ + Ky =

ρUΓ cos(2π fstt)
2

− c f luidy′ma (12)

The right side of the above equation represents the difference between flow force
and fluid friction, which is equal on both sides. Therefore, the left side can be integrated
to obtain the energy captured by the vibration system; this can then be divided by the
duration of the cycle to obtain the average effective power of the fluid. The calculation of
its energy and power is as follows:

PMesh =
1

Tosc

Tosc∫
0

((mosc + ma)y
′′
+ cstructurey′ + Ky)y′dt (13)

According to the theory of harmonic motion, the displacement, y, of the oscillator
exhibits a harmonic change over time, i.e., y = A sin(2π fosct). The main frequency of
vibration of the oscillator is fosc and its value is Tosc = 1/ fosc. In stable vibration, the
liquid resonates with the oscillator. According to the law of structural dynamics resonance,
the main frequency of vibration is equal to the main frequency of lift, i.e., fosc = fFluid.

PMesh =
1

Tosc

∫ Tose
0 cstructure y′2 dt =

1
Tosc

∫ Tose
0 cstructure 4π2 f 2

osc A2 cos2(2π fosc t)dt = 2π2 f 2
osc A2cstructure

(14)
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The ratio of the energy harvesting power of the oscillator to the fluid loss power is
defined as the energy harvesting efficiency, expressed as follows:

η =
PMesh
PFluid

=
2π2 f 2

osc A2cstructure
1
2 ρU3(2A + D)L

=
4π4ξ(m∗ + 1)( f ∗A∗)2

U3
r (2A∗ + 1)

(15)

where m∗ represents the mass ratio; ξ indicates the damping ratio; A∗ represents the
amplitude ratio; f ∗ represents the frequency ratio; and Ur represents the reduction speed.

3. Analysis of Calculation Results
3.1. Example Setting and Calculation Parameters

The horizontal position and grid of the cylinder, as per the numerical calculations,
are shown in Figures 1 and 2. The ratio of the distance from the center of the cylinder to
the static water surface to the diameter of the cylinder is S/D = −5~0; the water depth
is d = 1 m; the radius of the cylinder is R = 0.035 m~0.065 m; and the damping ratio is
0.02, which remains unchanged. Multiple flow velocities are selected, Ur = 1.445~3.372. In
numerical calculations, the grid division is set to perform multi-layer refinement near the
free surface, and 200 grids are divided around the cylinder. The thickness of the boundary
layer closest to the cylinder is D/1000 m. For the convenience of subsequent analysis, the
fluid loads in this paper are all dimensionless and are treated using empirical formulas that
do not consider the free surface; additionally, the force values are all average forces. The
dimensionless calculation formula is as follows:

CL =
2Fl

ρU2D
(16)

CD =
2Fd

ρU2D
(17)

where Fd represents the fluid load of the x-coordinate axis on the cylinder; Fl is the fluid
load of the z-coordinate axis on the cylinder, and is the value after deducting the initial
static buoyancy.

3.2. Load Analysis of Waves and Flows on Fixed Cylinders
3.2.1. Analysis of the Force Acting on a Fixed Cylinder under Different Submergence Depths

Figure 7 shows the resistance coefficient curves of a cylinder at different submergence
depths, with R = 0.05 m, T = 1.29 s, and Ur = 2.408. From the graph, it can be seen that as the
submergence depth increases, the resistance coefficient first increases and then decreases.
When S/D = 0, although the cylinder is in a semi-submerged state, the calculated resistance
coefficient is relatively high under the action of waves. When S/D = −0.5, the cylinder is
tangent to the free surface and is subjected to the combined action of waves and currents.
At this time, both the horizontal force on the cylinder and the resistance coefficient are the
highest. When S/D = −1 or −2, the cylinder is far from the free surface, which weakens
the influence of waves on the cylinder, significantly reducing the drag coefficient.

Figure 8 shows the lift coefficient curves of a cylinder at different submergence depths,
with R = 0.05 m, T = 1.29 s, and Ur = 2.408. From the graph, it can be seen that when S/D = 0
or −0.5, the lift coefficient is mostly negative, meaning that the cylinder is subjected to an
upward force. This is because only a portion of the flow above the cylinder passes through,
and an upward force is generated under the impact of the flow below. When S/D = −1 or
−2, the cylinder is a certain distance from the free surface, and the lift coefficient fluctuates
around 0, weakening the influence of the free surface and waves.



