A 1-Year Sediment Trap Study on the Downward Flux of Polycyclic Aromatic Hydrocarbons by Settling Particulate Matter in Deep Basins of the Aegean and Ionian Seas, Northeastern Mediterranean
Abstract
:1. Introduction
2. Oceanographic and Environmental Setting
3. Materials and Methods
3.1. Sampling
3.2. Analysis and Quantitation of PAHs
3.3. Analysis of Particulate Organic Carbon (POC), Stable Isotope of Carbon (δ13C), and Elemental Carbon (EC)
3.4. Statistical Analysis
4. Results
4.1. Molecular Composition of PAHs
4.2. PAH Concentrations and Fluxes
5. Discussion
5.1. Levels of PAH Contamination in the Studied Sites
5.2. Sources of PAHs in Settling Particles of the Study Areas
5.3. Processes Affecting the Temporal and Spatial Variability of PAH Concentrations and Fluxes
5.4. Drivers of PAH Export to Deep Waters of the NEMS
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fowler, S.W.; Knauer, G.A. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr. 1986, 16, 147–194. [Google Scholar] [CrossRef]
- Ziveri, P.; Rutten, A.; De Lange, G.J.; Thomson, J.; Corselli, C. Present-day coccolith fluxes recorded in central eastern Mediterranean sediment traps and surface sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 158, 175–195. [Google Scholar] [CrossRef]
- Gogou, A.; Sanchez-Vidal, A.; Durrieu De Madron, X.; Stavrakakis, S.; Calafat, A.M.; Stabholz, M.; Psarra, S.; Canals, M.; Heussner, S.; Stavrakaki, I.; et al. Carbon flux to the deep in three open sites of the Southern European Seas (SES). J. Mar. Syst. 2014, 129, 224–233. [Google Scholar] [CrossRef]
- Bouloubassi, I.; Méjanelle, L.; Pete, R.; Fillaux, J.; Lorre, A.; Point, V. PAH transport by sinking particles in the open Mediterranean Sea: A 1 year sediment trap study. Mar. Pollut. Bull. 2006, 52, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.K.; Singh, O.V.; Jain, R.K. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends Biotechnol. 2002, 20, 243–248. [Google Scholar] [CrossRef]
- EC, 2013. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:en:PDF (accessed on 8 November 2024).
- Latimer, J.S.; Zheng, J. The Sources, Transport, and Fate of PAHs in the Marine Environment. In PAHs: An Ecotoxicological Perspective; Douben, P.E.T., Ed.; Wiley: Hoboken, NJ, USA, 2003; pp. 7–33. [Google Scholar] [CrossRef]
- Ramdahl, T.; Alfheim, I.; Bjørseth, A. PAH Emission from Various Sources and their Evolution Over the Last Decades. In Mobile Source Emissions Including Policyclic Organic Species; Rondia, D., Cooke, M., Haroz, R.K., Eds.; Springer: Dordrecht, The Netherlands, 1983; pp. 277–297. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W. Petroleum biomarker sources in suspended particulate matter and sediments from the Fraser River Basin and Strait of Georgia, Canada. Org. Geochem. 2003, 34, 1525–1541. [Google Scholar] [CrossRef]
- Bouloubassi, I.; Saliot, A. Dissolved, particulate and sedimentary naturally derived polycyclic aromatic hydrocarbons in a coastal environment: Geochemical significance. Mar. Chem. 1993, 42, 127–143. [Google Scholar] [CrossRef]
- Tolosa, I.; Bayona, J.M.; Albaigés, J. Aliphatic and Polycyclic Aromatic Hydrocarbons and Sulfur/Oxygen Derivatives in Northwestern Mediterranean Sediments: Spatial and Temporal Variability, Fluxes, and Budgets. Environ. Sci. Technol. 1996, 30, 2495–2503. [Google Scholar] [CrossRef]
- Farrington, J.; Takada, H. Persistent Organic Pollutants (POPs), Polycyclic Aromatic Hydrocarbons (PAHs), and Plastics: Examples of the Status, Trend, and Cycling of Organic Chemicals of Environmental Concern in the Ocean. Oceanography 2014, 27, 196–213. [Google Scholar] [CrossRef]
