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Abstract: Objectives: Current dental resins exhibit polymerization shrinkage causing microleakage,
which has the potential to cause recurrent caries. Our objectives were to create and characterize
low-shrinkage-stress (LSS) composites with dimethylaminododecyl methacrylate (DMADDM) as
an antibacterial agent to combat recurrent caries. Methods: Triethylene glycol divinylbenzyl ether
and urethane dimethacrylate were used to reduce shrinkage stress. DMADDM was incorporated
at different mass fractions (0%, 1.5%, 3%, and 5%). Flexural strength, elastic modulus, degree of
conversion, polymerization stress, and antimicrobial activity were assessed. Results: The composite
with 5% DMADDM demonstrated higher flexural strength than the commercial group (p < 0.05).
The addition of DMADDM in BisGMA-TEGDMA resin and LSS resin achieved clinically acceptable
degrees of conversion. However, LSS composites exhibited much lower polymerization shrinkage
stress than BisGMA-TEGDMA composite groups (p < 0.05). The addition of 3% and 5% DMADDM
showed a 6-log reduction in Streptococcus mutans (S. mutans) biofilm CFUs compared to commercial
control (p < 0.001). Biofilm biomass and lactic acid were also substantially decreased via DMADDM
(p < 0.05). Conclusions: The novel LSS dental composite containing 3% DMADDM demonstrated
potent antibacterial action against S. mutans biofilms and much lower polymerization shrinkage-
stress, while maintaining excellent mechanical characteristics. The new composite is promising for
dental applications to prevent secondary caries and increase restoration longevity.

Keywords: oral biofilms; caries; antibacterial; bio-interactive; resin composite; low polymeriza-
tion stress

1. Introduction

Currently, methacrylate-based composites are the most widely used restorative mate-
rials in dentistry [1]. These materials have several advantages, making them the materials
of choice for dental practitioners, such as esthetics, improved wear resistance, and the
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capacity to bond to dentin and enamel [1]. Failure of resin composite restorations still occur,
however, with the survival rate ranging between 5 and 10 years [2]. The major etiological
factors for resin composite failures are recurrent caries and tooth fractures [3]. These fail-
ures could be due lack of bioactivity and the development of polymerization shrinkage
stresses, respectively, at the tooth-restoration interface [3]. Polymerization shrinkage stress
initiates during polymerization [4], wherein the composite shrinks and loses the ability
to flow, leading to residual shrinkage stresses due to the bonding restraint between the
composite and tooth structures [5–7]. As a result, the polymerization shrinkage stress may
lead to debonding at tooth-restoration interfaces, resulting in marginal gap formation and
micro-cracking [6–9]. The marginal gaps at the tooth-restoration interfaces may lead to
recurrent caries, especially with the lack of bioactivity in resin-based dental materials [10].

Several methods have been investigated to reduce shrinkage stresses [11,12]. These
strategies include changing the resin matrix’s chemistry by the use of resin systems with a
unique polymerization behavior, such as epoxy resins [13], siloranes [14], and step-growth
thiolene resins [15]. Furthermore, the use of epoxy oligomers or polymeric nanogels could
be beneficial in reducing shrinkage stress [11,12]. Recently, a low-shrinkage-stress (LSS)
resin was developed using urethane dimethacrylate (UDMA) as a base monomer and
ether-based triethylene glycol divinylbenzyl ether (TEG-DVBE) as a diluent, which resulted
in a lower polymerization rate by delaying the gel point phase [16]. As a result, this
approach allows more time for the resin composite to reach the gel point, providing stress
relaxation and preventing accumulation of excessive contraction stresses [17]. Additionally,
UDMA can increase the resistance of the resin-based material to salivary hydrolysis, which
can diminish material degradation [17]. TEG-DVBE can also resist esterase degradation
and hydrolytic challenges [17]. In a recent study, the UDMA/TEG-DVBE system was
incorporated into a dental adhesive, showing decreased water sorption and solubility [18].
In addition, the UDMA/TEG-DVBE dental adhesive formed more resin tags and thicker
hybrid layers than commercially available adhesives [18].

