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Abstract: Imaging sonar is a crucial tool for underwater visual perception. Compared to 2D
sonar images, 3D sonar images offer superior spatial positioning capabilities, although the
data acquisition cost is higher and lacks open source references for data annotation, target
detection, and semantic segmentation. This paper utilizes 3D imaging sonar to collect
underwater data from three types of targets with 1534 effective frames, including a tire,
mannequin, and table, in Liquan Lake, Shanxi Province, China. Based on these data, this
study focuses on three innovative aspects as follows: rapid underwater data annotation,
loss function optimization, and unsupervised moving target extraction in water. For rapid
data annotation, a batch annotation method combining human expertise and multi-frame
superposition is proposed. This method automatically generates single-frame target de-
tection boxes based on multi-frame joint segmentation, offering advantages in speed, cost,
and accuracy. For loss function optimization, a density-based loss function is introduced to
address the issue of overfitting in dense regions due to the uneven distribution of point
cloud data. By assigning different weights to data points in different density regions,
the model pays more attention to accurate predictions in a sparse area, resulting in a
6.939 improvement in mIOU for semantic segmentation tasks, while lakebed mIOU
achieved a high score of 99.28. For unsupervised moving target extraction, a multi-frame
joint unsupervised moving target association extraction method called the Double DB-
SCAN, D-DBSCAN, is proposed. This method simulates human visual sensitivity to
moving targets in water and uses a joint D-DBSCAN spatial clustering approach with single-
frame and inter-frame superposition, achieving an improvement of 21.3 points in mAP.
Finally, the paper summarizes the three proposed innovations and provides directions for
further research.

Keywords: 3D imaging sonar; annotation; loss function; D-DBSCAN; target detection

1. Introduction
Imaging sonar is a vital tool for underwater visual perception tasks such as target

detection and semantic segmentation [1]. The primary sensors used are 2D and 3D imaging
sonars [2], which are successively analogous to visual cameras and LiDAR in autonomous
driving [3]. 2D sonar includes forward-looking sonar, side-scan sonar, and synthetic aper-
ture sonar, with images representing the projection of sonar echo intensity on a 2D plane.
3D imaging sonars, such as the 3D forward-looking sonar and multi-beam bathymetric
sonar, generate 3D point clouds, with each point corresponding to an echo intensity. The
multi-beam bathymetric sonar relies on platform movement to generate point cloud images
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that reflect seabed topography, while the 3D forward-looking sonar can directly image the
scene in front of the sonar array without platform movement.

2D sonar arrays are typically linear, forming beams only in the horizontal direction,
which results in the loss of vertical precision during imaging [4]. As a result, most sonar im-
age target detection and segmentation tasks focus on 2D images, relying on the distribution
of acoustic echo intensity in 2D images [5]. In contrast, 3D imaging sonar uses planar arrays
that can form beams in both vertical and horizontal directions, providing more precise
spatial information for underwater targets, as shown in Figure 1. This allows for the use of
both echo intensity differences and spatial distribution features to determine the state of
underwater targets.

Figure 1. 3D sonar image.

The data characteristics of 3D imaging sonar significantly enhance the perception of
moving targets in water, effectively compensating for the shortcomings of the 2D imaging
sonar, which relies on a single feature for target detection and often inaccurately regresses
target positions. However, due to industry limitations, publicly available imaging sonar
datasets are scarce, with most being 2D datasets [6]. 3D sonar point cloud datasets are even
rarer, and there is limited research in this field.