- Dachs, J.; Lohmann, R.; Ockenden, W.A.; Méjanelle, L.; Eisenreich, S.J.; Jones, K.C. Oceanic Biogeochemical Controls on Global Dynamics of Persistent Organic Pollutants. Environ. Sci. Technol. 2002, 36, 4229–4237. [Google Scholar] [CrossRef]
- Deyme, R.; Bouloubassi, I.; Taphanel-Valt, M.-H.; Miquel, J.-C.; Lorre, A.; Marty, J.-C.; Méjanelle, L. Vertical fluxes of aromatic and aliphatic hydrocarbons in the Northwestern Mediterranean Sea. Environ. Pollut. 2011, 159, 3681–3691. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Salvadó, J.A.; Grimalt, J.O.; López, J.F.; Palanques, A.; Heussner, S.; Pasqual, C.; Sanchez-Vidal, A.; Canals, M. Transfer of lipid molecules and polycyclic aromatic hydrocarbons to open marine waters by dense water cascading events. Prog. Oceanogr. 2017, 159, 178–194. [Google Scholar] [CrossRef]
- Koudryashova, Y.; Chizhova, T.; Inoue, M.; Hayakawa, K.; Nagao, S.; Marina, E.; Mundo, R. Deep Water PAH Cycling in the Japan Basin (the Sea of Japan). J. Mar. Sci. Eng. 2022, 10, 2015. [Google Scholar] [CrossRef]
- Burns, K.A.; Volkman, J.K.; Cavanagh, J.-A.; Brinkman, D. Lipids as biomarkers for carbon cycling on the Northwest Shelf of Australia: Results from a sediment trap study. Mar. Chem. 2003, 80, 103–128. [Google Scholar] [CrossRef]
- Theodosi, C.; Parinos, C.; Gogou, A.; Kokotos, A.; Stavrakakis, S.; Lykousis, V.; Hatzianestis, J.; Mihalopoulos, N. Downward fluxes of elemental carbon, metals and polycyclic aromatic hydrocarbons in settling particles from the deep Ionian Sea (NESTOR site), Eastern Mediterranean. Biogeosciences 2013, 10, 4449–4464. [Google Scholar] [CrossRef]
- Tsapakis, M.; Apostolaki, M.; Eisenreich, S.; Stephanou, E.G. Atmospheric Deposition and Marine Sedimentation Fluxes of Polycyclic Aromatic Hydrocarbons in the Eastern Mediterranean Basin. Environ. Sci. Technol. 2006, 40, 4922–4927. [Google Scholar] [CrossRef]
- Psarra, S.; Tselepides, A.; Ignatiades, L. Primary productivity in the oligotrophic Cretan Sea (NE Mediterranean): Seasonal and interannual variability. Prog. Oceanogr. 2000, 46, 187–204. [Google Scholar] [CrossRef]
- Bosc, E.; Bricaud, A.; Antoine, D. Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations. Glob. Biogeochem. Cycles 2004, 18, GB002034. [Google Scholar] [CrossRef]
- Stavrakakis, S.; Gogou, A.; Krasakopoulou, E.; Karageorgis, A.P.; Kontoyiannis, H.; Rousakis, G.; Velaoras, D.; Perivoliotis, L.; Kambouri, G.; Stavrakaki, I.; et al. Downward fluxes of sinking particulate matter in the deep Ionian Sea (NESTOR site), eastern Mediterranean: Seasonal and interannual variability. Biogeosciences 2013, 10, 7235–7254. [Google Scholar] [CrossRef]
- Lipizer, M.; Berto, D.; Cermelj, B.; Fafandjel, M.; Formalewicz, M.; Hatzianestis, I.; Ilijanić, N.; Kaberi, H.; Kralj, M.; Matijevic, S.; et al. Trace metals and polycyclic aromatic hydrocarbons in the Eastern Mediterranean sediments: Concentration ranges as a tool for quality control of large data collections. Mar. Pollut. Bull. 2022, 185, 114181. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, M. UNEP in Global Environmental Governance: Design, Leadership, Location. Glob. Environ. Politics 2010, 10, 30–59. [Google Scholar] [CrossRef]
- Parinos, C.; Gogou, A.; Bouloubassi, I.; Stavrakakis, S.; Plakidi, E.; Hatzianestis, I. Sources and downward fluxes of polycyclic aromatic hydrocarbons in the open southwestern Black Sea. Org. Geochem. 2013, 57, 65–75. [Google Scholar] [CrossRef]
