Advances in Extraction, Structure, and Physiochemical Properties of Sorghum Kafirin for Biomaterial Applications: A Review
Abstract
:1. Introduction
2. Protein Composition of Sorghum Grain
Grain | Prolamin | Prolamin Subunits | Prolamins % of Total Protein | Reference |
---|---|---|---|---|
Sorghum | Kafirin | α-, β-, γ- | 70–80 | [14] |
Maize | Zein | α-, β-, γ-, δ- | 40–45 | [16] |
Oats | Avelin | 4–15 | [17] | |
Rice | Prolamin | 10-,13-, 16- | 3–6 | [18] |
Rye | Secalin | γ- and ω- | 17–19 | [19] |
Barley | Hordein | β-, k-, δ-, γ- | 50–80 | [20] |
3. Extraction and Purification of Kafirin
Authors (Year) | Yield (%) | Purity (%) | Miscellaneous Details/Pre-Treatment | Extraction | Process Flow |
---|---|---|---|---|---|
[33] | 19 | 16.6 | Albumin, globulin and LMW N2 fragments |
| Sequential extraction in given order. |
0.3 | NA | Salt and traces removal |
| ||
11.6 | 17.3 | Kafirin |
| ||
20.8 | 24.5 | Cross-linked kafirin |
| ||
3.8 | 4.8 | Glutelin like proteins |
| ||
44.5 | 27.2 | Glutelin |
| ||
11.5 | Non-extractable nitrogen | ||||
[34] | 46.1 (WGF) | NA | Adaptation of Carter and Reck process [35]. | A total of 70% w/w ethanol in distilled water, 0.35% w/w sodium hydroxide, and 0.5 w/w sodium metabisulphite at a ratio of 1:5 w/w flour-bran to extraction with vigorous stirring at 70 °C for 1 h. | Extraction, centrifugation, evaporation, pH, precipitation, freeze-drying, and oil removal. |
[9] | 54.3 | 89.3 | Comparison of different extractants; flour screened through 800 µm screen. | A total of 70% ethanol + 0.5% sodium metabisulphite + 0.2% NaOH at 70 °C. | Extraction, centrifugation, evaporation, pH, precipitation, filtration, freeze-drying, and oil removal. |
55.3 | 91.2 | A total of 55% isopropanol + 0.5 sodium metabisulphite + 0.3% NaOH at 40 °C. | |||
25 | Glacial acetic acid at 25 °C. | ||||
25 | Glacial acetic acid + 0.5% sodium metabisulphite at 25 °C. | ||||
52.8 | Presoak (1 h) 0.5% sodium metabisulphite; glacial acetic acid at 25 °C. | ||||
59.3 | Presoak (16 h) 0.5% sodium metabisulphite; glacial acetic acid at 25 °C. | ||||
61 | 92.9 | Presoak (16 h) 1.0% sodium metabisulphite; glacial acetic acid at 25 °C. | |||
[8] | DDGS washed with hot water (50 °C); dried in hot-air oven at 50 °C overnight before extraction | A total of 70% (w/v) ethanol + 0.5% w/w sodium metabisulphite + 0.35% w/w NaOH at 70 °C for 1 h. | Hot water wash, oil removal, extraction, centrifugation, dilution, centrifugation, deionised wash, and freeze-drying. | ||
[36] | 87 (total protein) | Flour defatted with n-hexane (1:10 ratio); washed with water (1:10 ratio) for 1 h and centrifuged at 8000 rpm for 10 min. The procedure was repeated with 0.5 M NaCl and distilled water. | Extracted with 60% t-butanol for 2 h each and 10 min of ultrasonication using an FS-28 solid-state ultrasonicate (bath-type with sonic power, 225 W; sweep frequency, 40 kHz) at interval of 30 min. | Oil removal, saline wash, extraction, centrifugation, evaporation, pH precipitation, filtration, and freeze-drying. | |
[37] | 70 (total protein | Adapted from [34]. | Sorghum flour (250 g) extracted using a mixture of 900 mL ethanol (70% w/w) in deionised water, 25 g/kg sodium metabisulphite, and 17.5 g/kg w/w sodium hydroxide as a reducing agent. The mixture was heated and held at 70 °C with continuous stirring for 1 h. | Extraction, centrifugation, dilution, freeze-drying, milling, and oil removal. | |
