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Abstract: The path planning problem is an important issue in maritime search and rescue. This paper
models the path planning problem as a dynamic vehicle routing problem. It first designs a dynamic
generator that transforms the existing benchmark sets for the static vehicle routing problem into
dynamic scenarios. Subsequently, it proposes an effective Dynamic Ant Colony Optimization (DACO)
algorithm, whose novelty lies in that it dynamically adjusts the pheromone matrix to efficiently handle
customers’ changes. Moreover, DACO incorporates simulated annealing to increase population
diversity and employs a local search operator that is dedicated to route modification for continuous
performance maximization of the route. The experimental results demonstrated that the proposed
DACO outperformed existing approaches in generating better routes across various benchmark sets.
Specifically, DACO achieved significant improvements in the route cost, serviced customer quantity,
and adherence to time window requirements. These results highlight the superiority of DACO in the
dynamic vehicle routing problem, providing an effective solution for similar problems.

Keywords: maritime search and rescue; dynamic vehicle routing problem; ant colony optimization;
pheromone matrix; simulated annealing

1. Introduction

The oceans cover over 70% of the Earth’s surface, serving as not only a source of life
and a treasure trove of resources, but also as a crucial domain for human activities, including
marine fisheries, tourism, and resource exploitation. One of the reasons for the prosperity
of maritime businesses is that, despite the increasing intensity of marine transportation, the
number of maritime accidents has not sharply increased, thanks to improvements in safety
measures and technology. This observation can be seen from a recent study showing that,
with the overall increment in oil trading, oil spills have decreased [1]. Nonetheless, once
maritime accidents happen, they could result in significant human casualties, property losses,
and severe environmental impacts. Hence, in order to promote the long-term development of
maritime businesses, it has become imperative to conduct research and implement maritime
search and rescue missions [2]. To ensure the efficient execution of these missions, it is
common to deploy a group of unmanned aerial vehicles (UAVs) to conduct surveillance
in the target area and initiate rescue operations based on the real-time assessment of the
disaster situation [3]. In maritime rescue operations, efficient path planning for UAVs
becomes crucial. UAVs depart from the base station carrying a certain amount of rescue
supplies, then they patrol multiple disaster sites, locate the targets in need of rescue, and
drop the rescue equipment, such as lifebuoys. After completing the mission, these UAVs
need to return to the base station. The path planning problem for UAVs in maritime search
and rescue can be modeled as a vehicle routing problem (VRP) [4,5], aiming to find optimal
paths that minimize search and rescue time while maximizing the effectiveness of the
rescue efforts.

As a variant of the Traveling Salesman Problem (TSP) [6], the VRP [7] is an NP-hard
combinatorial optimization problem that originated in the field of logistics. It was first
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introduced by Dantzig and Ramser [8] in 1959 to address the challenge of route planning and
resource utilization for delivery vehicles. The fundamental idea of the VRP is to determine
the optimal routes for a set of delivery locations and a given number of vehicles, aiming to
fulfill all customer demands while minimizing vehicle travel distances. In recent years, in
order to model real-world scenarios more accurately, many variants of the VRP [9,10] have
been proposed, in which the VRP with time windows (VRPTW) [11,12] is a typical one. In
the VRPTW, each customer has a specific time window within which the delivery should be
made. The objective is to find optimal routes for vehicles to satisfy customer demands while
respecting the time window constraints.

In real-world applications, the dynamic nature of logistics operations is an unavoidable
issue that poses significant challenges [13,14]. For example, new search and rescue targets
can emerge at any time, while some other targets may be deemed unreachable due to either
the impossibility of rescue or because they have been confirmed to be safe. The inherent
unpredictability of a real-world VRP has resulted in the expansion of the static VRP to a
category of problems known as the dynamic VRP (DVRP) [15,16]. In particular, this paper
constructs and studies a dynamic vehicle routing problem with time windows (DVRPTW),
since the rescue operation needs to be carried out within an urgent time frame [17].

Among the approaches to tackle the DVRPTW, meta-heuristics demonstrate efficient
performance, as they draw inspiration from nature and can provide an approximate optimal
solution within a reasonable time [9,18]. As one of the typical meta-heuristics, Ant Colony
Optimization (ACO) [19] has been successfully applied to various VRPs. ACO mimics
the behavior of ants searching for food in a distributed manner, which closely resembles
the DVRP, and ACO can accommodate uncertainty in the DVRP by introducing stochastic
elements; this enables ACO to address the DVRP, leading to more robust solutions [20].
However, ACO encounters a significant challenge when the environment changes, which
has not been efficiently overcome, i.e., the pheromones from the previous environment tend
to bias the algorithm towards the old optimal solution [21]. This poses a difficulty for the
algorithm to adapt and find the new optimal solution. Once the algorithm converges, it may
struggle to adjust to the changing environment. One potential solution is to re-initialize
the pheromone matrix, but treating each dynamic change as a complete restart step is
often inefficient.

Therefore, how to adjust the pheromone matrix to adapt to dynamic changes has
become a crucial issue [20]. When a small portion of the dynamic environment changes,
most of the information provided by the old pheromone matrix remains relevant to the
new environment. In this case, only a small part of the pheromones needs to be adjusted.
However, if the majority of the environment undergoes significant changes, then it becomes
necessary to re-initialize the entire pheromone matrix.

Several strategies have been proposed and combined with ACO to reduce the re-
optimization time while efficiently maintaining high-quality output. These strategies can
be divided into four categories: increasing diversity after a dynamic change [21], main-
taining diversity during the execution [22], memory-based schemes [23], and hybrid al-
gorithms [24]. Among these strategies, solving the DVRP based on the immigration strat-
egy [25] shows promising results. In the immigration strategy, some newly generated ants
are called immigrant ants, which replace some ants in the current population and improve
the performance of the overall algorithm. Based on the different ways of immigration
generation, it can be divided into the random generation of immigrants (RIACO), the
generation of immigrants based on elitism (EIACO), and the generation of immigrants
based on memory (MIACO) [25].

RIACO generates n random immigrants to replace n ants that are the worst performing
ants in the current environment to improve algorithm performance. EIACO selects the best
performing ants as immigrants to replace the worst performing ants in the environment
to improve the performance of the algorithm. MIACO is suitable for cyclic environments
where the environmental changes are cyclic, storing several memories of migrants to replace
the corresponding ants when the environment changes.
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However, the algorithms mentioned above are not efficient in addressing the issue of
the DVRPTW. For example, MIACO may perform well in cyclic scenarios, but poorly in oth-
ers. EIACO might also suffer from local optima issues, where the algorithm converges to a
local optimal solution and fails to find the global optimum. The RIACO algorithm typically
relies on probabilistic models to address uncertainty, which may not always accurately
represent real-world uncertainties. Hence, this paper designs a new strategy for adjusting
the pheromone matrix to effectively address the random presence and disappearance of
rescue targets in a dynamic environment.

Furthermore, in order to enhance the population diversity and search abilities of ants,
simulated annealing (SA) is incorporated into ACO for solving the DVRPTW. SA is a
metaheuristic algorithm inspired by the annealing process in metallurgy. It mimics the slow
cooling of a material, allowing its atoms to settle into a low-energy state. In the context of
optimization, SA can help ACO escape local optima and explore a wider search space by
accepting suboptimal solutions with a certain probability.

The dynamic generators [26,27] utilized in the literature are typically based on known
optimal solutions, meaning that the optimal solution remains unchanged throughout the
environmental changes. While this approach ensures that we can compare the algorithm’s
performance against the optimal value, it does not accurately reflect the real-world scenario
where changes are often unpredictable. In this paper, in order to better simulate real-
world scenarios, we have designed a random dynamic generator that accounts for the
unpredictable nature of environmental changes.

Given the dynamic nature of logistics, the DVRPTW emerges as a critical concern and
opportunity for exploiting operational efficiencies. Recent developments in real-time data
acquisition and intelligent transportation systems have only increased the relevance and
complexities involved in this pursuit. Despite various efforts in the past and the application
of metaheuristic algorithms, like ACO, there still remains a gap in effectively adapting to
real-time changes and unpredictable elements in the routing problem. In this regard, the
paper addresses the above research questions as follows:

(1) How can the pheromone matrix for ACO be adapted more effectively so that it is
responsive to changing environmental conditions without frequent complete restarts?

(2) How would SA enhance the diversity and search capability of the ants in a given
DVRPTW instance?

(3) How can a dynamic generator be conceived in the light of the unpredictability of
real-world scenarios, to make the simulation of environments realistic, hence offering
a good testing ground for new algorithms?