- Lelieveld, J.; Berresheim, H.; Borrmann, S.; Crutzen, P.J.; Dentener, F.J.; Fischer, H.; Feichter, J.; Flatau, P.J.; Heland, J.; Holzinger, R.; et al. Global Air Pollution Crossroads over the Mediterranean. Science 2002, 298, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Kanakidou, M.; Duce, R.A.; Prospero, J.M.; Baker, A.R.; Benitez-Nelson, C.; Dentener, F.J.; Hunter, K.A.; Liss, P.S.; Mahowald, N.; Okin, G.S.; et al. Atmospheric fluxes of organic N and P to the global ocean. Glob. Biogeochem. Cycles 2012, 26, 2011GB004277. [Google Scholar] [CrossRef]
- Zervakis, V.; Georgopoulos, D.; Karageorgis, A.P.; Theocharis, A. On the response of the Aegean Sea to climatic variability: A review. Int. J. Climatol. 2004, 24, 1845–1858. [Google Scholar] [CrossRef]
- Krasakopoulou, E.; Zervakis, V.; Souvermezoglou, E.; Georgopoulos, D. North-eastern Aegean sea: An effort to estimate steady-state N & P budgets during September 1998. Mediterr. Mar. Sci. 2002, 3, 43–54. [Google Scholar] [CrossRef]
- Nikolopoulou, I.; Skampa, E.; Varkitzi, I.; Dimiza, M.D.; Parinos, C.; Kambouri, G.; Stavrakaki, I.; Gogou, A.; Triantaphyllou, M.V. The Contribution of Siliceous Plankton to Vertical Export Flux in the Eastern Mediterranean: A Comparative Study of the North Aegean, Cretan, and Ionian Seas. J. Mar. Sci. Eng. 2024, 12, 2084. [Google Scholar] [CrossRef]
- Tsiaras, K.P.; Petihakis, G.; Kourafalou, V.H.; Triantafyllou, G. Impact of the river nutrient load variability on the North Aegean ecosystem functioning over the last decades. J. Sea Res. 2014, 86, 97–109. [Google Scholar] [CrossRef]
- Jarosz, E.; Teague, W.J.; Book, J.W.; Beşiktepe, Ş.T. Observed volume fluxes and mixing in the Dardanelles Strait. J. Geophys. Res. Ocean. 2013, 118, 5007–5021. [Google Scholar] [CrossRef]
- Poulos, S.E.; Drakopoulos, P.G.; Collins, M.B. Seasonal variability in sea surface oceanographic conditions in the Aegean Sea (Eastern Mediterranean): An overview. J. Mar. Syst. 1997, 13, 225–244. [Google Scholar] [CrossRef]
- Skampa, E.; Triantaphyllou, M.V.; Dimiza, M.D.; Gogou, A.; Malinverno, E.; Stavrakakis, S.; Parinos, C.; Panagiotopoulos, I.; Tselenti, D.; Archontikis, O.; et al. Coccolithophore export in three deep-sea sites of the Aegean and Ionian Seas (Eastern Mediterranean): Biogeographical patterns and biogenic carbonate fluxes. Deep Sea Res. Part II Top. Stud. Oceanogr. 2020, 171, 104690. [Google Scholar] [CrossRef]
- Velaoras, D.; Krokos, G.; Nittis, K.; Theocharis, A. Dense intermediate water outflow from the C retan S ea: A salinity driven, recurrent phenomenon, connected to thermohaline circulation changes. J. Geophys. Res. Ocean. 2014, 119, 4797–4820. [Google Scholar] [CrossRef]
- Civitarese, G.; Gačić, M.; Lipizer, M.; Eusebi Borzelli, G.L. On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean). Biogeosciences 2010, 7, 3987–3997. [Google Scholar] [CrossRef]
- Larnicol, G.; Ayoub, N.; Le Traon, P.Y. Major changes in Mediterranean Sea level variability from 7 years of TOPEX/Poseidon and ERS-1/2 data. J. Mar. Syst. 2002, 33–34, 63–89. [Google Scholar] [CrossRef]
- Malanotte-Rizzoli, P.; Manca, B.B.; Ribera D’Alcalà, M.; Theocharis, A.; Bergamasco, A.; Bregant, D.; Budillon, G.; Civitarese, G.; Georgopoulos, D.; Michelato, A.; et al. A synthesis of the Ionian Sea hydrography, circulation and water mass pathways during POEM-Phase I. Prog. Oceanogr. 1997, 39, 153–204. [Google Scholar] [CrossRef]
