Enhanced Minimum Spanning Tree Optimization for Air-Lifted Artificial Upwelling Pipeline Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Root Nodes and Air Injection Clusters Based on FCM Algorithm
2.2. Pipeline Creation Based on Delaunay Triangulation and Pathfinding
2.3. Pressure Losses in the Air Injection System
2.4. Global Dynamic Vertex Weights Minimum Spanning Tree Multi-Objective Joint Optimization Algorithm
3. Case Description and Evaluation Metric Construction
- initially, following the distinct AIPN optimization methodologies, the connection outcomes for a specific case are acquired, and the corresponding pressure loss coefficient A is calculated:
4. Results and Discussion
4.1. Calculation and Analysis of Ss Values
4.2. Analysis of the AIPN Layout Optimization Results
- (1)
- Case 250 × 250 m.
- (2)
- Case 500 × 500 m.
- (3)
- Case 1000 × 1000 m.
4.3. Analysis of the NBEP
4.4. Analysis of Optimization Patterns and Engineering Significance of Optimization Outcomes
- (1)
- Clustering
- (2)
- Obstacle avoidance
- (3)
- Tree-like topology
- (1)
- Enhancement of air-lifted AU systems efficiency
- (2)
- Economic cost optimization
- (3)
- Environmental sustainability and adaptation
4.5. Computational Complexity and Accuracy-Runtime Trade-Offs
- (1)
- Fuzzy C-Means clustering:
- (2)
- Navigation grid pathfinding:
- (3)
- GDVMST core algorithm:
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AU | Artificial upwelling |
AIPN | Air injection pipeline network |
GHGs | Greenhouse gases |
BEP | Bubble-entrained plume |
MILP | Mixed-integer linear programming |
GDMST | Global dynamic minimum spanning tree |
GDVMST | Global dynamic vertex-weighted minimum spanning tree |
FCM | Fuzzy C-means |
FPL | Frictional pressure loss |
LPL | Local pressure loss |
SPN | Single-path pipeline network |
Nomenclature | |
NBEP | Bubble entrainment plume loss rate |
n | Number of nozzles |
xi | Coordinate of the i-th nozzle |
c | Number of clusters |
ci | Coordinate of the i-th root node |
X | Set of nozzles coordinates |
C | Set of air injection root nodes coordinates |
N | Set of vertices |
uij | Membership degree of xi to cj |
dij | Distance between xi and cj |
λ | Friction coefficient |
l | Length of the pipeline (m) |
d | Diameter of the pipeline (mm) |
ρ | Density of the fluid (kg/m3) |
v | Average flow velocity of the fluid within the pipeline (m/s) |
vf | Kinematic viscosity of the fluid (m/s) |
ς | Local resistance coefficient |
p | Number of passages of the nozzle downstream |
We | Edge wights |
Wn | Vertex wights |
E | Set of edges |
Vb | Transported BEP volume in T (m3) |
Vcon | Set of the connected points (nozzles) |
Vuncon | Set of the unconnected points (nozzles) |
Wini | Initial edge weights |
Witer-ini | New initial edge weights |
Wini_add (vi) | Initial value of Wadd (vi) for vi |
Wavg_ini_add | Average of all Wini_add (vi) |
Wadd (vi) | Additional weight for vi |
Wavg-ini | Average of Wini for all candidate edges |
Wt | Total weights |
Cpipe, l | Unit length FPL in the i-th pipeline |
vi | The i-th point (the i-th nozzle) |
Ss | Adjustment coefficient |
A | Pressure losses coefficient |
Pz | Total pressure losses (Pa) |
t | System operation time (h) |
Q0 | Volume flow rate of air injected into the pipelines (m3/s) |
vs | Bubble slip velocity (m/s) |
T | Additional operating time converted from energy losses (h) |