Another approach to improving the longevity of resin-based materials involves using
bioactive agents within the materials’ formulations [19–21]. Among several antibacterial
materials, quaternary ammonium methacrylates (QAMs) had a potent antibacterial effect
against dental biofilm and promising results for potential clinical applications [19]. Among
the monomers derived from QAMs, DMADDM with 12-unit -CH2- chain length and
dimethylaminohexadecyl methacrylate (DMAHDM) with 16-unit -CH2- chain length stood
out [20]. These monomers showed a strong antibacterial effect against dental biofilm [20,21].
However, incorporating DMAHDM in resin composites showed inconsistent antibacterial
properties in previous studies [22–24]. In addition, mixing DMAHDM in resins is a chal-
lenge due to the high viscosity of DMAHDM. In contrast, DMADDM can be more readily
mixed with other resin monomers, thus reducing the processing and handling challenges.
The DMADDM monomer can induce bacterial death by interacting with the positive charge
quaternary amine N+ and the negative charge cell membrane, providing a contact-killing
antimicrobial effect [25]. There were several attempts to incorporate DMADDM in dental
materials [26–28]. In a previous study, DMADDM was incorporated in acrylic denture base
material, which inhibited multi-species biofilm consisting of Candida albicans, S. mutans,
Streptococcus sanguinis, and Actinomyces naeslundii [28]. Furthermore, the biofilm biomass
was significantly reduced by incorporating 3.3% of DAMDDM [28]. In addition, there was
an attempt to use DMADDM as a coating agent for dental implants, which reduced the
metabolic activity and biofilm growth of multi-species biofilms [29]. Furthermore, they
found that DMADDM-modified titanium implants could inhibit the biofilm growth of
Neisseria and Actinomyces spp. [29]. Recently, the incorporation of DMADDM in resins
showed a strong antibacterial effect against dental biofilms [26,27]. However, a literature
search revealed no report on incorporating DMADDM in LSS resins.

Improving the longevity of dental restorations is a main goal in the dental material
field; developing a bioactive LSS resin composite could enhance the marginal seal and
prevent secondary caries [30–32]. Previously, it was shown that the sealing ability was
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enhanced with a low shrinkage-stress composite, which may inhibit secondary caries [31].
Other studies investigated the incorporation of DMADDM with resin-based material, show-
ing promising antibacterial activity without compromising mechanical properties [27,33].
However, no report has investigated the antibacterial and mechanical characteristics of
incorporating DMADDM with a LSS resin composite.

Therefore, this study aimed to elucidate the effect of DMADDM concentration de-
pendence on mechanical properties, antibacterial response, and polymerization rate for
LSS resin composite restorations. It was hypothesized that: (1) mechanical properties of a
novel LSS resin composite would not be compromised with the incorporation of different
mass fractions of DMADDM; (2) the novel composite with the incorporation of DMADDM
would reduce biofilm viability, lactic acid production, and metabolic activity with increas-
ing the DMADDM mass fraction; and (3) a reduction in the polymerization shrinkage stress
would occur by utilizing the LSS composite.

2. Materials and Methods
2.1. Formation of Composites Containing Different Mass Fractions of DMADDM

The low-shrinkage-stress (LSS) resin was formulated using 55.8% UDMA (Esstech,
Essington, PA, USA) and 44.2% TEG-DVBE (mass %), following previous studies [30,34].
This resin was designated as “UV”. The 0.2% camphorquinone (CQ, Millipore Sigma,
Burlington, MA, USA) and 0.8% of 4-N, N-dimethylaminobenzoate (4EDMAB; Millipore
Sigma, Burlington, MA, USA) were added as photoinitiators.

DMADDM was synthesized via the addition reaction of tertiary amines with organo-
halides [35,36]. To synthesize DMADDM with CL of 12, 10 mmol of 2-(dimethylamino) ethyl
methacrylate (DMAEMA, Aldrich, St. Louis, MO, USA), 10 mmol of 1-bromododecane
(BDD) (TCI America, Portland, OR, USA), and 3 g of ethanol were added to a scintillation
vial, which was capped and stirred at 70 ◦C for 24 h. Subsequently, ethanol was removed
by evaporation [26]. The DMADDM was mixed with the UV resin to give final DMADDM
concentrations in the resin composites of 0%, 1.5%, 3%, and 5% (weight %). The silanized
barium boroaluminosilicate glass particles (d = 1.2 µm, Dentsply Sirona, Milford, DE,
USA) were added at 70% mass fraction into the composite for mechanical reinforcement.
The 70% glass filler level was chosen based on preliminary experiments to provide good
handling properties (Table 1). In this study, Heliomolar (Ivoclar, Ontario, Canada) was used
as a commercial control. It is a bioactive material that has the ability to release fluoride,
according to previous studies [23,34]. The objective of this study was to investigate the
antimicrobial efficacy and mechanical properties of the new formulations. To outline the
experimental design process, a diagram depicting the procedures is shown in Figure 1.