- Nittis, K.; Lascaratos, A.; Theocharis, A. Dense water formation in the Aegean Sea: Numerical simulations during the Eastern Mediterranean Transient. J. Geophys. Res. Ocean. 2003, 108, 8120. [Google Scholar] [CrossRef]
- Theocharis, A.; Balopoulos, E.; Kioroglou, S.; Kontoyiannis, H.; Iona, A. A synthesis of the circulation and hydrography of the South Aegean Sea and the Straits of the Cretan Arc (March 1994–January 1995). Prog. Oceanogr. 1999, 44, 469–509. [Google Scholar] [CrossRef]
- Heussner, S.; Ratti, C.; Carbonne, J. The PPS 3 time-series sediment trap and the trap sample processing techniques used during the ECOMARGE experiment. Cont. Shelf Res. 1990, 10, 943–958. [Google Scholar] [CrossRef]
- Gogou, A.I.; Apostolaki, M.; Stephanou, E.G. Determination of organic molecular markers in marine aerosols and sediments: One-step flash chromatography compound class fractionation and capillary gas chromatographic analysis. J. Chromatogr. A 1998, 799, 215–231. [Google Scholar] [CrossRef]
- Heussner, S.; Durrieu De Madron, X.; Calafat, A.; Canals, M.; Carbonne, J.; Delsaut, N.; Saragoni, G. Spatial and temporal variability of downward particle fluxes on a continental slope: Lessons from an 8-yr experiment in the Gulf of Lions (NW Mediterranean). Mar. Geol. 2006, 234, 63–92. [Google Scholar] [CrossRef]
- Nieuwenhuize, J.; Maas, Y.E.M.; Middelburg, J.J. Rapid analysis of organic carbon and nitrogen in particulate materials. Mar. Chem. 1994, 45, 217–224. [Google Scholar] [CrossRef]
- Birch, M.E.; Cary, R.A. Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust. Aerosol Sci. Technol. 1996, 25, 221–241. [Google Scholar] [CrossRef]
- Theodosi, C.; Markaki, Z.; Tselepides, A.; Mihalopoulos, N. The significance of atmospheric inputs of soluble and particulate major and trace metals to the eastern Mediterranean seawater. Mar. Chem. 2010, 120, 154–163. [Google Scholar] [CrossRef]
- Mandić, J.; Veža, J.; Kušpilić, G. Application of Positive Matrix Factorization for Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAH) in the Adriatic Sea, and the Evaluation of PAH-Related Carcinogenic Risks. Appl. Sci. 2023, 13, 6992. [Google Scholar] [CrossRef]
- Saba, T. Using positive matrix factorization to unmix PAH fingerprints in contaminated sediments. Environ. Monit. Assess. 2023, 195, 1003. [Google Scholar] [CrossRef]
- Meglen, R.R. Examining large databases: A chemometric approach using principal component analysis. J. Chemom. 1991, 5, 163–179. [Google Scholar] [CrossRef]
- Pedrosa-Pàmies, R.; Parinos, C.; Sanchez-Vidal, A.; Gogou, A.; Calafat, A.; Canals, M.; Bouloubassi, I.; Lampadariou, N. Composition and sources of sedimentary organic matter in the deep eastern Mediterranean Sea. Biogeosciences 2015, 12, 7379–7402. [Google Scholar] [CrossRef]
- Parinos, C.; Skylaki, E.; Hatzianestis, I.; Gogou, A. Occurrence, sources and water column distribution trends of suspended particle-associated aliphatic and polycyclic aromatic hydrocarbons in the open northeastern Mediterranean Sea. Sci. Total Environ. 2024, 914, 169685. [Google Scholar] [CrossRef]
- Eglinton, G.; Hamilton, R.J. Leaf Epicuticular Waxes. Science 1967, 80, 1322–1335. [Google Scholar] [CrossRef]
- Collister, J.W.; Lichtfouse, E.; Hieshima, G.; Hayes, J.M. Partial resolution of sources of n-alkanes in the saline portion of the Parachute Creek Member, Green River Formation (Piceance Creek Basin, Colorado). Org. Geochem. 1994, 21, 645–659. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fingas, M.; Page, D.S. Oil spill identification. J. Chromatogr. A 1999, 843, 369–411. [Google Scholar] [CrossRef]