There is no industry standard for annotating 3D imaging sonar data. Existing 3D
annotation methods are primarily designed for LiDAR or depth camera point cloud
data. For underwater point cloud annotation, the typical method involves manually
drawing a 3D bounding box around the target, which is labor intensive, inefficient, and
prone to errors. Existing 3D target detection methods can be broadly categorized into
three types based on point cloud representation. The first is voxel-based methods, such
as VoxelNet [7] and PointPillars [8], which grid irregular point clouds into standard voxel
units and learn high-dimensional features through sparse 3D convolution. While these
methods perform well in feature extraction, they must balance accuracy and efficiency.
Smaller voxels yield higher precision but require more computational resources, while
larger voxels can lead to information loss. The second category is point-based methods,
such as PointNet [9], PointNet++ [10], PointRCNN [11], and 3DSSD [12], which directly
use raw 3D point cloud data to minimize information loss during data conversion. These
methods avoid voxelization-induced information loss and leverage the sparsity of point
clouds for efficient computation. However, due to the irregularity of point cloud data,
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point-based methods must satisfy permutation invariance and dynamically adapt to input
size. The third category is multi-modal methods, such as PointPainting [13], which combine
point clouds, images, and depth maps for 3D detection, generally outperforming single-
modal methods.

Common loss functions in computer vision tasks include MSE, MAE, and cross-
entropy loss [14]. In underwater sonar point cloud processing, the spatial distribution
of point clouds is denser near the sensor and sparser farther away. Using a uniform
loss function may cause the model to overfit dense regions while neglecting sparse re-
gions. Therefore, adjusting loss weights to focus on different regions is key in improving
segmentation performance.

3D sonar point cloud data are highly sparse and disordered, with uneven spatial and
echo intensity distributions. Due to the combined effects of the seabed, water, targets, and
noise, the reflected echoes exhibit high disorder, with some areas being densely reflective
and others being sparse or blank. The reflection intensity depends on the distance, position,
and acoustic impedance of the reflector, which is the product of material density and sound
speed. Current research on 3D imaging sonar target detection and segmentation is limited
and primarily focuses on point cloud target detection networks.

2. Data Collection and Annotation Method
2.1. Data Collection

The data used in this study were collected during experiments conducted in Liquan
Lake, Shaanxi Province, in April 2024. The lake’s depth ranges from 6 to 20 m, with the
test area being from 6 to 9 m, located near a fishing area, as shown in Figure 2. During
the three-day experiment, the lake conditions were favorable, with no wind, no waves,
and no boat interference. The imaging sonar equipment, which is the fourth-generation
real-time 3D imaging sonar developed by Coda Octopus in the Edinburgh, UK, is shown in
Figure 3, with its performance parameters shown in Table 1. CODA 3D imaging sonar was
mounted on a metal bracket and hard-connected to the boat, with the sensor submerged at
2 m. As shown in Figure 4, the underwater holder allowed for the real-time adjustment
of the transducer’s field of view. While fixed to the boat’s bottom, the CODA’s gyroscope
provided real-time platform pose calibration, and onboard software recorded the trajectory.

The lake experiment focused on collecting the 3D imaging data of preset cooperative
moving targets in the water, including a tire, mannequin, and metal table, as shown in
Figure 5. The tire dimensions were 580 mm outer diameter, 350 mm inner diameter, and
170 mm height; the mannequin was 1.85 m tall; and the metal table was 740 mm in height,
with an upper surface diameter of 800 mm and a lower surface diameter of 500 mm.

Figure 2. The red box test area in Liquan lake.
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Table 1. CODA parameters.

Feature CODA Specification

Frequency 375, 610 kHz
Beam Count 128 × 128 (16,384 total)

Field of View Coverage 50° × 24°, 24° × 50° (standard)
Pressure Depth 600–3000 m (1968–9842 ft)

Sonar Dimensions 380 × 300 × 160 mm (15 × 12 × 6 in)
Sonar Weight 24.6 kg/54.2 lb

Figure 3. CODA testing equipment.

Figure 4. Testing boat.

Figure 5. Tire, mannequin, and table test targets.

The dynamic sonar data collection of these targets captured the imaging characteristics
of different reflective surfaces, providing a rich dataset for subsequent algorithm research,
which helps improve the generalization and robustness of the algorithms. The 3D sonar
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images of the tire, mannequin, and metal table are shown in Figures 6–9. A total of
1534 frames of valid data were used in the study, including 554 frames for the tire,
644 frames for the mannequin, and 336 frames for the metal table.