Table 1. Compositions of LSS composites.

Composition
Experimental UV
Control (Weight

%)

UV + 1.5%
DMADDM
(Weight %)

UV + 3%
DMADDM
(Weight %)

UV + 5%
DMADDM
(Weight %)

Urethane dimethacrylate (UDMA) 16.57% 15.74% 14.92% 13.81%

Triethylene glycol divinylbenzyl ether
(TEG-DVBE) 13.13% 12.46% 11.82% 10.94%

Camphorquinone 0.06% 0.06% 0.06% 0.06%

4-N, N-dimethylaminobenzoate 0.24% 0.24% 0.24% 0.24%

Dimethylaminododecyl methacrylate
(DMADDM) 0% 1.5% 3% 5%

Silanized barium boroaluminosilicate
glass particles 70% 70% 70% 70%
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The following were tested:

1. Heliomolar (designated as “Commercial Control”);
2. 30% UV + 0% DMADDM + 70% glass (designated as “Experimental UV control”);
3. 28.5% UV + 1.5% DMADDM + 70% glass (designated as “UV + 1.5% DMADDM”);
4. 27% UV + 3% DMADDM + 70% glass (designated as “UV + 3% DMADDM”);
5. 25% UV + 5% DMADDM + 70% glass (designated as “UV + 5% DMADDM”).
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2.2. Mechanical Properties

For mechanical testing, a mold with specific dimensions of 2 × 2 × 25 mm3 was used
to produce the composite bars [34]. Specimens were photopolymerized using a Labolight,
DUO (GC, Tokyo, Japan) curing lamp for 1 min [34]. Flexural strength and elastic modulus
(n = 6) were measured using a 3-point flexural test with a 10 mm span and a crosshead
speed of 1 mm/min on a Universal Testing Machine (MTS, Insight 1, Cary, NC) [37].

2.3. Polymerization Shrinkage Stress and Degree of Conversion

In preliminary experiments, it was determined that Heliomolar had a low degree of
conversion and therefore would not be a suitable comparison for degree of conversion and
polymerization stress measurements [30]. Therefore, a traditional, high-DC resin composite
was used as a comparison to assess the degree of conversion and polymerization stress
of the LSS resin composite. The high DC composite consisted of bisphenol A glycidyl
dimethacrylate (BisGMA, Esstech) and triethylene glycol dimethacrylate (TEGDMA, Es-
stech), mixed at a mass ratio of 1:1 (referred to as BT resin). The chemical structure of these
monomers are shown in Figure 2.

The following groups were tested for polymerization stress and degree of conversion:

(1) 30% BT + 70% glass (designated as “Experimental BT control”);
(2) 28.5% BT + 1.5% DMADDM + 70% glass (designated as “BT + 1.5% DMADDM”);
(3) 27% BT + 3% DMADDM + 70% glass (designated as “BT + 3% DMADDM”);
(4) 25% BT + 5% DMADDM + 70% glass (designated as “BT + 5% DMADDM”);
(5) 30% UV + 70% glass (designated as “Experimental UV control”);
(6) 28.5% UV + 1.5% DMADDM + 70% glass (designated as “UV + 1.5% DMADDM”);
(7) 27% UV + 3% DMADDM + 70% glass (designated as “UV + 3% DMADDM”);
(8) 25% UV + 5% DMADDM + 70% glass (designated as “UV + 5% DMADDM”).
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Polymerization shrinkage stress was investigated using a cantilever beam-based ten-
someter [38]. This device was linked to a near-infrared (NIR) spectrometer, allowing for
the simultaneous monitoring of the ongoing conversion of double bonds, as previously
described [39].
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2.4. Streptococcus mutans (S. mutans) Biofilm Model
2.4.1. Composite Samples for Biofilm Testing

Composite disks were fabricated (d = 9 mm, t = 2 mm) and each sample was pho-
topolymerized for 60 s per side and stored at 37 ◦C for 24 h [34]. Samples were placed
in distilled water and stirred for 1 h to facilitate removal of the uncured monomer [40].
Ethylene oxide (Anprolene AN 74i, Andersen, Haw River, NC, USA) was used to sterilize
the resin composite disks (n = 6). Samples were de-gassed for seven days, following the
manufacturer’s instructions.