J. Mar. Sci. Eng. 2024, 12, 1101 10 of 25

Figure 7. Resistance coefficient diagram under different submergence depths.

Figure 8. Lift coefficient diagram under different submergence depths.

3.2.2. Analysis of the Force Acting on a Fixed Cylinder under Different Wave Conditions

Figure 9 shows the resistance coefficient curves of a cylinder at different flow velocities,
with R = 0.05 m, T = 1.29 s, and S/D = −2. From the graph, it can be seen that as the
flow velocity increases, the resistance coefficient gradually decreases. When Ur = 1.445,
the resistance coefficient changes significantly, and the force on the cylinder is affected
by the combined effects of waves and currents. Only the flow velocity is dimensionless,
resulting in a larger calculation result. When Ur = 1.926~3.372, the increase in flow velocity
significantly reduces the impact of wave blockage. After the non-dimensionalization of
flow velocity, the larger the flow velocity, the smaller the resistance coefficient. It can be
seen that flow velocity plays an important role in the horizontal force of the cylinder.

Figure 9. Resistance coefficient diagram under different flow velocities.
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Figure 10 shows the lift coefficient curves of a cylinder at different flow velocities, with
R = 0.05 m, T = 1.29 s, and S/D = −2. From the graph, it can be seen that as the flow velocity
increases, the lift coefficient gradually decreases and fluctuates around 0. When Ur = 1.445,
the lift coefficient is large, and the cylinder is affected by the combined effects of waves and
currents. Only the flow velocity is dimensionless, resulting in a larger calculation result.
When Ur = 1.926~3.372, the period of the lift coefficient curve is significantly reduced
compared to the case when Ur = 1.445, mainly due to the dimensionless formula.

Figure 10. Lift coefficient diagram under different flow velocities.

Figure 11 shows the resistance coefficient curves of a cylinder under different wave
periods, with R = 0.05 m, Ur = 2.408, and S/D = −2. From the graph, it can be seen that as
the wave period increases, the drag coefficient does not change much. When T = 1.15 s, due
to wave reflection and wave blocking, the resistance curve is not smooth, and the wave
blocking effect begins to increase after 23 s. When T = 1.29 s or 1.45 s, the drag coefficient
is also affected by wave reflection, but the effect is weaker compared to the case when
T = 1.15 s; additionally, wave blockage does not increase significantly with time. When
T = 1.2 s or 1.35 s, the overall coefficient is lower compared to that in other situations.

Figure 11. Resistance coefficient diagram under different wave periods.

Figure 12 shows the lift coefficient curves of a cylinder under different wave periods
at R = 0.05 m, Ur = 2.408, and S/D = −2. From the graph, it can be seen that as the wave
period increases, the lift coefficient gradually decreases, and the change is significant at
T =1.15 s. At this time, the waves are steeper, and the interference on the flow velocity is
more obvious. When T is small, during the propagation of waves, the distance from the free
surface above the cylinder will decrease, and the upward force of the cylinder will increase
under the effect of the flow velocity below. As T increases, wave propagation slows down,
and a high-speed flow zone forms between the cylinder and the free surface. As the wave
period increases, the downward force will be slightly greater than the upward force.
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Figure 12. Lift coefficient diagram under different wave periods.

3.2.3. Analysis of the Force Acting on a Fixed Cylinder under Different Cylinder Sizes

Figure 13 shows the resistance coefficient curves of cylinders with different cylinder
sizes, with T = 1.29 s, Ur = 2.408, and S/D = −2. From the graph, it can be seen that as the
radius of the cylinder increases, the drag coefficient first decreases and then increases. When
R is small, the absolute distance between the cylinder and the free surface is also small,
and under the action of waves, wave reflection and blockage effects are obvious. When
R = 0.05 m, the absolute distance between the cylinder and the free surface is relatively
great, which weakens the wave reflection and blocking effects. When R is large, although
the absolute distance between the cylinder and the free surface is also relatively large, the
increase in cylinder volume intensifies the fluctuation of the free surface under the impact
of flow velocity.

Figure 13. Resistance coefficient diagram under different cylinder radii.