Figure 6. Tire 3D sonar image.

Figure 7. Mannequin 3D sonar image.

Figure 8. Metal table 3D sonar image.
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Figure 9. Structure of MinkowskiUNet32 [15].

2.2. Data Annotation

3D imaging sonar data, like LiDAR and depth camera data, take the form of point
clouds. Annotation is typically done manually, similar to 2D image annotation, by drawing
3D bounding boxes around targets. This paper proposes a more efficient annotation method.

By replaying historical data frame by frame, the movement of underwater targets
can be visually observed, while environmental noise and seabed background remain
relatively unchanged. Dynamic target frames are identified and saved as a stack. Using the
open source software Cloud Compare, the stacked data are opened, and based on human
expertise, the dynamic target point clouds are segmented and labeled. The target category
is assigned based on prior knowledge recorded during data collection, and the labels are
added as numerical codes to the point cloud data.

Using frame number information, the stacked data are split back into individual
frames, each containing the target annotation information. This completes the batch
processing of target data, adding segmentation information for dynamic targets. For each
frame, the maximum and minimum X, Y, Z coordinates of the segmented target point
clouds are calculated to generate a 2 × 3 matrix as follows:(

Xmax Ymax Zmax

Xmin Ymin Zmin

)

A 3D bounding box is automatically generated based on these coordinates, represent-
ing the target’s location.

Finally, following the annotation format of the open source KITTI dataset [16],
the bounding box dimensions (Xmax − Xmin , Ymax − Ymin , Zmax − Zmin) are calcu-
lated. To uniquely identify the target bounding box, the center point coordinates
((Xmax − Xmin)/2, (Ymax −Ymin)/2, (Zmaxx − Zmin)/2) are also calculated and added to the
annotation file. Additional information, such as the distance from the center to the origin,
the center point’s direction angle, and the target’s average reflection intensity, can also be
calculated and automatically annotated.

3. Loss Function Optimization and Semantic Segmentation Task
3.1. Loss Function

In underwater sonar point cloud processing, the spatial distribution of point clouds
is denser near the sensor and sparser farther away. Using a uniform loss function may
cause the model to overfit dense regions while neglecting sparse regions. To address this,
we propose a density-based loss function that assigns different weights to data points in
different density regions, ensuring the model pays more attention to accurate predictions
in sparse regions.
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To enhance the model’s segmentation performance in sparse regions, we propose a
density-weighted loss function. For each point pi, a weight is assigned based on its local
density di. The weight is calculated as follows:

wi =
1

di
α

where

• wi is the loss weight for point pi;
• di is the local density of point pi, estimated using the nearest neighbor distance;
• α is a hyperparameter controlling the weight variation, typically α > 0, to emphasize

sparse regions.

The overall loss function is defined as follows:

L =
1
N

N

∑
i=1

wiL(ci, ĉi)

where

• N is the total number of points in the point cloud;
• L(ci, ĉi) is the basic loss function (e.g., cross-entropy or mean squared error) for the

true class ci and predicted class ĉi of point pi;
• wi is the weight for point pi, emphasizing sparse regions. This density-weighted loss

function reduces the risk of overfitting in dense regions by assigning lower weights
while improving segmentation accuracy in sparse regions by assigning higher weights.

3.2. Semantic Segmentation Experiment

To address the challenges of high-dimensional perception, this project employs sparse
tensors and generalized sparse convolution. Sparse convolution [17] is efficient and fast,
saving memory and computation. For 3D scans or high-dimensional data, where most of
the space is empty, it only computes outputs at predefined coordinates and stores them
as compact sparse tensors. This work uses the Minkowski network [15], which is based
on sparse representation. Generalized sparse convolution allows the arbitrary definition
of the stride and kernel shape, making it easier to create high-dimensional networks.
For segmentation tasks, a U-Net structure effectively integrates multi-level features for
efficient segmentation.