Δz | Virtual displacement of the nozzle |
α | Entrainment coefficient |
H0 | Head height under standard atmospheric pressure (generally 10.4 m) |
Qw0 | BEP volume flow rate at nozzle outlet (m3/s) |
References
- Jahanger, A.; Hossain, M.R.; Usman, M.; Onwe, J.C. Recent scenario and nexus between natural resource dependence, energy use and pollution cycles in BRICS region: Does the mediating role of human capital exist? Resour. Policy 2023, 81, 103382. [Google Scholar] [CrossRef]
- Rubin, E.; De Coninck, H. IPCC Special Report on Carbon Dioxide Capture and Storage; TNO (2004): Cost Curves for CO2 Storage, Part 2; Cambridge University Press: Cambridge, UK, 2005; p. 14. [Google Scholar]
- Pan, Y.; Li, Y.; Fan, W.; Zhang, D.; Qiang, Y.; Jiang, Z.P.; Chen, Y. A sea trial of air-lift concept artificial upwelling in the East China Sea. J. Atmos. Ocean. Technol. 2019, 36, 2191–2204. [Google Scholar] [CrossRef]
- Pan, Y.; You, L.; Li, Y.; Fan, W.; Chen, C.T.A.; Wang, B.J.; Chen, Y. Achieving highly efficient atmospheric CO2 uptake by artificial upwelling. Sustainability 2018, 10, 664. [Google Scholar] [CrossRef]
- Liang, N.K.; Peng, H.K. A study of air-lift artificial upwelling. Ocean Eng. 2005, 32, 731–745. [Google Scholar] [CrossRef]
- Qiang, Y.; Fan, W.; Xiao, C.; Rivkin, R.B.; Pan, Y.; Wu, J.; Guo, J.; Chen, Y. Behaviors of bubble-entrained plumes in air-injection artificial upwelling. J. Hydraul. Eng. 2018, 144, 04018032. [Google Scholar] [CrossRef]
- Yao, Z.; Fan, W.; Xiao, C.; Qiang, Y.; Pan, Y.; Liang, N.K.; Chen, Y. Theoretical and experimental study on influence factors of bubble-entrained plume in air-injection artificial upwelling. Ocean Eng. 2019, 192, 106572. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, Z.; Yao, Z.; Xiao, C.; Zhang, Y.; Zhang, Y.; Liu, J.; Di, Y.; Chen, Y.; Pan, Y. A sea trial of enhancing carbon removal from Chinese coastal waters by stimulating seaweed cultivation through artificial upwelling. Appl. Ocean Res. 2020, 101, 102260. [Google Scholar] [CrossRef]
- Lin, T.; Fan, W.; Xiao, C.; Yao, Z.; Zhang, Z.; Zhao, R.; Pan, Y.; Chen, Y. Energy management and operational planning of an ecological engineering for carbon sequestration in coastal Mariculture environments in China. Sustainability 2019, 11, 3162. [Google Scholar] [CrossRef]
- McClimans, T.A.; Handå, A.; Fredheim, A.; Lien, E.; Reitan, K.I. Controlled artificial upwelling in a fjord to stimulate non-toxic algae. Aquac. Eng. 2010, 42, 140–147. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, W.; Zhao, Y.; Wen, C.; Lin, Z.; Qu, M. Layout optimization for underwater nozzle array of air-lifted artificial upwelling system based on discrete particle swarm algorithm. Appl. Ocean Res. 2023, 140, 103724. [Google Scholar] [CrossRef]
- Ghafori, H.; Sharifi, M. Numerical and experimental study of an innovative design of elbow in the pipe line of a pneumatic conveying system. Powder Technol. 2018, 331, 171–178. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, C.; Chen, Y.; Chen, J. A simplified CFD model for air-lift artificial upwelling. Ocean Eng. 2013, 72, 267–276. [Google Scholar] [CrossRef]
- Fan, W.; Pan, Y.; Liu, C.C.; Wiltshire, J.C.; Chen, C.T.A.; Chen, Y. Hydrodynamic design of deep ocean water discharge for the creation of a nutrient-rich plume in the South China Sea. Ocean Eng. 2015, 108, 356–368. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, W.; Zou, Z.; Zhang, J.; Zhao, Y.; Wang, W.; Hu, S.; Wen, C. Deep reinforcement learning for artificial upwelling energy management. Ocean Eng. 2024, 306, 117980. [Google Scholar] [CrossRef]