Figure 14 shows the lift coefficient curves of a cylinder with different cylinder sizes,
with T = 1.29 s, Ur = 2.408, and S/D = −2. From the graph, it can be seen that as the
radius of the cylinder increases, the lift coefficient gradually increases. When R is small, the
maximum lift coefficient fluctuates due to the absolute distance between the free surface
and the liquid surface, which is affected by wave propagation. As the R value increases, the
lift curve becomes smoother and is more affected by the flow velocity than by the waves.



J. Mar. Sci. Eng. 2024, 12, 1101 13 of 25

Figure 14. Lift coefficient diagram under different cylinder radii.

3.3. Displacement Analysis of Rotating Cylinders by Waves and Flows

Figure 15 shows the vibration response and Fourier transform curves of a cylinder at
different flow velocities, with R = 0.05 m, S/D = −2, T = 1.29 s, k = 2 N/m, and L = 2D.
From the graph, it can be seen that the larger the flow velocity, the greater the vibration
amplitude; the main frequency is effectively the same under different reduced velocities.
When Ur = 1.445, the flow velocity is small, resulting in a lower amplitude of cylindrical
vibration, which is approximately 0.05 m. When Ur = 2.408, the increase in flow velocity
leads to an increase in the vertical force of the cylinder and its displacement; the downward
displacement is higher than the upward displacement. When Ur = 3.372, the amplitude of
cylindrical vibration increases significantly, about twice that of the case when Ur = 1.445,
while the main frequency of vibration remains unchanged. At different flow velocities, the
vortex leakage frequency varies, ultimately affecting the vibration amplitude.

Figure 15. Cylindrical motion curves at different flow velocities.

Figure 16 shows the vibration response and Fourier transform curves of a cylinder
with different arm lengths at R = 0.05 m, S/D = −2, T = 1.29 s, k = 2 N/m, and Ur = 2.408.
From the graph, it can be seen that both short and long force arms can cause instability
in the movement of the cylinder. The main frequencies are similar under different arm
lengths. When L = 1.5D, the force arm is shorter, and the rotation angle of the cylinder
during vibration is larger. The displacement is smaller under the influence of the force
arm. When L = 2.25D, the cylindrical vibration curve is relatively stable and reaches its
maximum value. When L = 2.5D, as the length of the force arm continues to increase,
the rotation point is further away, the rotational resistance increases, and the cylindrical
displacement begins to decrease; the main frequency does not change with the size of the
force arm.
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Figure 16. Cylindrical rotation motion curves under different moment arms.

Figure 17 shows the vibration response and Fourier transform curves of a cylinder
under different wave periods at R = 0.05 m, S/D = −2, Ur = 2.408, k = 2 N/m, and
L = 2D. From the graph, it can be seen that the larger the period, the greater the vibration
amplitude; its corresponding main frequency gradually shifts to the left. When T = 1.15 s,
the amplitude of cylindrical vibration is lower, with a maximum amplitude of about 0.05 m.
When T = 1.29 s and T = 1.45 s, the amplitude of cylindrical vibration increases with an
increase in wave period, the main frequency shifts to the left with an increase in wave
period, and the high-frequency characteristics become more obvious.

Figure 17. Cylindrical rotating motion curves at different periods.

Figure 18 shows the vibration response and Fourier transform curve of a cylinder at
different k values at the rotation point, with R = 0.05 m, S/D = −2, T = 1.29 s, Ur = 2.408,
and L = 2D. From the graph, it can be seen that the larger the k value, the larger the
vibration amplitude; additionally, the high-frequency characteristics begin to increase.
When k = 1.5 N/m, the torque is smaller, and the force arm has a lower limit on the rotation
of the cylinder. When k = 2 N/m, the increase in torque leads to an increase in vibration
amplitude under the action of waves and currents. When k = 2.25 N/m, the torque continues
to increase and reaches its maximum, and the curve of the cylindrical vibration response
becomes smoother and more regular. As the k value continues to increase, the displacement
slightly decreases.