This paper makes the following contributions:

(1) A novel strategy is proposed to adapt the pheromone matrix and effectively handle
random rescue targets in dynamic environments.

(2) To enhance the overall performance of ACO for solving the DVRPTW, the powerful
technique of SA is employed, and a local search operator is designed to further
improve the performance of the generated routes.

(3) Considering the limitations of the existing dynamic reference generator in accommodat-
ing real-world scenarios, this paper designs a random dynamic generator to provide a
more realistic simulation, thereby achieving a better alignment with actual conditions.

The rest of this article is organized as follows. Section 2 introduces the related work
including the basic VRP problems and their dynamic extension and the basic ideas of ACO
and SA. Section 3 describes the proposed algorithm for solving the DVRPTW. Section 4
introduces the dynamic benchmark generator. It can generate DVRPTW instances dynam-
ically. Section 5 gives the experimental results and analysis. Finally, Section 6 gives the
discussion and future work.
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2. Related Work
2.1. The Basic VRP and Its Variants

In the VRP [7], there are typically a set of vehicles and a set of customers. Each customer
has a specific demand. The vehicles need to consider constraints such as vehicle capacity
while fulfilling customer demands. The objective of the VRP is to find the optimal routes
for a set of vehicles that satisfy all customer demands and minimize the overall costs or
maximize the benefits, while meeting the constraints. Common costs include vehicle travel
distance, vehicle utilization time, and customer satisfaction (e.g., waiting time).

The mathematical model of the VRP can be represented as follows:
1. Objective function: This measures the overall costs. Travel cost is considered as the

core metric for evaluating the quality of a route. It is computed with a certain formula, as
given by Equation (1). We can set the best path by assessing different available routes and
the travel cost associated with each. The best route gives the least total traveling distance.

f (c) = min
n

∑
i=1

n

∑
j=1

dij

u

∑
k=1

xijk (1)

where i and j represent node i and node j, respectively. The variable dij represents the
distance between node i and node j, and xijk indicates whether the kth vehicle passes
through node i and node j. The symbols n and u represent the total number of nodes (i.e.,
depot and customers) and the total number of vehicles, respectively.

2. Constraints: These are conditions that restrict the vehicle routes. Common constraints
include vehicle capacity limits, time window limits, and vehicle travel distance limits.

n

∑
i=1

qi

u

∑
k=1

xijk ≤ Q,∀i, j ∈ {1, ..., n}, ∀k ∈ {1, ..., u} (2)

n

∑
i=1

xisk −
n

∑
j=1

xsjk = 0,∀k ∈ {1, ..., u}, ∀s ∈ {0, ..., n} (3)

n

∑
i=1

xi0k ≤ 1,∀k ∈ {1, ..., u} (4)

n

∑
j=1

x0jk ≤ 1,∀k ∈ {1, ..., u} (5)

Equation (2) ensures that the vehicle load cannot exceed the maximum load, where
qi represents the demand of customer i. Equation (3) ensures that the vehicle serves the
customer, as well as leaving the customer immediately, and Equations (4) and (5) ensure
that each vehicle is dispatched at most once.

In order to consider the delivery time requirement, the VRPTW arises [11]. The VRPTW
not only considers all the constraints of the VRP, but also needs to consider the time window
constraint. That is, it is required that each customer be served within a specific time window
[ei, li], where ei and li represent the earliest and latest service time of node i, respectively.
As shown in Equations (6) and (7),

ti + wi + si + travelij = tj,∀i, j = 0, ..., n, i ̸= j (6)

ej ≤ tj ≤ lj,∀j = 0, ..., n (7)

where ti indicates the arrival time of node i, wi indicates the waiting time of node i, si
indicates the service time of node i, travelij indicates the time to pass the distance from node
i to node j, and tj indicates the arrival time of node j. Equation (6) calculates the arrival
time of node j, and Equation (7) ensures that the arrival time is within the range [ej, lj].
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The characteristic of the DVRP [15,28] is that the problem is partially known in advance
and changes dynamically during operation. Most DVRPSs can be divided into three cate-
gories [29]: the DVRP with random requests (DVRPRR), the DVRP with random demands
(DVRPRD), and the DVRPRD with random travel times (DVRPRTT). In the DVRPRR, the
customer waiting for service is not fully aware in advance, but dynamically places the
request within the planned scope during the process. In the DVRPRD, the location of the
customer is known. However, the quantity required is only known when the vehicle arrives
at the customer’s location. In the DVRPRTT, the travel time between locations is related to
the speed of the vehicle and random fluctuations in traffic conditions.

This paper focuses on the maritime search and rescue tasks using UAVs in a dynamic
environment. We suppose that all UAVs start from the same base station. Drones can make
round trips in the disaster area without considering flight distance limitations. They are,
however, subject to payload restrictions, meaning the amount of rescue supplies they can
carry is limited. When a disaster strikes, the affected area is divided into small rescue zones
(which can be represented as nodes in a graph). UAVs depart from the base station to
provide aid to these zones, delivering relief supplies based on the actual number of affected
people in each area. Each rescue area has a time constraint, as rescue efforts become futile
beyond the upper limit of the time frame. Additionally, as time progresses, new affected
areas may emerge, as previously introduced, and some existing disaster sites may no longer
require assistance, making this a dynamic problem. In summary, the maritime search and
rescue problem is modeled as the DVRPTW, where the rescue targets fluctuate randomly.
To describe dynamism, the degree of dynamism (DoD) is defined by Lund et al. [30], as
shown in Equation (8).

DoD =
nd

nd + ns
∈ [0, 1] (8)

where nd indicates the dynamic requirement and ns indicates the known static requirement.

2.2. Literature Review

The VRP is a fundamental problem in logistics and operations research, involving
the design of optimal routes for a fleet of vehicles to deliver goods or services to a set
of customers. Due to its NP-hard nature, researchers have developed various heuristic
and metaheuristic algorithms to find near-optimal solutions within reasonable computa-
tion times. Traditional methods such as the Clarke–Wright Savings Algorithm [31] and
Branch-and-Bound method [32] have been extensively studied. However, with the increas-
ing complexity of modern logistics, researchers have begun exploring more sophisticated
approaches, such as genetic algorithms (GAs), ACO, and Tabu Search (TS), which have
significantly advanced the solutions to the VRP. Barbarosoglu and Ozgur (1999) proposed
a TS algorithm for the single-depot VRP, generating new neighborhoods by considering
the distribution pattern of the dealers’ locations [33]. Baker and Ayechew (2003) developed
a GA for the basic VRP, demonstrating its widespread application to combinatorial opti-
mization problems [34]. Wu and Gao (2023) proposed an ACO-based method for solving
the Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Window (VRP-
SPDTW), incorporating destroy and repair strategies to enhance global search capabilities
and avoid local optima [35]. Souza et al. (2023) introduced a hybrid algorithm combining
Differential Evolution and local search for the Capacitated Vehicle Routing Problem (CVRP),
demonstrating high efficiency across multiple classical datasets [36]. Vincent et al. (2024) de-
veloped a Simulated Annealing with Variable Neighborhood Descent (SAVND) algorithm
for the Heterogeneous Fleet Vehicle Routing Problem with Multiple Forward/Reverse
Cross-Docks (HF-VRPMFRCD), providing optimal solutions for small-scale instances and
outperforming the GUROBI solver for larger instances [37].

The VRPTW is an extension of the VRP where each customer must be served within
a specific time window. This additional constraint increases the problem’s complexity,
but also makes it more applicable to real-world scenarios requiring strict delivery times.
Frey et al. (2023) proposed the VRPTW with Flexible Delivery Locations (VRPTW-FL)



J. Mar. Sci. Eng. 2024, 12, 1167 6 of 27

model, allowing deliveries at flexible alternative locations, applicable in parcel deliv-
ery and medical service scheduling [38]. Ahmed and Yousefikhoshbakht (2023) studied
the Heterogeneous Fixed Fleet Open Vehicle Routing Problem with Time Windows (HF-
FOVRPTW), introducing Mixed-Integer Linear Programming and an improved Tabu Search
algorithm [39]. Wang et al. (2023) addressed the Multi-Depot VRP with Time Windows and
Three-Dimensional Loading Constraints (MDVRPTW-TDLC), using customer-clustering-
based resource-sharing methods and vehicle compartment partition policies to optimize
operational costs [40]. Lehmann and Winkenbach (2024) presented a matheuristic for
the Two-Echelon Multi-Trip VRP with Deliveries, Pickups, and Time Windows (2E-MT-
VRP-PTW), integrating exact formulations for first-echelon routing and adaptive large
neighborhood search for second-echelon routing [41]. Yu et al. (2024) proposed a simu-
lated annealing solution for the Multi-Depot Waste Collection VRP with Time Windows
and Self-Delivery Option (MDWCVRPTW-SDO) [42]. Cavecchia et al. (2024) developed a
Decision Support System (DSS) based on a micro-service architecture for Multi-Trip VRP
(MT-VRP), applied in pharmaceutical distribution [43]. Lee and Jeong (2024) introduced
an optimized routing strategy for accessible taxis based on the travel behavior of people
with disabilities, using Gaussian Mixture Models [44]. Luo et al. (2024) proposed a two-
stage heuristic algorithm for the Electric Vehicle Routing Problem with Time Windows
(E-VRPTW), incorporating dynamic programming and supercharging station factors [45].