- Cazzaro, D.; Koza, D.F.; Pisinger, D. Combined layout and cable optimization of offshore wind farms. Eur. J. Oper. Res. 2023, 311, 301–315. [Google Scholar] [CrossRef]
- Pérez-Rúa, J.A.; Lumbreras, S.; Ramos, A.; Cutululis, N.A. Reliability-based topology optimization for offshore wind farm collection system. Wind. Energy 2022, 25, 52–70. [Google Scholar] [CrossRef]
- Cazzaro, D.; Fischetti, M.; Fischetti, M. Heuristic algorithms for the wind farm cable routing problem. Appl. Energy 2020, 278, 115617. [Google Scholar] [CrossRef]
- Reddy, S.R. Wind Farm Layout Optimization (WindFLO): An advanced framework for fast wind farm analysis and optimization. Appl. Energy 2020, 269, 115090. [Google Scholar] [CrossRef]
- Cazzaro, D.; Trivella, A.; Corman, F.; Pisinger, D. Multi-scale optimization of the design of offshore wind farms. Appl. Energy 2022, 314, 118830. [Google Scholar] [CrossRef]
- Li, J.; Hu, W.; Wu, X.; Huang, Q.; Liu, Z.; Chen, Z.; Blaabjerg, F. A hybrid cable connection structure for wind farms with reliability consideration. IEEE Access 2019, 7, 144398–144407. [Google Scholar] [CrossRef]
- Huang, W.; Yan, B.Y.; Tan, R.S.; Liu, L.F. Research on Collection System Optimal Design of Wind Farm with Obstacles. IOP Conf. Ser. Mater. Sci. Eng. 2017, 199, 012030. [Google Scholar] [CrossRef]
- Hou, P.; Hu, W.; Chen, Z. Offshore substation locating in wind farms based on prim algorithm. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–5. [Google Scholar]
- Gonzalez-Longatt, F.M.; Wall, P.; Regulski, P.; Terzija, V. Optimal electric network design for a large offshore wind farm based on a modified genetic algorithm approach. IEEE Syst. J. 2011, 6, 164–172. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, Z.; Blaabjerg, F. Optimisation of electrical system for offshore wind farms via genetic algorithm. IET Renew. Power Gener. 2009, 3, 205–216. [Google Scholar] [CrossRef]
- Hou, P.; Hu, W.; Chen, Z. Optimisation for offshore wind farm cable connection layout using adaptive particle swarm optimisation minimum spanning tree method. IET Renew. Power Gener. 2016, 10, 694–702. [Google Scholar] [CrossRef]
- Lei, Z.; Gao, S.; Wang, Y.; Yu, Y.; Guo, L. An adaptive replacement strategy-incorporated particle swarm optimizer for wind farm layout optimization. Energy Convers. Manag. 2022, 269, 116174. [Google Scholar] [CrossRef]
- Cerveira, A.; Baptista, J.; Pires, E.J.S. Optimization design in wind farm distribution network. In Proceedings of the International Joint Conference SOCO’13-CISIS’13-ICEUTE’13, Salamanca, Spain, 11–13 September 2013; Springer International Publishing: Cham, Switzerland, 2014; pp. 109–119. [Google Scholar]
- Lumbreras, S.; Ramos, A. Optimal design of the electrical layout of an offshore wind farm applying decomposition strategies. IEEE Trans. Power Syst. 2012, 28, 1434–1441. [Google Scholar] [CrossRef]
- Wędzik, A.; Siewierski, T.; Szypowski, M. A new method for simultaneous optimizing of wind farm’s network layout and cable cross-sections by MILP optimization. Appl. Energy 2016, 182, 525–538. [Google Scholar] [CrossRef]
- Wędzik, A. The optimization of cable layout design in wind farm internal networks. Acta Energetica 2014, 3, 144–154. [Google Scholar] [CrossRef]