Figure 19 shows the vibration response and Fourier transform curves of a cylinder
with different cylinder radii, with T = 1.29 s, S/D = −2, Ur = 2.408, k = 2 N/m, and L = 2D.
From the graph, it can be seen that the main frequency remains effectively unchanged at
different radii, and that the amplitude first increases and then decreases with the increase
in cylinder radius. When R = 0.035 m, the radius is smaller, making the vibration amplitude
of the cylinder more complex under the influence of wave currents. When R = 0.05 m, the
vibration amplitude increases significantly, and its motion period is relatively stable. As the
R value continues to increase, the amplitude of the cylindrical vibration response begins
to decrease. The further increase in the radius of the cylinder leads to an increase in the
overall mass, the absolute depth of submergence, and the absolute length of the force arm,
while the amplitude slightly decreases.
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Figure 18. Curve of rotation motion of cylinder under different torques.

Figure 19. Cylindrical rotation motion curves with different radii.

3.4. Analysis of the Interaction Flow Field between Waves and Rotating Cylinders

The flow field diagram, velocity diagram, and vorticity diagram of a rotating cylinder
under wave and current conditions were analyzed. Figure 20 shows both the flow field and
flow velocity diagrams, as well as their corresponding vorticity changes, with R = 0.05 m,
S/D = −2, T = 1.29 s, M = 0.08 N/m, L = 2D, and Ur = 2.408, which clearly shows the
changes in the interaction between the wave and the cylinder.

From the flow field diagram, it can be seen that the cylinder moves up and down
under the combined action of waves and currents, while the free surface directly above
the cylinder experiences fluctuations due to the movement of the cylinder. From the flow
velocity chart, it can be seen that, when there is a trough above the cylinder, the flow
velocity around it is lower. When the peak arrives, the flow velocity above and below
the cylinder increases rapidly, while the flow velocity in front and behind the cylinder
remains lower. When the trough temporarily decreases again, the flow velocity around
the cylinder also decreases. Overall, when the peak is close to the cylinder above, the flow
velocity around the cylinder is higher; however, when the trough is close to the cylinder
above, the flow velocity around the cylinder is lower. From the vorticity plot, it can be seen
that vortex shedding occurs under the influence of flow velocity on the cylinder itself; it
also occurs during the rotation of the cylinder. Combined with the analysis of the flow
velocity plot, when the wave peak is close to the top of the cylinder, the surrounding flow
velocity increases, accelerating vortex shedding. When the wave trough is close to the top
of the cylinder, the flow velocity around the cylinder is relatively low, reducing the vortex
shedding phenomenon of the cylinder.
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Figure 20. Flow field diagram and vorticity diagram of cylinder movement in one cycle.

3.5. Analysis of Fluid Load on Rotating Cylinders
3.5.1. Fluid Load Analysis under Different Wave Conditions

Figure 21 shows the resistance coefficient curves of a rigid rotating cylinder at different
flow velocities, with S/D = −2, R = 0.05 m, T = 1.29 s, k = 2 N/m, and L = 2D. From the
graph, it can be seen that as the flow velocity increases, the resistance coefficient gradually
decreases, and the horizontal force of waves on the cylinder plays an important role. After
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the dimensionless transformation of the flow velocity, the following results are obtained:
when Ur = 1.445 or 1.926, the flow velocity is small, and the cylinder is subjected to a smaller
horizontal force from the ocean current. During the rotation of the cylinder, significant
fluctuations occur in the free surface, and wave reflection and blockage cause fluctuations
in the resistance coefficient. When Ur = 2.890 or 3.372, the flow velocity is relatively
high, and the proportion of flow velocity in the comprehensive influence of the wave
and current increases, resulting in a decrease in the overall coefficient after dimensionless
transformation, as well as a significant reduction in the wave blockage effect.

Figure 21. Cylindrical resistance coefficient curves at different reduction speeds.

Figure 22 shows the lift coefficient curves of a rigid rotating cylinder at different flow
velocities, with S/D = −2, R = 0.05 m, T = 1.29 s, k = 2 N/m, and L = 2D. From the graph,
it can be seen that as the flow velocity increases, the lift coefficient gradually decreases,
the impact of wave blockage on the cylinder decreases, and the curve becomes smoother.
When Ur = 1.445, both the flow velocity and the vertical force from the ocean current on
the cylinder are small. Under the combined action of waves and currents, the proportion of
the waves is high, resulting in a larger lift coefficient after dimensionless transformation.
When Ur = 3.372, the higher the flow velocity, the greater the vertical force of the ocean
current and the higher the proportion of the ocean current, under the combined action of
waves and currents.