- Yunker, M.B.; Belicka, L.L.; Harvey, H.R.; Macdonald, R.W. Tracing the inputs and fate of marine and terrigenous organic matter in Arctic Ocean sediments: A multivariate analysis of lipid biomarkers. Deep Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 3478–3508. [Google Scholar] [CrossRef]
- Neff, J.M.; Stout, S.A.; Gunster, D.G. Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: Identifying sources and ecological hazard. Integr. Environ. Assess. Manag. 2005, 1, 22–33. [Google Scholar] [CrossRef]
- Dachs, J.; Bayona, J.M.; Fowler, S.W.; Miquel, J.-C.; Albaigés, J. Vertical fluxes of polycyclic aromatic hydrocarbons and organochlorine compounds in the western Alboran Sea (southwestern Mediterranean). Mar. Chem. 1996, 52, 75–86. [Google Scholar] [CrossRef]
- Lipiatou, E.; Marty, J.-C.; Saliot, A. Sediment trap fluxes of polycyclic aromatic hydrocarbons in the Mediterranean Sea. Mar. Chem. 1993, 44, 43–54. [Google Scholar] [CrossRef]
- Raoux, C.; Boyona, J.M.; Miquel, J.-C.; Teyssie, J.-L.; Fowler, S.W.; Albaigés, J. Particulate Fluxes of Aliphatic and Aromatic Hydrocarbons in Near-shore Waters to the Northwestern Mediterranean Sea, and the Effect of Continental Runoff. Estuar. Coast. Shelf Sci. 1999, 48, 605–616. [Google Scholar] [CrossRef]
- Bates, T.S.; Hamilton, S.E.; Cline, J.D. Vertical transport and sedimentation of hydrocarbons in the central main basin of Puget Sound, Washington [USA]. Environ. Sci. Technol. 1984, 18, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Broman, D.; Colmsjoe, A.; Ganning, B.; Naef, C.; Zebuhr, Y. A multi-sediment trap study on the temporal and spatial variability of polycyclic aromatic hydrocarbons and lead in an anthropogenic influenced archipelago. Environ. Sci. Technol. 1988, 22, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Takada, H.; Farrington, J.W.; Bothner, M.H.; Johnson, C.G.; Tripp, B.W. Transport of Sludge-Derived Organic Pollutants to Deep-Sea Sediments at Deep Water Dump Site 106. Environ. Sci. Technol. 1994, 28, 1062–1072. [Google Scholar] [CrossRef]
- Palm, A.; Cousins, I.; Gustafsson, Ö.; Axelman, J.; Grunder, K.; Broman, D.; Brorström-Lundén, E. Evaluation of sequentially-coupled POP fluxes estimated from simultaneous measurements in multiple compartments of an air–water–sediment system. Environ. Pollut. 2004, 128, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.-D.; Chang, W.-K.; Lee, C.-L.; Liu, J.T. The use of polycyclic aromatic hydrocarbons as a particulate tracer in the water column of Gaoping (Kaoping) Submarine Canyon. J. Mar. Syst. 2009, 76, 457–467. [Google Scholar] [CrossRef]
- Adhikari, P.L.; Maiti, K.; Overton, E.B. Vertical fluxes of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico. Mar. Chem. 2015, 168, 60–68. [Google Scholar] [CrossRef]
- Laughlin, R.B.; Neff, J.M. Interactive effects of salinity, temperature and polycyclic aromatic hydrocarbons on the survival and development rate of larvae of the mud crabRhithropanopeus harrisii. Mar. Biol. 1979, 53, 281–291. [Google Scholar] [CrossRef]
- Wakeham, S.G.; Schaffner, C.; Giger, W. Polycyclic aromatic hydrocarbons in recent lake sediments—II. Compounds derived from biogenic precursors during early diagenesis. Geochim. Et Cosmochim. Acta 1980, 44, 415–429. [Google Scholar] [CrossRef]
- Sporstol, S.; Gjos, N.; Lichtenthaler, R.G.; Gustavsen, K.O.; Urdal, K.; Oreld, F.; Skei, J. Source identification of aromatic hydrocarbons in sediments using GC/MS. Environ. Sci. Technol. 1983, 17, 282–286. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Snowdon, L.R.; Fowler, B.R. Alkane and PAH biomarkers as tracers of terrigenous organic carbon in Arctic Ocean sediments. Org. Geochem. 2011, 42, 1109–1146. [Google Scholar] [CrossRef]