- Ulku, I.; Alabas-Uslu, C. Optimization of cable layout designs for large offshore wind farms. Int. J. Energy Res. 2020, 44, 6297–6312. [Google Scholar] [CrossRef]
- Klein, A.; Haugland, D. Obstacle-aware optimization of offshore wind farm cable layouts. Ann. Oper. Res. 2019, 272, 373–388. [Google Scholar] [CrossRef]
- Cerveira, A.; Pires, E.J.S.; Baptista, J. Wind farm cable connection layout optimization with several substations. Energies 2021, 14, 3615. [Google Scholar] [CrossRef]
- Hou, P.; Hu, W.; Chen, Z. Offshore wind farm cable connection configuration optimization using dynamic minimum spanning tree algorithm. In Proceedings of the 2015 50th International Universities Power Engineering Conference (UPEC), Stoke on Trent, UK, 1–4 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar]
- Cao, Z.W. Research on the Joint Optimization Method of Wind Farm Cable Arrangement and Wind Farm Layout; Chongqing University: Chongqing, China, 2022. [Google Scholar]
- Yang, Q.; Han, G.; Gao, W.; Yang, Z.; Zhu, S.; Deng, Y. A Robust Learning Membership Scaling Fuzzy C-Means Algorithm Based on New Belief Peak. IEEE Trans. Fuzzy Syst. 2023, 31, 4486–4500. [Google Scholar] [CrossRef]
- Dutta, S.; Overbye, T.J. A clustering based wind farm collector system cable layout design. In Proceedings of the 2011 IEEE Power and Energy Conference at Illinois, Urbana, IL, USA, 25–26 February 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–6. [Google Scholar]
- Pillai, A.C.; Chick, J.; Johanning, L.; Khorasanchi, M.; De Laleu, V. Offshore wind farm electrical cable layout optimization. Eng. Optim. 2015, 47, 1689–1708. [Google Scholar] [CrossRef]
- Wang, P.; Qin, J.; Li, J.; Wu, M.; Zhou, S.; Feng, L. Optimal Transshipment Route Planning Method Based on Deep Learning for Multimodal Transport Scenarios. Electronics 2023, 12, 417. [Google Scholar] [CrossRef]
- Jan, G.E.; Sun, C.C.; Tsai, W.C.; Lin, T.H. An $\bm {O (n\log n)} $ Shortest Path Algorithm Based on Delaunay Triangulation. IEEE/ASME Trans. Mechatron. 2013, 19, 660–666. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, S.; Mohapatra, S.K. Modeling of solid-liquid flow inside conical diverging sections using computational fluid dynamics approach. Int. J. Mech. Sci. 2020, 186, 105909. [Google Scholar] [CrossRef]
- Sun, X.; Mohammed, H.I.; Tiji, M.E.; Mahdi, J.M.; Majdi, H.S.; Wang, Z.; Talebizadehsardari, P.; Yaïci, W. Investigation of heat transfer enhancement in a triple TUBE latent heat storage system using circular fins with inline and staggered arrangements. Nanomaterials 2021, 11, 2647. [Google Scholar] [CrossRef]
- Hua, S.Z.; Yang, X.N. Practical Fluid Resistance Manual; National Defense Industry Press: Beijing, China, 1985. [Google Scholar]
- Lin, X.; Liu, C. Water Supply and Drainage Design Manual; China Building Industry Press: Beijing, China, 2000; Volume 1. [Google Scholar]
- Lin, X.; Liu, C. Water Supply and Drainage Design Manual; China Building Industry Press: Beijing, China, 2000; Volume 5. [Google Scholar]
- Pérez-Pupo, J.R.; Navarro-Ojeda, M.N.; Pérez-Guerrero, J.N.; Batista-Zaldívar, M.A. On the explicit expressions for the determination of the friction factor in turbulent regime. Rev. Mex. Ing. Química 2020, 19, 313–334. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiao, Y.; Lu, Z.; Sun, W. Optimisation of offshore wind farm collection systems-based on modified genetic algorithm. J. Eng. 2017, 2017, 1045–1049. [Google Scholar] [CrossRef]