Figure 22. Cylinder lift coefficient curves at different reduction speeds.

Figure 23 shows the resistance coefficient curves of a rigid rotating cylinder under
different wave periods, with S/D = −2, R = 0.05 m, Ur = 2.408, k = 2 N/m, and L = 2D.
From the graph, it can be seen that the rotation of a rigid cylinder has a significant impact
on wave reflection and blockage at different wave periods. The curve becomes rough, and
the larger the wave period, the higher the resistance coefficient. When T = 1.15 s, the period
is small and is greatly affected by the rotation of the cylinder, resulting in the most unstable
change in the resistance coefficient. When T = 1.45 s, the period is relatively large, and
the wave propagation process is relatively smooth. The reflection generated by the rigid
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rotating cylinder has an impact on the characteristics of the wave, and at some points, the
variation of the cylinder’s resistance coefficient is more complex.

Figure 23. Cylindrical resistance coefficient curves under different wave periods.

Figure 24 shows the lift coefficient curves of a rigid rotating cylinder under different
wave periods, with S/D = −2, R = 0.05 m, Ur = 2.408, k = 2 N/m, and L = 2D. From the
graph, it can be seen that as the wave period increases, its lift coefficient gradually increases
and the periodicity of its lift curve becomes more pronounced. When T = 1.15 s, the period
is small, and during the rotational motion of the cylinder, it has a significant impact on the
propagation of waves, resulting in unstable changes in the resistance coefficient. When
T = 1.45 s, the period is relatively large, and the wave propagation process is relatively
smooth. The impact of the cylinder’s rotational motion on the waves is relatively small,
ultimately leading to an increase in the stability of the cylinder’s force.

Figure 24. Lift coefficient curves of the cylinder under different wave periods.

3.5.2. Fluid Load Analysis under Different k Values

Figure 25 shows the resistance coefficient curves of a rigid rotating cylinder at different
k values at the rotation point, with S/D = −2, R = 0.05 m, T = 1.29 s, Ur = 2.408, and
L = 2D. From the graph, it can be seen that as the torque increases, the resistance coefficient
gradually increases. The greater the torque, the stronger the reverse force generated, which
offsets some of the forces on the cylinder and weakens the influence of the waves. When
k = 2 N/m, the torque is small, which limits the displacement of the cylinder, and the
minimum distance from the free liquid surface increases, weakening the horizontal force of
the waves. When k = 2.5 N/m, the torque is greater, which further limits the displacement
of the cylinder. The minimum distance from the free surface increases, and it is less affected
by waves, leading to an increase in the resistance curve.
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Figure 25. Cylindrical drag coefficient curves with different torques.

Figure 26 shows the lift coefficient curves of a rigid rotating cylinder at different k
values at the rotation point, with S/D = −2, R = 0.05 m, T = 1.29 s, Ur = 2.408, and L = 2D.
From the graph, it can be seen that as the value of k increases, the lift coefficient gradually
increases. When k = 1.5 N/m, the value of k is small, the amplitude of cylindrical motion
is large, and the change in the lift coefficient is unstable. When k = 2/m, as the value of k
increases, its lift coefficient becomes relatively stable, and the impact of reflection caused by
cylinder blockage on wave characteristics weakens. As the value of k continues to increase,
its lift curve becomes smoother.

Figure 26. Lift coefficient curves of cylinders with different torques.

3.5.3. Fluid Load Analysis under Different Cylinder Radii

Figure 27 shows the resistance coefficient curves of a rigid moving cylinder under
different cylinder radii, with S/D = −2, k = 2 N/m, T = 1.29 s, Ur = 2.408, and L = 2D. From
the graph, it can be seen that as the radius of the cylinder increases, the overall trend first
increases and then decreases; the drag coefficients are all unstable. When R = 0.035 m, the
radius of the cylinder is small, the absolute distance from the free surface is relatively short,
and it is strongly affected by wave currents, so its resistance curve is extremely unstable.
When R = 0.05 m, compared to R = 0.035 m, the curve is relatively stable and has a certain
regularity. As the radius continues to increase, the resistance coefficient begins to decrease.