The DVRP further extends the VRP by considering the dynamic nature of real-world
logistics, where customer requests can change in real time, requiring adaptive routing ad-
justments. The DVRP is particularly challenging as it necessitates real-time decision-making
and adaptation to constantly changing conditions. Ghannadpour et al. (2014) presented a
multi-objective DVRP with fuzzy time windows, where real-time requests arrive randomly
and are managed using a genetic algorithm to optimize fleet size, travel distance, and
customer satisfaction [46]. Gholami-Zanjani et al. (2019) proposed a cooperative strategy
for the DVRP in disaster relief, using a mixed-integer nonlinear model and a genetic al-
gorithm to solve multi-vehicle routing problems [47]. Kucharska (2019) introduced an
Algebraic Logical Meta-Model (ALMM) for the DVRP, considering the dynamic appear-
ance of customers [48]. Zacharia et al. (2021) considered the VRP with fuzzy payloads to
minimize travel distance and fuel consumption [49]. da Silva Junior et al. (2021) proposed
a framework using ant colony systems and variable neighborhood descent for the DVRP
with time windows [50]. Zajkani et al. (2021) developed a model predictive approach to
the DVRP, accounting for traffic congestion and utilizing distributed cooperative predictive
methods for optimization [51]. Sabar et al. (2021) proposed a population-based iterated
local search method for the DVRP, significantly improving search performance through
evolutionary operators [52]. Xu et al. (2022) studied the DVRP with limited supply and
a variable neighborhood region in refined oil distribution, presenting a multi-objective
optimization model and the Fuzzy C-means algorithm [53]. Zhang et al. (2023) intro-
duced a method for solving a large-scale DVRP, using knapsack-based linear models for
approximation and optimal acceptance and assignment decision rules [54]. Pan and Liu
(2023) proposed a deep reinforcement learning framework for the DU-VRP, incorporating
a partially observable Markov decision process for the real-time observation of customer
demand changes [55]. Kim (2023) studied a DVRP model with fuzzy customer response,
proposing routing strategies to reduce customer complaints and potential losses [56].

The above-formulated studies with all classified objective functions, constraints, and
solution algorithms used are of the model type, objective functions, model characteristics,
and solution algorithms. The following Table 1 itemizes the typical objective functions,
which include time windows, customer satisfaction, homogeneous fleets, heterogeneous
fleets, single depots, multiple depots, and the level of dynamicity. Model characteristics
pertain to the nature of the decision made, that is allocation, routing, and/or inventory, and
these characteristics translate to the following for the scope of the recent studies:

(1) Most recent studies were solely on the optimization of vehicle routing with time
windows; however, only a few research works took customer satisfaction into account.
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(2) Most studies deal with homogeneous fleets; only a few are based on heterogeneous fleets.
(3) Most of the studies from the literature are based on single-depot routing, with very

few based on multiple depots and dynamicity.
(4) Most of the studies in the literature are based on mixed algorithms and metaheuristic

algorithms such as the GA, TS, and ACO.

Table 1. Collection of relevant studies in the area of VRP variations.

Ref Method Time
Windows

Customer
Satisfaction

Homogeneous
Fleet

Heterogeneous
Fleet

Single
Depot

Multiple
Depots Dynamic

[9] HGA ✓ ✓ ✓ ✓ ✓
[12] MOMFMA ✓ ✓ ✓
[16] GA-PSO ✓ ✓ ✓ ✓
[22] PPL-ACO ✓ ✓ ✓
[23] MACO ✓ ✓ ✓
[31] Savings ✓ ✓
[32] Branch-and-Bound ✓ ✓
[33] TS ✓ ✓
[34] GA ✓ ✓
[35] ACO-DR ✓ ✓ ✓
[36] DE-LS ✓ ✓
[37] SAVND ✓ ✓
[38] ALNS ✓ ✓ ✓
[39] MILP ✓ ✓ ✓
[40] ENSGA-II ✓ ✓ ✓
[41] Matheuristic ✓ ✓ ✓
[42] SA ✓ ✓ ✓
[43] DSS ✓ ✓ ✓
[44] VRP-GMM ✓ ✓ ✓
[45] Two-stage ✓ ✓ ✓

Abbreviations—HGA: Hybrid Genetic Algorithm, MOMFMA: Multi-Objective Multi-Factorial Memetic Algo-
rithm, GA-PSO: Genetic Algorithm-Particle Swarm Optimization, PPL-ACO: Pairwise Proximity Learning-based
Ant Colony Optimization, MACO: Memetic Algorithm based on Ant Colony Optimization, TS: Tabu Search, GA:
genetic algorithm, ACO-DR: Ant Colony Optimization with Destroy and Repair, DE-LS: Differential Evolution
with Local Search, SAVND: Simulated Annealing with Variable Neighborhood Descent, ALNS: Adaptive Large
Neighborhood Search, MILP: Mixed-Integer Linear Programming, ENSGA-II: Extended Non-dominated Sorting
Genetic Algorithm II, Matheuristic: mathematical optimization with heuristic, SA: simulated annealing, DSS:
Decision Support System, VRP-GMM: Vehicle Routing Problem with Gaussian Mixture Model.

These studies not only contribute to the theoretical development of the VRP, but
also provide efficient algorithms to effectively address real-world maritime search and
rescue missions, ensuring timely and effective rescue operations. These works also promote
advanced optimization techniques that will be effectively used in the development of
intelligent maritime rescue systems. Furthermore, they will ensure sustainable maritime
safety management and provide decision support for smart maritime operations.

2.3. Ant Colony Optimization

ACO [19] is a meta-heuristic algorithm inspired by the foraging behavior of ants in
search of food. It solves combinatorial optimization problems by simulating the behavior
of ants in path selection and information exchange.

The basic idea of ACO is that ants guide each other’s choices by depositing pheromones
during the search process. Ants release a chemical substance called a pheromone on the
path as they move, and the concentration of the pheromone represents the goodness of the
path. Other ants perceive and respond to these pheromones, tending to choose paths with
higher concentrations. Over time, ants gradually concentrate on better paths, leading to the
discovery of better solutions to the problem. The specific process is shown in Figure 1.
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Figure 1. The flowchart of ACO.

Let τij be the pheromone intensity of the edge when an ant moves from i to j. The
initial pheromone concentration is generally set to a constant. The intensity of the trail
should be updated according to Equation (9).τij(t + n) = (1− ρ)τij(t) + ∆τij(t)

∆τij(t) =
n
∑

k=1
∆τk

ij(t)
(9)

where ρ is the pheromone volatility factor, which lies within the value range of [0, 1]. The
variable τij(t) represents the pheromone residual factor. The term ∆τij(t) is the pheromone
increment on the path (i, j) of this cycle, that is the sum of the amount of pheromone
released by all ants on the path (i, j). Initially, τij(t) = 0. The variable ∆τk

ij(t) represents the
increment of pheromone released by the kth ant on the path (i, j), which is calculated as
Equation (10).

∆τk
ij =

{
Q
Lk

, If ant k visits the edge (i, j)

0, otherwise
(10)

where Q is a constant, which has a certain effect on the convergence speed of the algorithm.
The variable Lk represents the total distance of the path taken by ant k in this cycle.

ACO for path optimization mainly includes two stages: path construction and pheromone
updating. In the process of exploration, ants judge the next node to be visited by sensing the
concentration of pheromone. Let us assume that the probability of ants moving from node i to
node j is expressed, and the way for calculating the probability is shown in Equation (11).