2.4.2. Bacteria Inoculation and Biofilm Formation

Bacterial species were approved for use by the University of Maryland Baltimore
Institutional Review Board. As a result of its association with dental caries, S. mutans
(UA159) was chosen as the bacterial species for this study [41]. S. mutans was cultured
overnight (16–18 h) in brain heart infusion (BHI) broth (Sigma-Aldrich, St. Louis, MO, USA)
at 37 ◦C with 5% CO2 [34]. A spectrophotometer (Genesys 10S, Thermo Scientific, Waltham,
MA) was used to adjust the inoculum to 107 colony-forming unit counts CFU/mL, based on
the standard curve of OD600 nm versus the CFU/mL graph [42]. Each composite disk was
set in the well of 24-well plates, covered with 1.5 mL BHI culture medium supplemented
with 2% sucrose, and incubated for 24 h. Subsequently, the composite disks were transferred
to 24-well plates, covered with 1.5 mL of fresh medium with sucrose, and incubated for
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another 24 h. According to a previous study, incubation for 48 h was adequate to form
extensive biofilms on dental composites [43].

2.4.3. Live/Dead Staining of Biofilms

The biofilm-covered composite disks were washed with phosphate buffered saline
(PBS) to remove planktonic bacteria. The resin composite samples were stained with the
BacLight live/dead kit (Molecular Probes, Eugene, OR, USA). Each disk was incubated
with 2.5 µM SYTO 9 and 2.5 µM propidium iodide for 15 min. The presence of live bacteria
was stained with SYTO9 and emitted green fluorescence. Bacteria with damaged mem-
branes were stained with propidium iodide and emitted red fluorescence. A fluorescence
microscope (Eclipse TE2000-S, Nikon, Melville, NY, USA) was used to assess the biofilms
on the disks [44].

2.4.4. Biofilm Colony-Forming Units Counts

Biofilm-attached disks were moved to a dish containing PBS and biofilms were har-
vested by a combination of scraping and sonication/vortexing [30]. The bacterial sus-
pensions were serially diluted (101–106-fold) and spread on BHI agar plates. Agar plates
were incubated for 48 h at 37 ◦C and 5% CO2, the colony number was counted, and the
biofilm colony-forming units (CFU) counts were determined [43]. The CFU experiment
was performed in triplicate.

2.4.5. Biofilm Metabolic Activity

The biofilm metabolic activity was measured by a 3-[4,5- dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide (MTT) assay [45]. Composite samples with attached biofilms
for 48 h were transferred to a 24-well plate containing 1 mL of MTT dye (0.5 mg/mL
MTT in PBS) and incubated at 37 ◦C in 5% CO2 for 1 h [45]. Subsequently, each disk
was moved into a new 24-well plate containing 1 mL DMSO in each well and incubated
at room temperature in the dark for 20 min. For the absorbance calculation, 200 µL of
the DMSO solution was added to a 96-well plate, and the absorbance was measured at
540 nm [45]. Higher absorbance values denote an increased biofilm metabolic activity [45].
The metabolic activity experiment was performed in triplicate.

2.4.6. Lactic Acid Production by Biofilms

The resin composite samples with attached biofilms for 48 h were transferred to
24-well plates filled with buffered peptone water (BPW, Aldrich, St. Louis, MO, USA),
supplemented with 0.2% sucrose and incubated at 37 ◦C in 5% CO2 for 3 h [35]. The
lactate dehydrogenase enzymatic was used to determine lactate concentrations in BPW
thru measuring optical density at 340 nm using a microplate reader (Spectra-Max M5)
as previously described [40]. The lactic acid production experiment was performed in
triplicate.

2.4.7. Scanning Electron Microscopy (SEM)

The composites were investigated in SEM (Quanta 200, FEI Company, Hillsboro, OR,
USA). The specimens were polished with 4000 grit sandpaper, followed by sputter-coating
with gold (n = 6).

For SEM examination of biofilms, the biofilms on the composite disks (n = 6) at 48 h
were cleaned with PBS and then soaked in 1% glutaraldehyde at 4 ◦C overnight. Then they
were washed with PBS and subjected to dehydration using a sequence of ethanol solutions.
They were then washed with hexamethyldisilazane and allowed to air-dry overnight. The
samples were sputter-coated with platinum and examined in SEM.

2.5. Statistical Analysis

Statistical analyses were performed using Sigma Plot (SYSTAT, Chicago, IL, USA).
One-way analyses of variance (ANOVA) and Tukey’s comparison tests were performed
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to detect the significant differences between groups. Results were considered statistically
significant at a p-value of less than 0.05.