Figure 28 shows the lift coefficient curves of a moving cylinder at different cylinder
radii, with S/D = −2, k = 2 N/m, T = 1.29 s, Ur = 2.408, and L = 2D. From the graph, it can
be seen that as the radius of the cylinder increases, the overall trend gradually decreases.
When R = 0.035 m, the radius of the cylinder is smaller, the absolute distance from the
free surface is shorter, and it is strongly affected by wave currents, so its lift curve is more
complex. When R = 0.05 m, compared to R = 0.035 m, the curve is relatively stable, and as
the radius continues to increase, the lift coefficient becomes unstable again.
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Figure 27. Cylindrical resistance coefficient curves with different cylindrical radii.

Figure 28. Lift coefficient curves of cylinders with different cylindrical radii.

3.5.4. Fluid Load Analysis under Different Arm Lengths

Figure 29 shows the resistance coefficient curves of a rigid rotating cylinder under
different arm lengths, with S/D = −2, R = 0.05 m, T = 1.29 s, k = 2 N/m, and Ur = 2.408.
From the graph, it can be seen that as the length of the lever arm increases, the resistance
coefficient of the cylinder gradually increases. When L = 1.5D, the rotation angle of the
cylinder is relatively large. Driven by the rotation of the cylinder, the wave blocking effect
increases, weakening the influence of the horizontal force from the wave flow. When
L = 2.5D, the length of the force arm increases, the rotation angle and wave blocking effect
decrease, and the drag coefficient increases.

Figure 29. Cylindrical resistance coefficient curves at different moment arm lengths.

Figure 30 shows the lift coefficient curves of a rigid rotating cylinder under different
arm lengths, with S/D = −2, R = 0.05 m, T = 1.29 s, k = 2 N/m, and Ur = 2.408. From the
graph, it can be seen that as the length of the lever arm increases, the negative lift coefficient
gradually increases and the positive lift coefficient gradually decreases. When L = 1.5D, the
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rotation angle of the cylinder is larger, the rotation speed of the cylinder is greater, and its
lift coefficient is not periodic, making it more complex. When L = 2.5D, the length of the
lever arm increases, the rotation angle decreases, and the lift coefficient becomes regular
and predictable.

Figure 30. Lift coefficient curves of the cylinder with different moment arm lengths.

3.6. Calculation of Energy Harvesting Efficiency of a Cantilever Cylinder Rotating around an Axis
under Wave Current Conditions

Figure 31 shows the bar graph of the energy harvesting efficiency of a rotating cylinder
under different spring stiffness values (k), with S/D = −2, T = 1.29 s, R = 0.05 m, Ur = 2.408,
and L = 2D. From the graph, it can be seen that as the value of k increases, the energy
harvesting efficiency of the rotating cylinder first increases and then decreases. When
k = 1.5 N/m, the value of k is small, the torque on the cylinder is less restrictive, the
amplitude of cylinder motion is higher, and the displacement is larger, resulting in a lower
energy harvesting efficiency, despite it being the highest total energy harvesting recorded.
When k = 2.25 N/m, as the value of k increases, the amplitude of cylindrical motion
decreases, the energy captured in the region decreases, and the total energy also decreases
accordingly; the calculated energy capture efficiency is the highest. When k = 2.5 N/m, the
further increase in k value greatly limits the motion amplitude, reduces the displacement
of cylindrical motion, and significantly reduces its energy capture, ultimately leading to a
decrease in energy capture efficiency.

Figure 31. Energy capture efficiency of a rotating moving cylinder under different k values.

Figure 32 shows the bar graph of the energy capture efficiency of a moving cylinder at
different flow velocities, with S/D = −2, R = 0.05 m, k = 2 N/m, T = 1.29 s, and L = 2D. From
the graph, it can be seen that as the flow velocity increases, the energy capture efficiency of
the rotating cylinder gradually decreases. Under the joint action of waves and currents,
the displacement of the cylinder caused by the flow velocity is not significant, resulting
in a low energy capture efficiency in the calculation results. When Ur = 1.445, the flow
velocity is small, and the influence of waves on the displacement of the cylinder is relatively
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high. When the flow velocity is non-dimensionalized, its numerical value is higher. When
Ur = 2.408, as the flow velocity increases, the amplitude of cylindrical motion does not
increase significantly, and the energy efficiency captured in the region decreases. When
Ur = 3.372, as the flow velocity continues to increase, although the motion amplitude
continues to increase, the total energy per unit time increases due to the increase in flow
velocity, ultimately leading to a slight decrease in energy harvesting efficiency.