Pk
ij(t) =


[τij(t)]α ·[ηij(t)]β

∑
s∈k

[τis(t)]α ·[ηis(t)]β
j ∈ Jk

0 j /∈ Jk

(11)

where Jk represents the node set that the kth ant can select at time t and the variable α is
the information heuristic factor, reflecting the importance of the residual pheromone in
the ant’s exploration process. The variable β is an expectation heuristic factor, reflecting
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the relative importance of path expectation in ant exploration. Both α and β influence the
balance between exploration and exploitation in ant behavior during path selection in ACO.
The variable ηij represents the expected degree of an ant moving from node i to node j,
which can be calculated as Equation (12). Here, dij represents the distance of moving from
node i to node j.

ηij(t) =
1

dij
(12)

When each ant walks through the paths, the pheromone matrix needs to be updated,
and the calculation formula of pheromones on the edge (i, j) at time (t + n) is according to
Equation (9).

2.4. Simulated Annealing

SA [57] is a global optimization algorithm inspired by the annealing process of solids.
It simulates the behavior of solid materials as they cool down, gradually reaching a low-
energy state and finding the global optimal solution to a problem.

The basic idea of SA is to simulate the random movements of particles in a solid at
high temperatures and gradually cool them down. During the search process, the algorithm
accepts suboptimal solutions with a certain probability, allowing for exploration of the
solution space and avoiding getting trapped in local optima. As time progresses, the
algorithm reduces the probability of accepting suboptimal solutions, leading the search to
converge towards the global optimum.

We outline the pseudocode for SA in Algorithm 1. It begins with the initialization in
lines 1–3, where the point and temperature initializations are random, and such features
form the core within this algorithm. The main loop (lines 4–10) generates a neighboring
solution of the current solution, evaluates the probability of accepting the new solution
with the computed difference in energy between the two solutions, and updates the current
solution with the new solution if accepted. If this difference in energy ∆E between a new
solution and the current solution is less than 0 (∆E < 0), then take the new solution as the
current one. If the energy is higher, accept the new solution with a probability exp(−∆E/T),
where T is the current temperature. It was accepted that the algorithm would be proba-
bilistic in nature and allowed the ability of moving out from local optima, thus helping
enhance the search ability of the algorithm toward the global solution. The cooling of the
temperature should be performed after each iteration such that the algorithm can smoothly
converge toward solutions of high quality according to the cooling rate. Line 11: Continue
with the algorithm further until some stopping condition is met (e.g., the minimum temper-
ature reached or the number of iterations completed). Finally, the search process terminates
with the best solution available so far. The following structured description clearly states
the core mechanics of the simulated annealing algorithm and how the algorithm is used to
solve optimization problems.

Algorithm 1 Simulated annealing update procedure.

1: Initialize s with a random solution
2: Initialize temperature T to a suitable high value
3: Initialize cooling rate α
4: while termination conditions not met do
5: s′ ← Generate a neighbor of s
6: Calculate ∆E = E(s′)− E(s)
7: if ∆E < 0 or e−∆E/T ≥ random(0, 1) then
8: s← s′

9: end if
10: T ← α× T
11: end while
12: return s
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3. The Proposed Dynamic Ant Colony Optimization for Dynamic Vehicle Routing
Problem with Time Windows

To effectively address the proposed DVRPTW that is modeled based on maritime
search and rescue, this paper designs a dynamic ACO, named DACO. One of the primary
characteristics of DACO is that it dynamically adjusts the pheromone values in the matrix
to adapt to the new conditions. This adaptation allows the ants to explore alternative routes
that may be more efficient in the updated environment.

The proposed DACO is described in Algorithm 2. The variable S′ is used to record
the best routes in the evolutionary process. During the initialization stage (lines 1–4),
the counter i is initialized to 0 and all the customers except the depot v0 are unserved
initially. The initial pheromone value on each edge is set. Then, the optimization process
begins. In this process, the environment may change, for example new rescue targets may
emerge, while others, such as those that have been rescued or are no longer accessible, may
disappear from the list of active rescue points. If environment changes are detected, the
pheromone matrix will be updated dynamically based on the proposed strategy (line 7),
which can be seen in Section 3.2. If it is not the first generation, S′ will have a specific value
that becomes inaccessible. We also update S′ to ensure that we have feasible routes (line 9).

Algorithm 2 The pseudocode of DACO for the DVRPTW.

Require: Graph G = (V, E), where V is the set of vertices, which represent the rescue
targets and the base station of the UAVs, and E is the set of edges, with each edge’s
length corresponding to the flight distance between its two vertices.

Ensure: A feasible solution S′

1: i = 0, unserved targets set U ← V \ v0;
2: for edge e ∈ E do
3: Set the initial pheromone value M(n, n);
4: end for
5: while i < max_iter do
6: if dynamic changes then ▷ Strategy Section 3.2
7: Update(M(n, n));
8: if S′ ̸= ∅ then
9: Update(S′);

10: end if
11: end if
12: for ant k ∈ POP do ▷ Construct a feasible routes
13: Sk ← (v0);
14: while U ̸= ∅ do
15: U′ ← Filter(U); ▷ Filter the feasible targets
16: if U′ = ∅ then
17: Sk ← (Sk, v0);
18: else
19: u← Select(U′); ▷ Strategy Section 3.3
20: Sk ← (Sk, u), U ← U \ u;
21: end if
22: end while
23: Calculate the total cost f (ck) of Sk;
24: end for
25: S∗ = arg mink∈POP f (ck); ▷ Record the best routes
26: S∗ = arg min{ f (S′), f (S∗)}
27: S′ = Optimize(S∗); ▷ Strategy Section 3.4
28: Update the pheromone matrix M(n, n) based on S′;
29: i ++;
30: end while
31: return S′;
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Then, each ant, who is located at the base station at the beginning, goes to construct a
feasible route. In this process, a subset of candidate rescue targets is firstly selected (line 15).
The selection criteria are that the supplies required at these rescue targets must be within
the remaining payload capacity of the UAV, while also meeting the upper limit of its rescue
waiting time. It explicitly removes the candidates whose time windows exceed the limits,
as well as those whose demands exceed the capacity of the UAV. If the subset is empty, then
the ant goes back to the depot to refill (lines 16–17). Otherwise, a rescue target is selected
from the subset. In traditional ACO, Equation (11) is used to decide the next target that
the ant should go to. In the proposed DACO, the Metropolis rule in SA is combined with
the probability in ACO to select the next target. The details can be seen in Section 3.3. This
process is repeated until all targets have been added to the routes (lines 13–22). Then, the
total cost (i.e., flight distance) of the routes is calculated (line 23), and the best routes with
the minimal costs are recorded (line 25). A comparison between the costs of S′ and S∗ is
carried out, and the best one will be retained. After this, a local search operator is designed
and used to further optimize the best routes (line 27). The details of the local search operator
are introduced in Section 3.4. Then, the pheromone matrix is updated based on the best
routes generated in the above steps (line 28). Then, the counter is incremented by one,
and the new iteration is started, i.e., the routes are constructed according to the updated
pheromone matrix. When the maximum number of iterations (max_iter) is reached, the
algorithm stops.

3.1. Solution Generation

Solution generation is performed as follows: Ants leave the base station and scan
targets who can be served subject to the time limit and the remaining capacity of the UAV.
The selection probability of each target is computed according to Equation (11). Then,
the next target to be served is determined by either the highest selection probability or
randomly, as detailed in Section 3.3. As infeasible solutions are rejected in the screening
process, all solutions generated are feasible. If no serving targets are found, then the ant
returns to the base station, and a new ant is sent to serve targets again until all of them
are served.

As shown in Figure 2, node 0 represents the base station, and nodes 1, 2, 3, 4, 5, and 6
represent the targets. Initially, start from 0. After filtering, all targets meet the constraint
conditions. Then, calculate the selection probability based on Equation (11), and then select
a target. Suppose target 1 is chosen. After filtering again, only targets 2, 4, and 6 meet the
constraint conditions. Repeat the above steps, and choose target 2, followed by target 4.
After that, no customers meet the constraint conditions, so return to 0.

Figure 2. An example of solution generation.

3.2. Dealing with Dynamic Changes

The dynamic changes in the DVRPTW considered in this paper are divided into
two types: (1) new targets appear and (2) the original targets disappear. The strategies
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to deal with environment changes are to set a flag bit for each node. When dynamic
changes occur, only the tag bits need to be processed. The specific strategies are shown in
Algorithm 3, which can be explained as follows:

(1) If it is a new target, then the pheromone matrix is expanded from the original n×n
to (n + 1)×(n + 1). The values in the columns and rows where the new nodes are
located are filled according to Equation (12), and the remaining parts are filled by the
original matrix (lines 1–9).