- Sun, X.; Wang, H.; Guo, Z.; Lu, P.; Song, F.; Liu, L.; Liu, J.; Rose, N.L.; Wang, F. Positive matrix factorization on source apportionment for typical pollutants in different environmental media: A review. Environ. Sci. Process. Impacts 2020, 22, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; He, B.; Wu, X.; Simonich SL, M.; Liu, H.; Fu, J.; Chen, A.; Liu, H.; Wang, Q. Polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments of Suzhou Industrial Park, an emerging eco-industrial park in China: Occurrence, sources and potential risk. Ecotoxicol. Environ. Saf. 2021, 214, 112095. [Google Scholar] [CrossRef] [PubMed]
- Hatzianestis, I.; Parinos, C.; Chourdaki, S.; Plakidi, E.; Abualnaja, Y.; Hoteit, I.; Churchill, J.; Papageorgiou, D.; Papadopoulos, V.; Alshehri, Y.; et al. Organic contaminants levels, distribution and risk assessment in Jeddah marine coastal zone sediments. Mar. Pollut. Bull. 2024, 199, 115926. [Google Scholar] [CrossRef]
- Fine, P.M.; Cass, G.R.; Simoneit, B.R.T. Chemical Characterization of Fine Particle Emissions from Fireplace Combustion of Woods Grown in the Northeastern United States. Environ. Sci. Technol. 2001, 35, 2665–2675. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, G.; Baschek, B.; De Montpellier, G.; Njoten, O.; Perkovic, M.; Vespe, M. On the SAR derived alert in the detection of oil spills according to the analysis of the EGEMP. Mar. Pollut. Bull. 2010, 60, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, A.; Kostianoy, A.G. (Eds.) Oil Pollution in the Mediterranean Sea: Part I: The International Context. In The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2018; p. 83. [Google Scholar] [CrossRef]
- Castro-Jiménez, J.; Berrojalbiz, N.; Wollgast, J.; Dachs, J. Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: Atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. Environ. Pollut. 2012, 166, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Tsapakis, M.; Stephanou, E.G. Polycyclic Aromatic Hydrocarbons in the Atmosphere of the Eastern Mediterranean. Environ. Sci. Technol. 2005, 39, 6584–6590. [Google Scholar] [CrossRef] [PubMed]
- Tsiodra, I.; Grivas, G.; Tavernaraki, K.; Bougiatioti, A.; Apostolaki, M.; Paraskevopoulou, D.; Gogou, A.; Parinos, C.; Oikonomou, K.; Tsagkaraki, M.; et al. Annual exposure to polycyclic aromatic hydrocarbons in urban environments linked to wintertime wood-burning episodes. Atmos. Chem. Phys. 2021, 21, 17865–17883. [Google Scholar] [CrossRef]
- Tsiodra, I.; Grivas, G.; Bougiatioti, A.; Tavernaraki, K.; Parinos, C.; Paraskevopoulou, D.; Papoutsidaki, K.; Tsagkaraki, M.; Kozonaki, F.-A.; Oikonomou, K.; et al. Source apportionment of particle-bound polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and their associated long-term health risks in a major European city. Sci. Total Environ. 2024, 951, 175416. [Google Scholar] [CrossRef] [PubMed]
- Krom, M.D.; Kress, N.; Brenner, S.; Gordon, L.I. Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol. Oceanogr. 1991, 36, 424–432. [Google Scholar] [CrossRef]
- Pavlidou, A.; Velaoras, D.; Karageorgis, A.P.; Rousselaki, E.; Parinos, C.; Dähnke, K.; Möbius, J.; Meador, T.; Psarra, S.; Frangoulis, C.; et al. Seasonal variations of biochemical and optical properties, physical dynamics and N stable isotopic composition in three northeastern Mediterranean basins (Aegean, Cretan and Ionian Seas). Deep Sea Res. Part II Top. Stud. Oceanogr. 2020, 171, 104704. [Google Scholar] [CrossRef]