Figure 32. Energy harvesting efficiency of a rotating moving cylinder at different reduction speeds.

Figure 33 shows the bar graph of the energy capture efficiency of a moving cylinder
under different wave periods, with S/D = −2, R = 0.05 m, k = 2 N/m, Ur = 2.408, and
L = 2D. From the graph, it can be seen that as the wave period increases, the energy capture
efficiency of the rotating cylinder first increases and then decreases. When T = 1.15 s,
the wave period is small, the amplitude curve of the cylinder’s motion is stable, and
the vibration amplitude is large, resulting in a higher energy capture efficiency. When
T = 1.29 s, with the increase in wave period, the amplitude of cylindrical motion decreases,
and the periodicity of motion becomes less obvious. The energy captured in the region
decreases significantly, but the calculated energy capture efficiency is at its highest. When
T = 1.45 s, as the wave period continues to increase, although the motion period becomes
unstable, the maximum amplitude of the motion increases significantly, ultimately leading
to an increase in energy capture efficiency, but this is less than is the case when T = 1.15 s.

Figure 33. Energy harvesting efficiency of a rotating cylinder under different wave periods.

Figure 34 shows the bar graph of the energy capture efficiency of a moving cylinder
under different arm lengths, with S/D = −2, R = 0.05 m, k = 2 N/m, and Ur = 2.408. From
the graph, it can be seen that as the length of the force arm increases, the energy harvesting
efficiency first increases and then decreases. When L = 1.5D, the force arm is shorter, the
angle of cylindrical axis motion is larger, and the amplitude of the motion curve is lower,
resulting in a lower energy harvesting efficiency. When L = 2.25D, as the length of the lever
arm increases, the amplitude of the cylindrical motion slightly increases, and the periodicity
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of the motion becomes apparent, with the highest proportion of energy being captured in
this region. When L = 2.5D, as the length of the force arm continues to increase, the motion
period becomes unstable, and the motion amplitude begins to decrease, ultimately leading
to a decrease in energy harvesting efficiency.

Figure 34. Energy harvesting efficiency of a rotating moving cylinder with different moment
arm lengths.

Figure 35 shows the bar graph of the energy capture efficiency of a moving cylinder at
different cylinder radii, with S/D = −2, T = 1.29 s, k = 2 N/m, Ur = 2.408, and L = 2D. From
the graph, it can be seen that as the radius of the cylinder increases, the energy capture
efficiency first increases and then decreases. When R = 0.035 m, the radius of the cylinder is
small, and the displacement to radius ratio is large, resulting in a higher energy capture
efficiency per unit of time. When R = 0.05 m, as the radius of the cylinder increases, the ratio
of displacement to the radius decreases, and the energy captured in the region increases;
its total energy also increases accordingly, leading to a decrease in final efficiency. When
R = 0.065 m, the radius and the motion amplitude continue to increase, the absolute length
of the force arm increases, the rotation angle decreases, and its energy harvesting efficiency
is similar to that of the vertical equation.

Figure 35. Energy harvesting efficiency of a rotating moving cylinder with different cylindrical radii.

4. Conclusions

Based on the CFD numerical simulation method, the load analysis of wave currents
with free surfaces under different submergence depths, flow velocities, cylinder sizes, and
wave periods was studied. The following conclusions were obtained by analyzing the
numerical simulation results:

(1) When a cylinder approaches a free surface, its hydrodynamic load under wave current
conditions is more sensitive to changes in submergence depth, which affects wave
reflection and wave blockage.

(2) The main frequency of the Fourier transform of the cylindrical motion curve remains
unchanged at different flow velocities, k values, force arms, and radii; the main



J. Mar. Sci. Eng. 2024, 12, 1101 24 of 25

frequency of the Fourier transform of the cylindrical motion curve varies with the
wave period and the depth of submergence.

(3) The efficiency of rotary cylindrical energy harvesting is influenced by various factors,
among which an initial increase and then decrease are observed with a gradually
increasing k value, arm length, period, and radius, in addition to an observed decrease
with increasing flow velocity.
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