3. Results
3.1. Mechanical Properties

Flexural strength and elastic modulus of the composites are shown in Figure 3
(mean ± sd; n = 6). The addition of 1.5%, 3%, and 5% DMADDM in LSS resin com-
posite resulted in an increase in flexural strength compared to the commercial group
(p < 0.05). The experimental group and 3% DMADDM composite had the highest flexural
strength among experimental groups and was significantly higher than the commercial
control. However, they demonstrated similar values compared to other groups (p > 0.05).
This suggests that incorporating up to 5% of DMADDM in LSS composite had minimal
effect on the flexural strength.
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Figure 3. Mechanical properties of tested composites (A) Flexural strength and (B) elastic modulus
(mean ± sd; n = 6). Incorporating 5% DMADDM in a LSS resin composite significantly increased
flexural strength compared to commercial group (p < 0.05). The increase of DMADDM concentration
by up to 5% increased the elastic of modules for UV resin compared to the experimental control
(p < 0.05). LSS resin composite demonstrated significantly lower elastic of modules than commercial
group (p < 0.05). Dissimilar letters indicate values that are significantly different from each other
(p < 0.05).
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The elastic modulus values of the commercial control group were significantly greater
than all other experimental groups (p < 0.05). Increasing the DMADDM mass fraction in LSS
resin composite increased the elastic modulus compared to the experimental group (p < 0.05).

3.2. Polymerization Shrinkage Stress and Degree of Conversion

Degree of conversion results are shown in Figure 4 (n = 3). The degree of conversion
of all of the groups gradually increased with time until they reached the plateau. The result
showed that UV resin takes a long time to reach its maximum compared to BT resin. The
UV-containing composites with up to 3% DMADDM reaches a degree of conversion of
approximately 67%. However, the increase of DMADDM to 5% in UV resin decreased
the degree of conversion to 62%. Furthermore, our findings demonstrated that there is
no significant difference in the degree of conversion after incorporating 3% DMADDM
into UV resin and BT resin (p < 0.05). The polymerization shrinkage stress is plotted in
Figure 5 (n = 3). The BT resin composite groups showed greater polymerization shrinkage
stress than UV resin (p < 0.05). The addition of DMADDM up to 5% in UV-containing
composites demonstrated comparable polymerization shrinkage stress (1.12 ± 0.06 MPa)
to experimental UV resin (0.97 ± 0.05 MPa) (p > 0.05). In contrast, the incorporation of
DMADDM up to 5% in BT resin resulted in increasing polymerization shrinkage stress
(2.45 ± 0.14 MPa ) compared to experimental BT resin (2.22 ± 0.12 MPa ) (p > 0.05).
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Figure 5. Polymerization shrinkage stress vs. polymerization time (n = 3). The LSS composite groups
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composite containing BT and 5% DMADDM exhibited a polymerization shrinkage stress measuring
2.21 MPa. On the other hand, the UV composite with 5% DMADDM experienced a decrease in
shrinkage stress, reaching 1.12 MPa.
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3.3. Live/dead Staining of S. mutans Biofilms

Live/dead images of 48 h biofilms on the composites are illustrated in Figure 6. The
surface of control groups had biofilms containing primarily live bacteria. The incorporation
of DMADDM in the UV resin composite effectively inhibited biofilm growth, as demon-
strated by the increased red staining observed with higher DMADDM mass fractions in the
composite.
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Figure 6. Descriptive live/dead staining images of biofilms on resin composite disks. (A) Commer-
cial control. (B) Experimental control. (C) Composite with 1.5% DMADDM. (D) Composite with
3% DMADDM. (E) Composite with 5% DMADDM. Commercial and experimental control resin
composite were covered by live bacteria (green stain). In contrast, the addition of DMADDM to LSS
composite resulted in more dead bacteria (red stain).

3.4. Biofilm Colony-Forming Units Counts

The CFU results of the S. mutans biofilm are shown in Figure 7 (mean ± sd; n= 6).
Incorporating 1.5% DMADDM in LSS resin composite significantly decreased the CFUs
for S. mutans compared to control groups (p < 0.05). Conversely, increasing the DMADDM
mass fraction to 3% and 5% in UV resin composite showed more reduction in the CFU
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count by 6–6.5 log compared to the commercial group (p < 0.05). However, there was no
significant difference in reducing the CFU count among these groups (p > 0.05).
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3.5. MTT Assay of Metabolic Activity of S. mutans Biofilms