- Berrojalbiz, N.; Lacorte, S.; Calbet, A.; Saiz, E.; Barata, C.; Dachs, J. Accumulation and Cycling of Polycyclic Aromatic Hydrocarbons in Zooplankton. Environ. Sci. Technol. 2009, 43, 2295–2301. [Google Scholar] [CrossRef] [PubMed]
- Dachs, J.; Eisenreich, S.J. Adsorption onto Aerosol Soot Carbon Dominates Gas-Particle Partitioning of Polycyclic Aromatic Hydrocarbons. Environ. Sci. Technol. 2000, 34, 3690–3697. [Google Scholar] [CrossRef]
- Gustafsson, Ö.; Gschwend, P.M.; Buesseler, K.O. Using 234Th disequilibria to estimate the vertical removal rates of polycyclic aromatic hydrocarbons from the surface ocean. Mar. Chem. 1997, 57, 11–23. [Google Scholar] [CrossRef]
- Meyers, P.A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 1997, 27, 213–250. [Google Scholar] [CrossRef]
- Zervakis, V.; Georgopoulos, D.; Drakopoulos, P.G. The role of the North Aegean in triggering the recent Eastern Mediterranean climatic changes. J. Geophys. Res. Ocean. 2000, 105, 26103–26116. [Google Scholar] [CrossRef]
- Mamoutos, I.G.; Potiris, E.; Androulidakis, Y.; Tragou, E.; Zervakis, V. Evidence for Reduced Black Sea Water Outflow to the North Aegean. Earth Space Sci. 2024, 11, e2024EA003674. [Google Scholar] [CrossRef]
- Boyd, P.W.; Strzepek, R.; Fu, F.; Hutchins, D.A. Environmental control of open-ocean phytoplankton groups: Now and in the future. Limnol. Oceanogr. 2010, 55, 1353–1376. [Google Scholar] [CrossRef]
- Malinverno, E.; Cerino, F.; Karatsolis, B.T.; Ravani, A.; Dimiza, M.; Psarra, S.; Gogou, A.; Triantaphyllou, M.V. Silicoflagellates in the eastern mediterranean and Black Seas: Seasonality, distribution and sedimentary record. Deep Sea Res. Part II Top. Stud. Oceanogr. 2019, 164, 122–134. [Google Scholar] [CrossRef]
- Jickells, T.D.; An, Z.S.; Andersen, K.K.; Baker, A.R.; Bergametti, G.; Brooks, N.; Cao, J.J.; Boyd, P.W.; Duce, R.A.; Hunter, K.A.; et al. Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. Science 2005, 308, 67–71. [Google Scholar] [CrossRef]
Sediment Trap—Code Name, Μooring Location | M2—Athos Basin North Aegean Sea | M3A Cretan Sea | KMS—Nestor Site Ionian Sea |
---|---|---|---|
Coordinates | 39°58.16′ N, 24°43.48′ E | 35°44.76′ N, 25°09.29′ E | 36°2.96′ N, 21°28.93′ E |
Sampling interval | 01/2015–12/2015 | 01/2015–12/2015 | 01/2015–12/2015 |
Mooring depth (m) | 500, 1000 | 350, 1550 | 700, 4300 |
Water column depth (m) | 1050 | 1570 | 4500 |
TPAH25 (ng g−1) | ∑COMB (ng g−1) | ∑Phe (ng g−1) | TPAH25 (ng m−2 d−1) | ∑COMB (ng m−2 d−1) | ∑Phe (ng m−2 d−1) | |
---|---|---|---|---|---|---|
North Aegean (M2) | ||||||
500 m | 256–476 (372) | 101–152 (131) | 89–209 (152) | 82.6–407 (120) | 32.8–130 (41.2) | 28.8–179 (49.9) |
1000 m | 297–807 (379) | 94.1–177 (121) | 101–223 (162) | 38.5–477 (169) | 13.7–127 (58) | 15.4–258 (60.2) |
Cretan Sea (M3A) | ||||||
350 m | 189–852 (362) | 79.5–281 (132) | 67.6–334 (138) | 17.5–93.9 (35.1) | 5.23–39.5 (13.1) | 6.66–33.6 (13.4) |
1550 m | 247–742 (414) | 64.7–389 (146) | 106–334 (136) | 9.49–63.6 (25.2) | 3.89–22.2 (10.2) | 4.07–30.4 (10.3) |
Ionian Sea (KMS) | ||||||
700 m | 202–654 (340) | 74.5–234 (121) | 80.5–267 (142) | 7.26–59.6 (28.2) | 2.92–17.5 (10.2) | 2.4–29.1 (10.8) |
4300 m | 279–834 (442) | 92.6–172 (146) | 80.2–310 (196) | 5.48–71.4 (14.6) | 1.68–21.7 (4.64) | 2.25–33.8 (7.28) |
Total dataset | 189–852 (375) | 64.7–389 (128) | 67.6–334 (154) | 5.48–477 (37.9) | 1.68–130 (14.2) | 2.25–258 (15.0) |