- Fan, W.; Chen, J.; Pan, Y.; Huang, H.; Chen, C.T.A.; Chen, Y. Experimental study on the performance of an air-lift pump for artificial upwelling. Ocean Eng. 2013, 59, 47–57. [Google Scholar] [CrossRef]
- Qiang, Y.; Fan, W.; Xiao, C.; Pan, Y.; Chen, Y. Effects of operating parameters and injection method on the performance of an artificial upwelling by using airlift pump. Appl. Ocean Res. 2018, 78, 212–222. [Google Scholar] [CrossRef]
- Wang, W.W.; Li, D.J.; Zhou, J.L.; Gao, L. Nutrient dynamics in pore water of tidal marshes near the Yangtze Estuary and Hangzhou Bay, China. Environ. Earth Sci. 2011, 63, 1067–1077. [Google Scholar] [CrossRef]
- Ni, Z.; Zhang, L.; Yu, S.; Jiang, Z.; Zhang, J.; Wu, Y.; Zhao, C.; Liu, S.; Zhou, C.; Huang, X. The porewater nutrient and heavy metal characteristics in sediment cores and their benthic fluxes in Daya Bay, South China. Mar. Pollut. Bull. 2017, 124, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Ditmars, J.D.; Cederwall, K. Analysis of air-bubble plumes. Coast. Eng. 1974, 1974, 2209–2226. [Google Scholar]
- Kobus, H.E. Analysis of the flow induced by air-bubble systems. Coast. Eng. 1968, 1968, 1016–1031. [Google Scholar] [CrossRef]
Pipe Fitting Type | Tee Fitting | Cross Fitting | Five-Way Fitting | Six-Way Fitting |
---|---|---|---|---|
ς | 1.5 | 2.5 | 4.5 | 8 |
Method | SPN | Prim | GDVMST Multi-Objective |
---|---|---|---|
Total pressure losses | 17,306,176.33 Pa | 3,442,220.10 Pa | 3,442,123.09 Pa |
Method | SPN | Prim | GDVMST Multi-Objective |
---|---|---|---|
Total pressure losses | 140,320,311.54 Pa | 13,561,068.51 Pa | 13,541,882.95 Pa |
Method | SPN | Prim | GDVMST Multi-Objective |
---|---|---|---|
Total pressure losses | 568,120,937.21 Pa | 53,734,778.28 Pa | 53,661,813.04 Pa |
Algorithm Step | Theoretical Complexity | Case 250 × 250 m | Case 500 × 500 m | Case 1000 × 1000 m |
---|---|---|---|---|
FCM clustering | O (c·n) | 0.13s (c = 1) | 1.06s (c = 1) | 8.50s (c = 4) |
Pathfinding (single query) | O (m logm) | 0.14s (m = 58) | 0.29s (m = 58) | 0.34s (m = 121) |
GDVMST core optimization | ) | 0.15s (n = 120, c = 1) | 1.33s (n = 500, c = 1) | 10.63s (n = 2000, c = 4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Fan, W.; Zhao, Y.; Zou, Z.; Qu, M.; Chen, Y. Enhanced Minimum Spanning Tree Optimization for Air-Lifted Artificial Upwelling Pipeline Network. J. Mar. Sci. Eng. 2025, 13, 317. https://doi.org/10.3390/jmse13020317
Zhang J, Fan W, Zhao Y, Zou Z, Qu M, Chen Y. Enhanced Minimum Spanning Tree Optimization for Air-Lifted Artificial Upwelling Pipeline Network. Journal of Marine Science and Engineering. 2025; 13(2):317. https://doi.org/10.3390/jmse13020317
Chicago/Turabian StyleZhang, Junjie, Wei Fan, Yonggang Zhao, Zhiyu Zou, Mengjie Qu, and Ying Chen. 2025. "Enhanced Minimum Spanning Tree Optimization for Air-Lifted Artificial Upwelling Pipeline Network" Journal of Marine Science and Engineering 13, no. 2: 317. https://doi.org/10.3390/jmse13020317
APA StyleZhang, J., Fan, W., Zhao, Y., Zou, Z., Qu, M., & Chen, Y. (2025). Enhanced Minimum Spanning Tree Optimization for Air-Lifted Artificial Upwelling Pipeline Network. Journal of Marine Science and Engineering, 13(2), 317. https://doi.org/10.3390/jmse13020317