(2) If it is to cancel a target, the values in the columns and rows in the pheromone matrix
where the canceled target is located are set to 0 (lines 10–17).

The algorithm will continue to evolve based on the modified pheromone matrix.

Algorithm 3 Update(M(n, n)).

1: if x new targets appear then
2: for i ∈ [1, x] do
3: for j ∈ [1, n + x] do
4: M[n + i][j] = 1/d(n+i)j;
5: M[j][n + i] = 1/dj(n+i);
6: end for
7: end for
8: n← n + x
9: end if

10: if y targets cancel their requirements then
11: for i ∈ [1, y] do
12: locate the number s of the canceled target;
13: for j ∈ [1, n] do
14: M[s][j] = 0, M[j][s] = 0;
15: end for
16: end for
17: end if

In cases where there are dynamic changes, the optimal routes will be inaccessible. In
order to ensure the existence of feasible routes at all times, the original optimal routes will
be updated as follows:

(1) For the addition of a new target, a new UAV will be assigned to serve it. The reason
for this operation is to avoid violating constraint conditions, as assigning a new
UAV ensures that the target can be serviced without conflicting with the constraints.
Subsequently, in the optimization process, the targets served by the newly added UAV
can be merged into the routes of the existing UAVs, thereby achieving a more optimal
solution over time.

(2) For the cancellation of a target, it is straightforward to remove that target from the
original route. In this scenario, since it is guaranteed that the updated routes will
always be compliant with the constraint conditions, there is no need to perform
additional checks or considerations regarding constraint violations.

3.3. Improved Ant Colony Optimization Based on Simulated Annealing

The idea that the probability is proportional to the temperature in SA is applied to
ACO. In the new algorithm, a random number x∈ (0, 1) is generated firstly, which follows
a uniform distribution. Then, x is used to compare with the probability θ calculated in
Equation (13), where i and max_iter represent the current number of iterations and the
maximum number of iterations, respectively. If x is less than θ, the node with the largest
probability, calculated as Equation (11), is selected. Otherwise, the roulette algorithm is
used to randomly generate the next visited node.

θ = e
−i

max_iter (13)
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3.4. Local Search Operator

This section proposes a local search operator to further optimize the best routes
obtained in each generation. Firstly, the routes are divided into high-load or low-load
according to their load, which is calculated as the total demands of targets served by them.
The division is given in Equation (14), where c_load and max_load represent the current
load of the route and the maximal load of these routes, respectively. If λ is less than 0.5, it
is considered as low-load. Otherwise, the route is high-load.

λ =
c_load

max_load
(14)

For the high-load routes, the exchange strategy is carried out on them. The exchange
strategy learns from the idea of 2-OPT [58], but restricts the exchange between two routes.
That is, a random node from one route is chosen to exchange with the node of another
route. If the new routes obtained through the exchange process can satisfy the constraints
and result in lower total costs compared to the original routes, the new routes are accepted
and the process is terminated. However, if the new routes fail to meet these criteria, the
exchange process will be attempted a limited numbers of times.

Then, for the low-load routes, the split strategy is used on them. First, two low-load
routes (e.g., A and B) are selected. Then, one of them (e.g., A) is chosen for splitting, i.e.,
a random node from A is selected to attempt to insert into the other route (i.e., B). The
insertion starts from the first position, and after each insertion attempt, the constraint
conditions including the time window and capacity of the UAVs are checked. The process
continues sequentially until every node of this route has been attempted. If the conditions
are not met, another node from A is tried until all nodes have been attempted. The goal is to
reduce one route and transfer nodes in the low-load routes to other eligible low-load routes.

As can be seen from Figure 3a, the red node is exchanged with the blue node, and in
Figure 3b, the yellow node is inserted from the original route to another route.

Figure 3. Illustrations of (a) the exchange strategy and (b) the split strategy of the local search operator.
The black node represents the base station, and the other nodes represent rescue targets.

3.5. Superiority of Dynamic Ant Colony Optimization

The proposed DACO has three advantages:

(1) Quickly generating feasible solutions to handle dynamic changes: DACO can swiftly
generate feasible solutions to address dynamic changes in the environment. This
rapid response capability allows it to adjust route planning more flexibly in real-time
situations, ensuring the algorithm’s applicability and practicality.

(2) Incorporating the Metropolis rule in SA to select the next target: DACO integrates the
Metropolis rule from SA when selecting the next target. Compared to traditional ACO,
this enhancement significantly improves the diversity of the solutions. By exploring
more possibilities in the solution space, DACO can avoid local optima and enhance
the overall quality of the solutions.
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(3) Designing a local search operator to further optimize route performance: To further im-
prove the performance of optimal routes, DACO includes a local search operator. This
operator fine-tunes the paths within a local scope, enabling adjustments based on the
existing solutions to find better routes. This approach effectively enhances the effi-
ciency and accuracy of route planning, ensuring the superiority of the final solutions.

These three improvements enable DACO to not only increase the algorithm’s response
speed and flexibility, but also enhance solution diversity and optimization capability,
making it perform excellently in solving dynamic-route-optimization problems.

4. Dynamic Benchmark Generation

The existing generator of dynamic routing problems is DBGP [59], which can transform
the static environment into a dynamic environment. However, the dynamic environment
in DBGP is simulated by exchanging existing nodes to ensure that the optimal solution
remains unchanged. This strategy can be seen as symmetric transformation. The benefit
of DBGP is that it is easy to judge the gap between the obtained solution in a dynamic
environment and the known optimal solution in a static environment, and thus easy to
measure the quality of the algorithm in dealing with dynamic changes. However, the
dynamic environment that happens in real life is basically asymmetrical, that is random.
Hence, a random benchmark generator based on asymmetric variation for the DVRPTW
is proposed in this paper. Specially, the dynamic changes are divided into the following
two categories:

(1) Dynamically add new target requirements: This corresponds to generating new nodes
randomly. In the proposed generator, new nodes are generated by copying existing
nodes and modifying their coordinates while keeping other features such as demand
and time windows unchanged. The process begins by randomly selecting a node,
let us say node i, from the existing nodes in the graph. The coordinates of node i
are denoted as (Xi, Yi). A new node, denoted as i′, is then created at the position
(ξ1Xi, ξ2Yi), where ξ1 and ξ2 are scaling factors determining the relative position of
the new node compared to the original node.

(2) Dynamically cancel target requirements: This corresponds to deleting the original
nodes randomly. In this process, a random number generator is used to choose nodes
uniformly at random, and then, the selected nodes are removed from the graph,
including all their associated edges.

In the evolutionary process of the algorithm, dynamic changes are triggered at fixed
iteration intervals. Figure 4 illustrates the use of the proposed generator to generate three
dynamic environments based on the instance of C101 of Solomon’s benchmark [11], which
has a detailed description in Section 5.3. Figure 4a illustrates the coordinates of the original
nodes. Figure 4b–d illustrate the progression of dynamic changes, depicting an increasing
frequency from slower to faster. It can be seen that the addition of new requirements will
increase the complexity of the problem, while the removal of the original requirements will
decrease the complexity. The more frequent the addition and removal of requirements, the
greater the deviation from the original problem, and then, it will be harder to solve.
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(a) (b)

(c) (d)

Figure 4. The dynamic instances are based on Solomon’s benchmark C101 dataset. (a) shows the
coordinates of the original nodes. (b–d) show the process in which the frequency of dynamic changes
from slower to faster. The dynamic changes are triggered every 30, 15, and 10 iterations for (b), (c),
and (d), respectively.

5. Experimental Studies

In this section, we first introduce the compared algorithms, and then provide the
parameter settings and the DVRPTW benchmark instances. Finally, we present the experi-
mental results.

5.1. Experiment Design

In this paper, five algorithms were adopted for comparison, Max–Min Ant System
(MMAS) [60], RIACO [25], EIACO [25], MIACO [25], and ACO [61].

The selection of these algorithms for solving the DVRPTW was based on the following
considerations: The MMAS [60] is an enhanced version of ACO, known for its performance
in solving combinatorial optimization problems, particularly in the context of the Traveling
Salesman Problem (TSP). Its incorporation of local search may make it more adaptable to the
DVRPTW. RIACO, EIACO, and MIACO [25] are specifically designed to handle the DVRP.
The introduction of immigrant schemes allows the algorithms to adapt more effectively
to real-time changes, which can be advantageous for the DVRPTW. ACO represents the
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classical form of ACO with good generality. Its successful application to combinatorial
optimization problems makes it an attractive choice.