Based on the optimized loss function, the Minkowski baseline network was used to
compare the IOU of the seabed, water noise, tire, mannequin, and table. The proposed
density-based loss function optimization method improved segmentation accuracy across
all five categories, with an overall mIOU increase of 6.939, as shown in Table 2 below.

Table 2. Comparison of segmentation effects.

Method Lakebed Noise Tire Mannequin Table mIOU

Baseline 98.520 27.913 0.000 70.924 10.948 41.661
OURS 99.280 30.052 0.283 78.735 34.698 48.6 (+6.939)

4. Unsupervised Inter-Frame Association Extraction Method D-DBSCAN
and Target Detection Task
4.1. D-DBSCAN

When conducting experiments on object detection tasks using the collected data, we
found that directly applying networks such as PointNet [9] and VoxelNet [7] for classifica-
tion and regression tasks yielded poor results and consumed significant computational time.
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During the data collection process, for continuously moving targets in water, the collectors
could distinguish between moving objects in the point cloud by leveraging inter-frame
correlation. Although the category of the object is difficult to identify, attention can be
focused on the moving target regions [18], thereby improving the accuracy and speed of
object detection. The following question then arises: how can we use an unsupervised
algorithm to focus on and extract moving targets before feeding the data into the object
detection network? This is the starting point of our method.

Through extensive comparative experiments, we first applied DBSCAN [19–21] to
cluster each single frame of data. The parameters for the first clustering were set as follows:
the neighborhood radius was set to 2, and the minimum number of points in a neighbor-
hood minimum sampling number was set to 5. The first clustering achieved a preliminary
separation of the point cloud into moving targets, seabed background, and noise. Next,
we extracted the center coordinates P1, P2, ..., Pn of each clustered point cloud group in a
single frame [22,23]. By projecting the center coordinates of each adjacent frame within the
same stack onto the same coordinate system, we obtained a multi-frame superimposed
cluster center point cloud map [24], as shown in Figure 10. The superimposed center point
cloud map aggregates the positional relationships of the clustering results from adjacent
frames in the same coordinate system, establishing associations between the same clusters
in adjacent frames, simulating the self-attention mechanism of human eyes for moving
targets in the point cloud field of view.

Further, we applied a second spatial clustering Double-DBSCAN, D-DBSCAN, with
the neighborhood radius set to 2 and the minimum sampling number of points set
to 3 [25]. The second clustering grouped center points with strong correlations together.
Finally, we extracted the variance α of the positional changes of the same class center
points across multiple frames and the mean reflection intensity I [26]. The cluster with the
smallest variance α was identified as the seabed background, while the cluster with the
highest reflection intensity I was identified as the moving target in the water. Through this
unsupervised approach, we first extracted the data of moving targets in water, and we then
fed the extracted data into the object detection network to solve the classification problem,
thereby addressing the object detection task.

Figure 10. D-DBSCAN clustering effect.
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4.2. Object Detection Task

We first employed a two-stage object detection network, PointRCNN, as the baseline
network. PointRCNN directly generates high-quality 3D object proposals from raw point
clouds. Through its two-stage network structure, it performs 3D proposal generation
and proposal refinement. Unlike traditional methods, PointRCNN does not rely on a
large number of 3D anchor boxes but improves detection accuracy and efficiency through
foreground and background segmentation, as shown in Figure 11.

Figure 11. Structure of PointRCNN [4].

The network architecture of PointRCNN consists of the following two main stages:
the first stage is 3D proposal generation, and the second stage is proposal refinement and
classification. The input of the network is point cloud data, and the specific workflow is
as follows.