The metabolic activity of 48 h biofilms on the composites are illustrated in Figure 8.
Incorporating 1.5%, 3%, and 5% of DMADDM in UV resin significantly decreased the
metabolic activities compared to the control groups (p < 0.05). However, there was no
significant difference in the metabolic activities among these groups (p > 0.05).
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Figure 8. Metabolic activity of biofilm MTT (mean ± sd; n= 6). Adding DMADDM to LSS resin
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Dissimilar letters indicate values that are significantly different from each other (p < 0.05).
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3.6. Lactic Acid Production by S. mutans Biofilms

Lactic acid production of S. mutans biofilms adherent on the resin composites is de-
picted in Figure 9 (mean ± sd; n = 6). The control groups had the highest acid production
(p < 0.5). Incorporating 3% and 5% DMADDM in UV resin composite resulted in a sig-
nificant reduction of acid concentration compared to the commercial group (p < 0.05).
Nevertheless, there was no significant difference in acid production among these groups
(p > 0.05). The incorporation of 1.5% DMADDM showed less lactic acid than commer-
cial groups (p < 0.05). However, it has higher lactic acid production than the 3% and 5%
DMADDM groups (p < 0.05). This indicates that increasing DMADDM concentration to 3%
and 5% resulted in the highest biofilm reduction.
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Figure 9. Lactic acid production by biofilms on resin composites (mean ± sd; n= 6). The commer-
cial and experimental control groups had the highest lactic acid concentration (p < 0.05). Incorporating
3% and 5% of DMADDM in LSS resin composite significantly decreased lactic acid production com-
pared to other groups (p < 0.05). Dissimilar letters indicate values that are significantly different from
each other (p < 0.05).

3.7. SEM Examination of Composites and Biofilms

Representative SEM images of composites are shown in Figure 10 (n = 6). All experi-
mental composites had a satisfactory distributions of filler particles with a few small voids,
similar to the commercial control.

Representative SEM images of two-day S. mutans biofilms on composites are shown in
Figure 11 (n = 6). The experimental control composite, the commercial control composite,
and the 1.5% DMADDM composite exhibited substantial biofilm formation. In contrast,
adding 3% and 5% DMADDM into the LSS composite led to minimal biofilm formation on
the composites.
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Figure 10. Representative SEM images of composites. (A,B) Commercial control composite. (C,D)
Experimental control composite. (E,F) Composite with 1.5% DMADDM. (G,H) Composite with
3% DMADDM. (I,J) Composite with 5% DMADDM. All composites showed good filler particle
distributions with a few small voids and absence of large agglomerates.
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Figure 11. Representative SEM images of two-day biofilms on composites. (A) Commercial control.
(B) Experimental control. (C) Composite with 1.5% DMADDM. (D) Composite with 3% DMADDM.
(E) Composite with 5% DMADDM. The incorporation of 3% and 5% DMADDM into the LSS compos-
ite greatly reduced biofilm formation.

4. Discussion

This study explored the effect of the antimicrobial quaternary ammonium resin,
DMADDM, in a (UDMA + TEG-DBVE) LSS composite. Incorporating of DMADDM
in a LSS resin composite may reduce polymerization shrinkage stress and secondary caries,
which could increase the clinical longevity of resin composite restoration [30–32]. Inhibition
of S. mutans biofilm and reduction of polymerization shrinkage stress while maintaining
excellent mechanical characteristics was accomplished, and the study hypotheses were
proved. The adding of 3% DMADDM in low-shrinkage composite generated a 6-log re-
duction in S. mutans biofilm growth while maintaining clinically acceptable mechanical
characteristics. Moreover, as the mass fraction of DMADDM increased, the production of
lactic acid and metabolic activity within the biofilm of S. mutans decreased.