Independent experiments were repeated 30 times on each instance. The algorithms
were implemented via PyCharm (Python 3.10) programming, and all experiments were
conducted on a computer configured with an Intel(R) Core(TM) i5-8300H CPU@2.30GHz
PC with 8GB RAM.

5.2. Parameter Settings

The parameters used by DACO and the compared algorithms are set in Table 2. Two
heuristic factors α and β were set to 1 and 3, respectively, indicating that the concentration
of pheromones is relatively more important than the path length in the path selection, but
the expected path length is also considered with a lower weight. The pheromone evap-
oration factor variable ρ controls the rate of pheromone evaporation in each iteration. A
smaller ρ value (i.e., 0.1) means slower pheromone evaporation, resulting in longer-lasting
pheromones on paths, which can make the algorithm rely more on previous choices. The con-
stant Q determines the amount of pheromone released by each ant on a path. In the MMAS
algorithm, the maximum value max_pheromone and the minimum value min_pheromone
for pheromone concentration were set to 2 and 0.01, respectively. These values help control
the range of pheromone concentration to avoid spikes or rapid evaporation.

Table 2. Parameter settings for the algorithms investigated.

Algorithm
Parameter

ACO EIACO RIACO MIACO MMAS DACO

α 1 1 1 1 1 1

β 3 3 3 3 3 3

ρ 0.1 0.1 0.1 0.1 0.1 0.1

number of ants 20 20 20 20 20 20

max-iteration 300 300 300 300 300 300

Q 200 200 200 200 200 200

kshortmemory / / 5 / / /

klongmemory / / / / / 5

max_pheromone / / / / 2 /

min_pheromone / / / / 0.01 /
Abbreviations—ACO: Ant Colony Optimization, EIACO: generation of immigrants based on elitism, RIACO:
random generation of immigrants, MIACO: generation of immigrants based on memory, MMAS: Max–Min Ant
System, DACO: Dynamic Ant Colony Optimization.

5.3. Benchmark Instances

The DVRPTW instances are constructed by the proposed benchmark generator in
Section 4 based on Solomon’s benchmark [11]. Solomon’s benchmark is a typical set of
problems widely used in the field of the VRPTW. It serves as a standard reference for
evaluating the performance of various algorithms.

Table 3 shows the main features of these instances. We built upon the information
provided by Solomon, including the coordinates of customers, demand sizes, service times,
and vehicle capacities. Additionally, we introduced random customer demands, generating
them based on the benchmark’s customer information. We defined two test problems based
on Solomon’s benchmarks. These test problems were selected from benchmarks C and R,
covering time window constraints for both short and long scheduling horizons.
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Table 3. DVRPTW benchmark.

Instance Number of
Customers

Vehicle
Capacity

Number of
Depots Description

C101-C109 100 200 1
Randomly generated customers,
hard time window constraints, and
long scheduling time.

R101-R109 100 200 1
Randomly generated customers,
hard time window constraints, and
short scheduling time.

5.4. Results and Discussions

Tables 4 and 5 show the average, best, worst, and standard deviations of the compared
algorithms on the dynamic instances that trigger random events every 30 and 50 iterations,
respectively. For each instance, the better algorithm in terms of “best” is highlighted in bold.

Table 4. The experimental results of triggering random events every 30 iterations. For each instance,
the better algorithm in terms of “best” is highlighted in bold.

Dataset DACO EIACO RIACO

Mean Best Worst Std. Mean Best Worst Std. Mean Best Worst Std.

C101 1259.0 1027.56 2256.72 19.78 1720.39 1304.72 2795.17 36.84 1450.3 1136.35 2727.67 29.27
C102 1260.69 1051.57 2024.54 16.37 1633.47 1300.96 2428.33 26.62 1507.21 1139.38 2451.82 26.4
C103 1276.2 1058.29 1905.49 15.59 1615.74 1335.52 2115.71 20.34 1524.42 1252.99 2096.36 21.18
C104 1195.03 1038.73 1568.89 13.68 1403.03 1202.77 1731.1 13.2 1401.43 1153.11 1754.08 15.58
C105 1249.1 995.56 2291.17 18.78 1723.5 1309.07 2561.28 33.02 1417.35 1097.13 2536.22 31.18
C106 1213.21 973.01 1989.04 20.05 1638.87 1304.17 2393.19 26.3 1451.37 1148.1 2329.84 23.56
C107 1242.37 991.36 2212.63 21.11 1690.9 1338.02 2610.18 31.98 1448.28 1058.85 2617.72 28.52
C108 1156.87 928.7 1760.29 15.6 1544.83 1287.82 2087.45 17.9 1413.82 1065.58 2026.45 19.25
C109 1147.94 959.69 1763.95 13.73 1482.55 1230.22 1926.33 17.33 1376.94 1073.51 1869.28 18.36
R101 2392.71 2000.57 3199.45 31.5 2658.13 2261.57 3213.54 23.94 2219.66 1997.33 3199.54 24.17
R102 2147.98 1861.53 2833.97 21.7 2420.72 2178.33 2867.54 18.79 2042.71 1805.44 2870.74 23.61
R103 1767.92 1571.13 2268.98 21.77 2017.05 1779.67 2360.17 14.85 1808.68 1537.04 2406.33 17.38
R104 1356.61 1196.35 1701.29 11.84 1598.53 1386.09 1894.27 12.59 1552.16 1366.31 1866.3 12.98
R105 2080.56 1757.92 2687.82 26.15 2319.36 2051.24 2868.87 19.81 1985.36 1724.14 2799.33 20.37
R106 1866.97 1623.88 2416.02 22.33 2103.19 1827.61 2550.2 19.28 1892.57 1716.51 2525.57 15.74
R107 1588.85 1377.89 2006.94 18.44 1830.61 1567.59 2175.69 15.97 1681.8 1511.21 2170.33 14.44
R108 1284.5 1087.16 1621.81 12.24 1530.78 1337.66 1812.38 11.27 1506.32 1352.62 1804.89 11.67
R109 1705.72 1496.88 2146.61 17.0 1939.93 1723.99 2296.14 16.02 1758.86 1524.8 2241.21 16.08

Dataset ACO MIACO MMAS

Mean Best Worst Std. Mean Best Worst Std. Mean Best Worst Std.

C101 1316.33 1071.98 2606.63 22.46 2157.08 1898.93 2684.25 20.17 1394.91 1170.97 2532.14 22.92
C102 1334.22 1108.33 2271.95 18.59 1997.97 1748.45 2457.49 16.32 1429.46 1191.99 2265.24 18.09
C103 1384.51 1174.17 2068.08 16.32 1788.05 1515.49 2163.65 15.67 1466.84 1278.61 2081.82 15.69
C104 1296.04 1105.06 1608.96 12.15 1472.17 1269.4 1819.4 12.55 1311.76 1100.99 1650.8 12.98
C105 1321.07 1076.91 2524.37 22.92 2105.05 1709.86 2640.08 20.18 1389.39 1160.22 2665.18 20.95
C106 1336.05 1046.33 2172.76 19.76 1956.31 1668.13 2431.8 15.53 1392.85 1089.87 2185.18 17.64
C107 1347.82 1120.32 2421.19 23.09 2083.63 1725.97 2591.56 20.73 1386.91 1181.4 2446.44 19.77
C108 1272.34 1004.18 1977.89 19.32 1753.12 1508.41 2059.82 14.95 1338.86 1117.68 2055.39 15.73
C109 1249.75 1028.47 1861.24 14.27 1644.12 1445.49 1921.95 13.28 1293.86 1128.9 1812.04 13.31
R101 2178.61 1975.16 3130.69 22.23 2884.76 2604.43 3278.73 14.76 2251.42 2040.36 3164.49 23.18
R102 2001.89 1807.15 2766.18 22.53 2544.96 2295.28 2877.16 15.38 2077.98 1860.47 2789.32 16.61
R103 1733.04 1530.48 2289.7 16.37 2140.65 1867.37 2395.62 12.98 1768.39 1601.14 2342.59 14.55
R104 1411.07 1239.8 1862.71 12.95 1678.55 1529.98 1891.36 10.23 1432.26 1280.15 1793.98 11.32
R105 1926.83 1708.36 2687.1 18.37 2517.82 2306.84 2822.19 14.07 1958.31 1769.41 2673.45 16.94
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Table 4. Cont.

Dataset ACO MIACO MMAS

Mean Best Worst Std. Mean Best Worst Std. Mean Best Worst Std.