The first stage of the network is based on PointNet++ [10] and employs a multi-scale
grouping strategy. The main task of this stage is to extract features from the point cloud
and generate 3D proposals. (1) Point cloud grouping: The point cloud is grouped through
four set-abstraction layers, generating groups of 4096, 1024, 256, and 64 points, respectively.
The features of each group are processed through feature propagation layers to obtain the
feature vectors for each point. (2) Foreground point segmentation: During training, all
points within the 3D ground truth box are considered foreground points, while other points
are considered background points. To improve the robustness of segmentation, the 3D
ground truth box is expanded by 0.2 m on each side to ignore background points near the
object boundaries. (3) Proposal generation: A grid-based proposal generation method is
used, with a search range S of 3 m, a grid size δ of 0.5 m, and with the number of orientation
grids n set to 12. This method avoids the use of a large number of predefined 3D boxes,
significantly reducing the search space for 3D proposal generation.

In the second stage, the network refines and classifies the proposals generated in the
first stage. (1) Proposal augmentation: To increase the diversity of proposals, random
augmentations are applied to the 3D proposals, introducing small variations. (2) Feature
extraction: For each proposal, 64 points are randomly sampled from the corresponding
points as input. A feature vector is generated through three set-abstraction layers, which
are used for object confidence classification and proposal location refinement. (3) Feature
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fusion: Local spatial features are concatenated with global semantic features and fed into
multiple fully connected layers to encode local features while maintaining consistency with
the global feature dimensions.

During data preprocessing, an unsupervised inter-frame correlation extraction method
D-DBSCAN was employed to accomplish the extraction of moving underwater targets in
object detection tasks, formulated as a regression problem. The training set was augmented
with data enhanced by the correlation extraction method, thereby improving the network’s
robustness for both preprocessed and raw data. Subsequently, the classification task was
completed using the PointNet++ classification network. For testing, the dataset was first
preprocessed via the correlation extraction method and then input into the trained model.
With the removal of underwater background noise, the mAP value for moving target
recognition and the inference speed can be further improved. Extensive experimental
results have demonstrated that mAP showed a significant 21.3 improvement across all
three target categories.

The precision of object detection obtained through the baseline network and OURS
preprocessing method is shown in Table 3.

Table 3. Comparison of detection effects.

Category PointRCNN OURS

Tire 25.165 48.210
Mannequin 81.810 93.431

Table 10.214 39.525
mAP 39.063 60.389 (+21.3)

5. Conclusions and Discussion
This research belongs to the interdisciplinary field of hydroacoustics and 3D vision.

Underwater 3D vision work is limited by data and industry barriers, with few academic
references available. This paper focuses on 3D imaging sonar data for underwater envi-
ronments, reviews the data collection of three typical targets, and conducts research on
perception tasks such as semantic segmentation and object detection. The main innovations
are as follows: firstly, a batch annotation method that combines human expertise and
multi-frame superposition is proposed; secondly, a density-based loss function is intro-
duced, which achieved a 9.939 improvement in mIOU for semantic segmentation tasks;
thirdly, a multi-frame joint unsupervised method for extracting moving targets in water,
D-DBSCAN, is proposed, achieving an improvement of 21.3 points in mAP.

For long-range 3D imaging sonar data, semantic segmentation and object detection
have shown remarkable performance in identifying the seafloor. This could be attributed to
factors such as the relatively large amount of seafloor data and the more stable distribution
variance. The advantage of D-DBSCAN lies in its ability to quickly separate moving
targets from the seafloor and noise in a continuous frame, and it accomplishes this in an
unsupervised manner. However, the disadvantage is that it requires that data is complete
and continuous. The mAP value in this study does not reach 90, or above, as is common
in other visual detection tasks too. This is due to factors such as the long data acquisition
distance, the small amount of data, the sparsity of the point cloud, and the size and material
of the target being measured.

Additionally, this article leaves much to be desired. The proposed loss function can
be further explored in the field of object detection. The multi-frame joint unsupervised
method, D-DBSCAN, for extracting moving targets in water can be further improved for
the recognition of stationary seabed targets.
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The perception evaluation result of 3D imaging sonar seems to perform worse when
compared to the detection accuracy of LiDAR and 2D RGB vision tasks. This is mainly
due to factors such as the 3D sonar physical peculiarity itself, underwater data acquisition,
shallow water bottom, target material, and distance. Because of these, there is room for
future research.
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