There were several successful endeavors to improve the mechanical characteristics
and aesthetics of the composite resin restoration [46,47]. However, the most significant
drawbacks of resin composite are polymerization shrinkage volume, and the resulting
shrinkage stress that occurs during the polymerization process [6–9]. Polymerization
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shrinkage stress can potentially result in debonding at the interface between tooth structure
and restoration, resulting in micro-cracking of the tooth structure and gap formation [3].
Therefore, developing a low shrinkage stress composite is highly desirable, which could
help reduce stresses on the tooth structure and increase the survival rate of the restora-
tion [31]. In a previous study, an attempt was made to minimize polymerization stress
by using a thiolene system, which reduced stress development in a Bis-GMA/TEGDMA
composite resin from 2.8 MPa to 0.30 MPa [48]. However, incorporating the thiolene system
in resin composite compromised mechanical properties [48]. Another attempt to minimize
polymerization stress by incorporating tricyclo decanedimethanol diacrylate (SR833s) and
isobornyl acrylate (IBOA) as a diluent monomer, resulting in reducing stress develop-
ment [49]. However, this approach compromised the degree of conversion [49]. In addition,
a resin composite that is based on silorane was investigated in a long-term 12 month
study, which found the marginal retention was not significantly improved compared with
traditional methacrylate’s-based composite resins [50]. Recently, a LSS composite was
developed utilizing TEGDVBE and urethane dimethacrylate monomers, which resulted
in reduced polymerization stress, good mechanical strength, and a high degree of con-
version [30]. Furthermore, several attempts were made to incorporate DMAHDM in LSS
resin to develop a bioactive composite resin [34,43]. However, the DMAHDM has a long
chain length, which increases the resin composite’s viscosity and could reduce the filler
load and degree of conversion. Also, several articles showed inconsistent antibacterial
results of incorporating DMAHDM in resin composite, which could be due to the long
chain length of DMAHDM being present in conformations that result in a reduction in
quaternary ammonium charge density at the surface [22,23,34]. However, no report has
studied the impact of integrating different mass fractions of DMADDM in a LSS composite
resin.

This study thoroughly investigated the effects of incorporating different amounts
of DMADDM in a composite containing the low shrinkage stress resin TEGDVBE. The
primary objective of this study was to determine the optimal concentration of DMADDM
incorporated into the composite that maximized the antimicrobial response while main-
taining clinically-desirable mechanical properties. The incorporation of DMADDM mass
fractions up to 5% achieved higher flexural strength than the commercial control and was
comparable to the experimental control. On the other hand, LSS composite resin with and
without incorporation of DMADDM showed a lower modulus of elasticity than commercial
control composite resin. It is likely that the higher elastic modulus for the commercial
control composite was due to the differences in the resin matrix when compared to the ex-
perimental LSS composites. The LSS resin composite undergoes a slower or more regulated
polymerization process to facilitate stress reduction, which could potentially result in a
reduced elastic modulus. In addition, it is possible that the elastic modulus increase with
increasing DMADDM concentration could be due to a higher viscosity of the resin matrix
from DMADDM addition. The mechanical properties of composites can be adversely af-
fected by the poor distribution of fillers and the presence of large voids or agglomerates. In
the present study, SEM analysis of composites revealed a relatively uniform distribution of
filler particles within the resin matrix for all DMADDM composites, with a few small voids
and the absence of large agglomerates or large flaws. These features are similar to those
of the commercial control. Maintaining an excellent mechanical property with enhancing
the marginal seal of the dental restoration could help improves longevity [31,32]. Previous
studies showed that polymerization shrinkage stress affects the sealing ability of resin
composite [31]. Therefore, in this study, we developed a bioactive low-shrinkage-stress
resin composite, which demonstrated a lower polymerization shrinkage stress than the BT
composite, which may help achieve a better marginal seal. The incorporation of up to 5%
DMADDM in UV resin composite reduced polymerization shrinkage stress at 1.12 MPa
compared to 2.45 MPa for BT resin with 5% DMADDM. The difference in polymerization
shrinkage stress may be due to resin monomers’ polymerization rate [51]. The UV resin
takes a longer time to reach the gel point, allowing for stress relaxation and preventing
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excessive contraction stress development [17]. Creating novel bioactive LSS resin com-
posites with antibacterial properties could help suppress acidogenic bacteria and provide
a better marginal seal, which may help in improving the longevity of dental restoration.
Maximizing the degree of conversion is essential in improving the durability and longevity
of dental composites [52]. The degree of conversion of most dimethacrylate-based com-
posites ranges from 55% to 75% [53]. In the current study, a comparatively high degree of
conversion was achieved for both the UV resin composite, ranging from 62% to 67%, and
the BT resin composite, ranging from 65% to 69%. Incorporating 5% DMADDM in UV and
BT resin composite reduced the degree of conversion, which could be due to an increase in
monomer viscosity with increasing DMADDM concentration. Future studies are necessary
to fully understand the reaction kinetics for this new resin composite.