R106 1806.57 1613.27 2461.61 17.02 2247.02 1956.74 2578.71 14.48 1851.47 1689.25 2434.77 16.66
R107 1597.02 1419.55 2117.71 14.25 1949.29 1728.84 2184.97 12.84 1627.77 1425.15 2156.49 13.18
R108 1363.2 1212.77 1768.49 11.55 1625.6 1466.58 1849.8 9.53 1389.05 1230.11 1765.27 10.48
R109 1655.26 1445.72 2179.98 15.8 2048.04 1876.51 2324.04 11.68 1682.91 1531.59 2237.61 13.54

Table 5. The experimental results of triggering random events every 50 iterations. For each instance,
the better algorithm in terms of “best” is highlighted in bold.

Dataset DACO EIACO RIACO

Mean Best Worst Std. Mean Best Worst Std. Mean Best Worst Std.

C101 1250.14 1005.6 2281.07 21.76 1721.03 1379.81 2770.84 35.92 1379.73 977.19 2720.4 31.13
C102 1278.93 1094.03 2040.67 19.73 1657.85 1297.25 2457.41 26.59 1453.49 1191.06 2442.35 23.25
C103 1278.82 1060.8 1889.49 18.47 1625.29 1315.48 2189.89 19.12 1498.23 1199.53 2241.97 21.49
C104 1176.11 1000.67 1543.53 14.06 1383.65 1209.15 1694.16 13.22 1395.04 1199.33 1691.04 14.12
C105 1233.15 1084.32 2177.67 18.92 1704.4 1210.37 2631.59 39.57 1402.09 1121.3 2572.35 29.19
C106 1181.93 978.1 1968.03 19.24 1603.85 1355.5 2328.43 27.35 1415.32 1077.87 2371.7 24.16
C107 1231.13 1046.57 2264.28 16.98 1688.29 1332.72 2545.1 32.32 1379.98 1137.17 2536.56 27.89
C108 1149.6 988.31 1786.11 17.83 1519.86 1253.9 2176.32 21.87 1317.61 1047.72 2085.87 22.85
C109 1143.21 953.16 1680.13 13.96 1456.16 1202.69 1911.96 17.36 1308.46 1068.84 1851.35 20.58
R101 2347.78 2054.95 3172.43 27.7 2692.78 2350.74 3226.58 20.55 2213.94 2002.36 3197.16 22.88
R102 2088.41 1861.41 2845.97 17.71 2424.91 2155.42 2955.54 18.74 2025.08 1793.0 2899.36 22.35
R103 1701.74 1454.1 2267.15 16.89 2015.75 1829.62 2434.43 15.88 1787.92 1619.95 2379.67 16.25
R104 1349.0 1166.56 1687.1 13.21 1585.58 1421.79 1895.29 11.73 1527.74 1332.87 1891.24 14.34
R105 1992.67 1716.34 2677.53 19.88 2321.12 1986.62 2807.52 19.72 1978.8 1760.77 2844.46 20.35
R106 1820.64 1587.27 2411.93 18.44 2108.43 1883.96 2557.92 17.63 1853.08 1672.4 2598.4 18.54
R107 1579.46 1397.29 2009.16 16.35 1837.02 1677.62 2215.71 12.98 1674.65 1479.33 2181.88 15.4
R108 1308.74 1144.23 1615.4 10.04 1530.72 1376.43 1832.04 10.78 1496.95 1292.11 1842.23 12.55
R109 1659.38 1476.41 2125.6 15.13 1954.12 1752.9 2303.97 13.16 1742.81 1533.79 2336.83 15.96

Dataset ACO MIACO MMAS

Mean Best Worst Std. Mean Best Worst Std. Mean Best Worst Std.

C101 1281.95 1045.19 2537.12 21.9 2167.6 1904.7 2735.97 17.63 1378.49 1198.62 2589.5 19.77
C102 1302.36 1111.29 2310.83 19.69 1958.9 1718.66 2492.01 17.34 1404.55 1121.79 2258.2 19.3
C103 1364.87 1147.88 2096.68 16.38 1763.84 1555.04 2185.47 13.45 1454.03 1328.03 1983.86 13.1
C104 1264.79 1113.71 1669.07 10.77 1442.72 1291.36 1736.35 11.11 1298.64 1143.17 1667.92 11.51
C105 1271.1 998.35 2470.99 23.82 2079.77 1815.67 2684.02 18.97 1378.95 1181.14 2480.73 21.92
C106 1296.07 934.29 2200.08 22.06 1913.07 1703.89 2338.76 15.55 1359.98 1192.1 2187.98 16.9
C107 1303.96 1081.19 2401.99 21.47 2032.59 1709.72 2572.1 16.63 1347.34 1060.23 2419.41 18.35
C108 1249.27 1022.29 1977.8 15.97 1723.95 1389.65 2069.6 14.59 1296.65 1092.63 1938.36 15.4
C109 1216.78 1054.37 1846.57 15.69 1600.85 1417.73 1862.57 12.07 1270.03 1101.01 1856.91 13.27
R101 2183.78 1964.68 3114.8 22.07 2873.44 2632.2 3214.71 15.42 2256.62 2076.56 3097.07 22.4
R102 1999.32 1827.81 2833.78 20.64 2565.83 2344.67 2890.65 14.72 2070.88 1923.44 2883.17 19.3
R103 1727.39 1551.32 2262.37 16.79 2119.47 1915.69 2425.07 11.77 1773.52 1635.25 2268.37 12.83
R104 1400.76 1261.22 1831.92 11.9 1667.4 1457.35 1907.08 10.13 1415.75 1298.62 1822.69 10.6
R105 1930.81 1757.63 2711.44 20.98 2514.05 2281.45 2823.16 13.7 1951.74 1791.79 2689.99 15.4
R106 1808.99 1648.4 2446.19 16.7 2242.16 2082.76 2556.42 11.27 1842.31 1733.02 2446.14 13.5
R107 1590.09 1405.44 2106.44 14.41 1939.62 1767.4 2222.01 10.29 1621.56 1488.55 2148.09 13.32
R108 1353.69 1239.74 1761.09 10.59 1586.54 1430.26 1861.47 9.77 1365.77 1248.92 1763.38 9.69
R109 1650.24 1487.22 2258.27 16.24 2049.05 1891.1 2308.48 10.01 1666.01 1546.07 2273.55 13.26

In Table 4, it is obvious from the obtained results in the 30-iteration experiments that
the DACO algorithm, in general, shows mean values that are quite low in comparison with
the other algorithms, which indicates better, stable overall performance. For a number
of instances, for example R106 and R109, DACO does not achieve the lowest means, but
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achieves better worst performance than the other algorithms. This will be the evidence that
DACO is consistent and very effective in solving optimization problems and very strong
in frequently achieving the best lowest values among all algorithms, as in the instances
C101 and C104. For the 50-iteration experiments in Table 5, the mean and best values of
DACO dramatically improved, particularly for instances like R103 and R105, in terms of the
mean values, making them more stable and reliable. This probably represents an increase
in iteration number inside the algorithm that allows better chances for the algorithm to
explore more and, hence, improve the quality of the average solutions. On the other hand,
DACO was consistently good in finding the best values and kept competing quite well in
instances such as C103 and C108, showing good global search capabilities.

In Figure 5, the comparison of algorithm performance on the C101 and R104 datasets,
the DACO algorithm demonstrates superior performance among all algorithms, showing
the lowest mean and narrower confidence intervals. This indicates its outstanding efficiency
and stability in problem-solving. The ACO algorithm also exhibits good performance and
stability. In contrast, the EIACO algorithm performs the worst on both datasets, displaying
the highest mean and widest confidence intervals, suggesting relatively lower reliability.
Other algorithms such as MIACO, MMAS, and RIACO perform moderately, showing some
performance fluctuations, but overall averaging.

(a) C101 (b) R104

Figure 5. Interval plot of compared algorithms based on cost, 95% CI for the mean.

5.5. Further Analysis

This section provides further analysis based on the experimental results.

5.5.1. Parameter Analysis

This section estimates the influence of the main parameters, i.e., α, β, ρ, the number
of ants, and the probability θ in SA, on the performance of DACO. We have considered
values for α between 0.1 and 5, β between 1 and 7, ρ between 0.1 and 0.8, and the number
of ants between 10 and 20, because, in most cases, of the studies and estimations related
to this, the radius of variation taking place within such ranges is very high. At the same
time, in order to evaluate the effectiveness of the probability values calculated based on
Equation (13), we compared it with some fixed values, i.e., θ = 0.25, 0.5, and 0.75. For the
sought dynamic influence in the results, we changed the value of one parameter at a time
while the other parameters remained constant. In the summarized parameters, Table 2
displays the default values.