Phe/(Phe + C1-Phe) | Flth/(Flth + Pyr) | BaA/(BaA + Chry) | IndP/(IndP + BgP) | ∑Phe/∑COMB | |
---|---|---|---|---|---|
North Aegean (M2) | |||||
500 m | 0.47–0.61 (0.53) | 0.38–0.49 (0.44) | 0.40–0.59 (0.49) | 0.32–0.40 (0.37) | 0.99–1.38 (1.17) |
1000 m | 0.42–0.61 (0.53) | 0.42–0.54 (0.47) | 0.37–0.64 (0.51) | 0.35–0.52 (0.41) | 0.89–2.03 (1.33) |
Cretan Sea (M3A) | |||||
350 m | 0.38–0.61 (0.47) | 0.42–0.54 (0.49) | 0.55–0.84 (0.66) | 0.26–0.52 (0.42) | 0.84–2.06 (1.08) |
1550 m | 0.42–0.55 (0.47) | 0.41–0.59 (0.48) | 0.55–0.76 (0.68) | 0.35–0.54 (0.44) | 0.33–1.20 (0.83) |
Ionian Sea (KMS) | |||||
700 m | 0.39–0.65 (0.55) | 0.36–0.65 (0.48) | 0.47–0.75 (0.61) | 0.24–0.44 (0.33) | 0.72–1.41 (1.15) |
4300 m | 0.44–0.62 (0.52) | 0.41–0.55 (0.47) | 0.56–0.84 (0.70) | 0.32–0.46 (0.37) | 0.83–1.80 (1.38) |
Parameter | PC1 (57.7%) | PC2 (11.9%) | PC3 (6.9%) |
---|---|---|---|
TMF | 0.949 | 0.200 | 0.170 |
POC Flux | 0.842 | 0.266 | 0.020 |
CACO3 Flux | 0.869 | 0.058 | −0.007 |
Lithogenic Flux | 0.920 | 0.226 | 0.218 |
Opal Flux | 0.931 | 0.226 | 0.194 |
EC Flux | 0.904 | 0.111 | 0.148 |
C/N Ratio | −0.084 | −0.042 | −0.777 |
δ13POC | −0.590 | −0.125 | −0.499 |
SST | −0.460 | 0.117 | −0.437 |
Chlorophyll-a | 0.635 | 0.149 | 0.633 |
TPAH25 Flux | 0.913 | 0.240 | 0.158 |
∑COMB Flux | 0.925 | 0.246 | 0.137 |
∑PHE Flux | 0.892 | 0.249 | 0.190 |
∑TerNA Flux | 0.555 | 0.701 | 0.252 |
UCM Flux | 0.192 | 0.761 | 0.110 |
Cholesterol Flux | 0.140 | 0.704 | −0.145 |
∑Phyto Flux | 0.344 | 0.729 | −0.166 |
CPINA | −0.107 | 0.764 | 0.396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skylaki, E.; Parinos, C.; Tsagkaraki, M.; Hatzianestis, I.; Christidi, A.; Skampa, E.; Nikolopoulou, I.; Kambouri, G.; Stavrakaki, I.; Velaoras, D.; et al. A 1-Year Sediment Trap Study on the Downward Flux of Polycyclic Aromatic Hydrocarbons by Settling Particulate Matter in Deep Basins of the Aegean and Ionian Seas, Northeastern Mediterranean. J. Mar. Sci. Eng. 2025, 13, 47. https://doi.org/10.3390/jmse13010047
Skylaki E, Parinos C, Tsagkaraki M, Hatzianestis I, Christidi A, Skampa E, Nikolopoulou I, Kambouri G, Stavrakaki I, Velaoras D, et al. A 1-Year Sediment Trap Study on the Downward Flux of Polycyclic Aromatic Hydrocarbons by Settling Particulate Matter in Deep Basins of the Aegean and Ionian Seas, Northeastern Mediterranean. Journal of Marine Science and Engineering. 2025; 13(1):47. https://doi.org/10.3390/jmse13010047
Chicago/Turabian StyleSkylaki, Ester, Constantine Parinos, Maria Tsagkaraki, Ioannis Hatzianestis, Anastasia Christidi, Elisavet Skampa, Ioanna Nikolopoulou, Georgia Kambouri, Ioanna Stavrakaki, Dimitris Velaoras, and et al. 2025. "A 1-Year Sediment Trap Study on the Downward Flux of Polycyclic Aromatic Hydrocarbons by Settling Particulate Matter in Deep Basins of the Aegean and Ionian Seas, Northeastern Mediterranean" Journal of Marine Science and Engineering 13, no. 1: 47. https://doi.org/10.3390/jmse13010047
APA StyleSkylaki, E., Parinos, C., Tsagkaraki, M., Hatzianestis, I., Christidi, A., Skampa, E., Nikolopoulou, I., Kambouri, G., Stavrakaki, I., Velaoras, D., Kouvarakis, G., Triantaphyllou, M. V., Kanakidou, M., Mihalopoulos, N., & Gogou, A. (2025). A 1-Year Sediment Trap Study on the Downward Flux of Polycyclic Aromatic Hydrocarbons by Settling Particulate Matter in Deep Basins of the Aegean and Ionian Seas, Northeastern Mediterranean. Journal of Marine Science and Engineering, 13(1), 47. https://doi.org/10.3390/jmse13010047