Dental plaque could affect the longevity of dental restoration, resulting in cariogenic
bacterial attachment, hydrolytic enzyme production, material degradation, and recurrent
caries [54–56]. Therefore, developing an innovative bioactive material with antibacterial
properties could increase the durability of the composite restoration. In a previous study,
chlorhexidine was incorporated as an antibacterial agent in a low-shrinkage composite,
resulting in a short-term antibacterial effect [57]. Another attempt investigated incorporat-
ing antibacterial fillers silver and zinc oxide nanoparticles in dental materials [58]. These
nanoparticle fillers tended to be lost from the dental material surface in a short period,
which led to increased surface porosity and compromised mechanical properties [58]. A
new approach was developed to overcome this critical drawback by using QAMs, which
could be copolymerized with dental resins by covalent bonding, providing long-term
antibacterial effects [59]. Incorporating QAMs in methacrylate-based materials showed
a potent antimicrobial effect through a contact-killing mechanism [25]. The QAMs have
positively charged quaternary amine, which can bind to the negatively charged bacterial
cell membrane, changing the essential ion balance and cause cytoplasmic leakage, leading
to disruption of the bacterial membrane [25]. Previous studies showed that increased
chain length of QAMs resulted in more potent antibacterial properties due to increased
hydrophobicity, which may improve their efficacy in disrupting the hydrophobic bacte-
rial cell membrane [20,21]. Furthermore, the incorporation of DMADDM in resin-based
material achieved a durable antibacterial activity even after six months of water aging,
with sustained antibacterial function and mechanical properties [60]. In this study, the
incorporation of DMADDM into a LSS resin composite showed a potent antibacterial effect
against S. mutans biofilm. The incorporation of 3% and 5% DMADDM into LSS resin
composite significantly reduced the CFU count by 6 and 6.5 logs, respectively, compared to
the commercial control (p < 0.05). In addition, our results showed that incorporating 3%
and 5% of DMADDM in LSS resin composite achieved more than 85% reduction in lactic
acid production and metabolic activities compared to the commercial control. Furthermore,
live/dead staining images of S. mutans biofilms confirm the presence of living bacteria on
the surface of experimental and commercial control groups. On the other hand, increasing
DMADDM concentration in LSS composites reduces the live bacteria present on the surface.
Moreover, SEM examination of S. mutans biofilms showed substantial biofilm growth
on the experimental control composite, the commercial control composite, and the 1.5%
DMADDM composite. In contrast, adding 3% and 5% DMADDM led to minimal biofilm
growth on the LSS composite. However, our results observed no significant difference in
antibacterial effect when incorporating 3% or 5% DMADDM against S. mutans biofilms
(p > 0.05).

Regarding biocompatibility, a previous study showed that the incorporation of 10%
DMADDM into a Scotchbond multi-purpose adhesive achieved excellent cell viability that
matched that of the control group [21]. Another in vivo investigation showed that the
incorporation of 5% DMADDM into the adhesive and composite showed biocompatibility
matching the control group [61]. Moreover, another study investigated the cell viability
of human gingival fibroblast cells of uncured traditional monomers and the new LSS
monomers [30]. That study found no significant differences in cell viability and cytotox-
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icity between the LSS monomers and the control monomers already used clinically [30].
Therefore, the DMADDM composite has the capability to inhibit bacterial biofilms without
compromising biocompatibility.

In summary, the present study systematically examined the effect of incorporating
different concentrations of DMADDM on the mechanical and antibacterial properties of
LSS resin composite for the first time. Incorporating 3% DMADDM into the LSS composite
resulted in strong antibacterial properties without compromising mechanical properties,
with comparable results to the LSS resin composite with 5% DMADDM. The incorporation
of 3% DMADDM reduced biofilm CFU counts by six orders of magnitude compared to
commercial resin composite. Therefore, developing an antibacterial LSS resin composite is
a promising approach to overcoming secondary caries and increasing the clinical longevity
of the resin composite restoration.

Additional studies are needed to explore the antibacterial property of LSS resin com-
posite on multi-species biofilms that are more clinically relevant. Also, further studies are
required to explore the long-term effect of DMADDM on the antibacterial and mechanical
characteristics of LSS resin composites. In addition, future research is needed to investigate
the thermal stability and long-term degradation behavior of the novel LSS composites.

5. Conclusions

This study developed a novel antibacterial low-shrinkage-resin composite. Incorporat-
ing 3% DMADDM into the resin composite provided a strong antibacterial effect against
S. mutans biofilms which is commonly associated with secondary caries, without compro-
mising the mechanical properties. Incorporating 3% DMADDM into this novel dental
composite reduced the polymerization stress without negatively impacting the degree of
conversion. In addition, this formulation achieved a 6-log reduction in biofilm CFUs with a
significant decrease in lactic acid production and metabolic activity. These results indicate
that a dental resin composite system composed of the low shrinkage stress resin TEGDVBE
combined with the antimicrobial resin DMADDM may be a promising bioactive dental
restoration that could reduce the onset of secondary caries.
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