First, Figure 6 shows the relative importance of α concerning the mean costs. Based on
Figure 6a, there is an indication that, when 0.1 < α ≤ 1.5, the mean values are much lower
than those for α ≥ 2.0, which indicates that, right from the start, DACO seems to work out
a better result when 0.1 < α ≤ 1.5. As shown in Figure 6b, the costs of DACO are better if
α ∈ [0.5, 1.5] than other values of α. Hence, we recommend α ∈ [0.5, 1.5] for DACO.
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(a) α (b) α

Figure 6. Parameter analysis of the relative importance of the pheromone trail α.

Second, the relative importance of β is observed in Figure 7. As shown in Figure 7a,
for β ≥ 2.5, the mean costs reached in the first steps through the application of the initial
treatments were lower compared to β ≤ 2.0. That is, in the case of the first steps with
the application of the initial treatments, it is most probable that β ≥ 2.5 will verify the
best solutions of DACO compared to other values. Of greater importance, for β ≥ 2.0, the
convergence speed of the mean value is rather sufficient compared to β = 1.0 and β = 1.5.
Figure 7b shows that, when β ≥ 2.5, the mean cost is very stable. Thus, we suggest, as for
DACO, using β ∈ [2.5, 6.5] from the two figures.

(a) β (b) β

Figure 7. Parameter analysis of the relative importance of the heuristic information β.

Third, Figure 8 shows the effects of ρ’s prior sensitivity on the mean cost. In Figure 8a,
the mean value almost shows insensitivity toward the speed of its convergence related to
ρ. Figure 8b gives the dynamic variation of the mean about ρ. From the drawn graph, the
mean is observed to attain a minimal value at its minimum when ρ = 0.2. It is relatively
optimum in this mean value that ρ varies in the region of [0.1, 0.2]. This, therefore, means
that ρ is recommended to be in this region for effective implementation of DACO.

(a) ρ (b) ρ

Figure 8. Parameter analysis of the pheromone evaporation rate ρ.
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Fourth, Figure 9 indicates the relative importance of the number of ants concerning
the mean cost. Based on Figure 9a, there is an indication that, when the number of ants is
between 10 and 20, the mean value is relatively low, suggesting that the algorithm performs
better with a higher number of ants. As shown in Figure 9b, the results across different
number of ants values demonstrate that the mean value tends to stabilize as the number of
ants increases. Therefore, it is recommended to use a higher number of ants for DACO for
improved performance.

(a) Number of ants (b) Number of ants

Figure 9. Parameter analysis of the number of ants.

Finally, the relative importance of θ in the mean cost is observed in Figure 10. It
can be seen that the results using Equation (13) outperform other fixed θ values in all
cases. This indicates that using Equation (13) can significantly enhance the performance
of the algorithm, providing lower mean costs and better convergence. Therefore, it is
recommended to use Equation (13) for parameter setting for DACO.

(a) θ (b) θ

Figure 10. Parameter analysis of the probability θ for SA.

5.5.2. Convergence Curve

As for the performance of DACO, Figure 11 shows the experimental results of trig-
gering random events every 50 iterations. Specifically, in Figure 11c, the dynamic changes
are limited to the appearance of new customers. It can be seen that when new customers
appear, the costs have a rapid increase at first, and as the evolution progresses, the cost
starts to decline. In Figure 11b, the dynamic changes are limited to customer cancellations,
leading to a continuous decline in costs. In Figure 11a, the dynamic events are random, i.e.,
it includes scenarios where new customers appear and existing customers disappear.
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(a) (b) (c)

Figure 11. The convergence curves of the algorithms on the C101 instance, where the x-axis represents
the number of iterations and the y-axis represents costs. The dynamic changes are triggered every
50 iterations. (a) indicates that dynamic events are randomly triggered; (b) indicates that the dynamic
changes are limited to customer cancellations; (c) indicates that the dynamic changes are limited to
the appearance of new customers.

From Figure 11, we have the following observations:

• From Figure 11a, it can be seen that the convergence of DACO is faster than other
algorithms, and the fluctuations when dynamic changes are triggered are smaller in
magnitude compared to other algorithms.

• From Figure 11b, it can be seen that ACO has the best performance. However, the
performance of DACO is very stable, that is the algorithm has strong stability.

• From Figure 11c, it can be seen that, when the demand increase is triggered, the
fluctuations of the compared algorithms are greater than that of DACO. For example,
ACO changes greatly after each time the demands change, and the convergence
process is not as good as DACO, while DACO shows strong stability.

In general, DACO has stronger stability and convergence than the other algorithms
and can quickly determine feasible solutions.

5.5.3. Effectiveness of the Local Search Operator

Figure 12 illustrates a clear improvement in algorithm performance resulting from
the application of the local operator. In Figure 12, the blue line represents the path length
without the local search, while the yellow line represents the path length with the local
search. It is evident that, as the optimization operations progress, the path length exhibits a
consistent decrease over time.

Figure 12. The compared results between the algorithm with (blue line) and without (yellow line) the
local operator. The blue line segment indicates the results without the local search, and the yellow
line segment indicates the result after optimization.
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In terms of specific numerical values, we observed that, in the initial stages, the
total path length was relatively long, resulting in higher path overhead. However, once
we commenced the local optimization operations, the path length rapidly diminished,
indicating an effective reduction in path cost. This improvement is crucial for enhancing
resource utilization efficiency and expediting task execution.

This outcome demonstrates that, through our optimization operations, we have suc-
cessfully fine-tuned route planning, making it more efficient. Such improvements have
significant practical implications for addressing similar route planning problems.

5.5.4. Illustration of Routes

Figure 13 illustrates the specific routes generated by the algorithms on C101 with the
dynamic frequency of 50. It can be observed that MIACO exhibits the longest path length
among the algorithms considered, utilizing a total of 28 vehicles. During the dynamic
planning process, MIACO encounters constraint violation due to its heavy reliance on
long-term memory. As a consequence, vehicles are unable to serve additional customers.
RIACO, as shown in the graph, introduces the dynamism improvement by incorporating
random migration, resulting in the generation of more diverse routes. While ACO produces
a shorter path length compared to the other algorithms, it leads to overlapping vehicle
services, contributing to higher complexity. In contrast, EIACO may have a longer path
length than ACO, but it presents more straightforward and clearer routes. MMAS, although
consistent with ACO in terms of paths, produces overly complex and longer routes. Among
these algorithm, DACO demonstrates the lowest path cost, and it can be seen from the
displayed path planning diagram that the use of fewer vehicles reduces the path cost.

(a) (b)

(c) (d)

Figure 13. Cont.
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(e) (f)

Figure 13. The specific routes generated by the compared algorithms on C101 with the dynamic
frequency of 50. (a) MICAO, (b) EIACO, (c) RIACO, (d) DACO, (e) ACO, and (f) MMAS.

6. Conclusions

This study preliminarily explores the application of DACO in maritime search and
rescue, modeling the problem as a DVRPTW with randomly changing rescue targets. The
results obtained from the experimental evaluation revealed several key findings. Firstly,
DACO consistently outperformed five existing algorithms in terms of route quality, generat-
ing superior routes with minimal total costs across various dynamic scenarios. Additionally,
the convergence curves demonstrated that DACO achieved faster convergence compared to
the other algorithms, indicating its efficiency in finding optimal solutions within a shorter
computational time. Furthermore, DACO exhibited greater stability in response to dynamic
changes, highlighting its robustness in adapting to evolving environmental conditions.
This is particularly evident in its ability to maintain high-quality routes even when faced
with fluctuations in catastrophic situations. These findings underscore the effectiveness
and superiority of DACO in addressing the DVRPTW.

In the future, research will focus on developing an online dynamic version to enhance
the real-time optimization capability of DACO. This further upgrade will ensure that
DACO responds to environmental changes as they occur, thus better handling emergencies
and addressing the immediate needs of marine disaster events. Additionally, applying
DACO to bi-layer maritime search and rescue, such as when the area of the sea that needs
to be searched is quite large, requires the deployment of vessels first and then UAVs
departing from the vessels to conduct localized searches, will enhance more complex
and dynamic systems, initiating further research and development. Integrating DACO
with other optimization techniques, such as machine learning methods, will increase the
adaptability and performance of the algorithms.
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