[38] | 54.3 | 67.2 | Percolation (liquid-to-solid ratio of 2:5:1). | A total of 70% w/w aqueous ethanol + 1.0% w/w sodium metabisulphite + 0.35% w/w NaOH at 70 °C for 1 h. | Extraction, evaporation, pH precipitation, dilution, filtration, and air-drying. |
3.1. Extraction by Glacial Acetic Acid
3.2. Extraction by Aqueous Alcohol Methodology
3.3. Ultrasonic Assisted Extraction
3.4. Chromatographic Purification of Kafirin Protein
4. Kafirin Structure
4.1. Primary Structure
Kafirin Subunit | Molecular Weight (kDa), Amino Acid Residues | Amino Acid Composition | Percentage in Total Kafirin | Reference |
---|---|---|---|---|
α-kafirin (α1- and α2 kafirin) | 22–25; 240–250 | High in non-polar amino acids and 1 Tyrosine; lysine deficient | 80–84 | [6,50] |
β-kafirin | 18; 172 | High in methionine, cysteine, and 2 tyrosine | 7–8 | [51,52] |
γ-kafirin | 27; 193 | High in proline and cysteine; no lysine and aspartic acid | 9–12 | [53] |
δ-kafirin | -; 114 | High in methionine; one tyrosine | - | [14,50] |
4.2. Secondary Structure of Kafirin Protein
4.3. Tertiary Structure of Kafirin Protein
5. Physicochemical Properties of Isolated Kafirin Related to Its Potential Biomaterial Applications
5.1. Hydrophobicity
5.2. Self-Assembly
5.3. Digestibility
5.4. Solubility
5.5. Surface Activity of Kafirin Protein
5.5.1. Foam Formation
5.5.2. Emulsion Formation
5.6. Dispersibility of Kafirin Protein
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foster, W.; Miyazawa, K.; Fukuma, T.; Kusumaatmaja, H.; Voϊtchovsky, K. Self-assembly of small molecules at hydrophobic interfaces using group effect. Nanoscale 2020, 12, 5452–5463. [Google Scholar] [CrossRef] [PubMed]
- Cetinkaya, T.; Mendes, A.C.; Jacobsen, C.; Ceylan, Z.; Chronakis, I.S.; Bean, S.R.; García-Moreno, P.J. Development of kafirin-based nanocapsules by electrospraying for encapsulation of fish oil. LWT 2021, 136, 110297. [Google Scholar] [CrossRef]
- Nocito, G.; Sciuto, E.L.; Franco, D.; Nastasi, F.; Pulvirenti, L.; Petralia, S.; Spinella, C.; Calabrese, G.; Guglielmino, S.; Conoci, S. Physicochemical Characterization and Antibacterial Properties of Carbon Dots from Two Mediterranean Olive Solid Waste Cultivars. Nanomaterials 2022, 12, 885. [Google Scholar] [CrossRef] [PubMed]
- Iannazzo, D.; Celesti, C.; Espro, C.; Ferlazzo, A.; Giofrè, S.V.; Scuderi, M.; Scalese, S.; Gabriele, B.; Mancuso, R.; Ziccarelli, I.; et al. Orange-Peel-Derived Nanobiochar for Targeted Cancer Therapy. Pharmaceutics 2022, 14, 2249. [Google Scholar] [CrossRef] [PubMed]
- Anyango, J. Improving the functionality of kafirin microparticles. South Afr. Food Sci. Technol. 2013, 44–45. [Google Scholar]
- Song, J.; Sun, C.; Gul, K.; Mata, A.; Fang, Y. Prolamin-based complexes: Structure design and food-related applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1120–1149. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Anyango, J.O.; Potgieter, M.; Kallmeyer, K.; Naidoo, V.; Pepper, M.S.; Taylor, J.R. Biocompatibility and biodegradation of protein microparticle and film scaffolds made from kafirin (sorghum prolamin protein) subcutaneously implanted in rodent models. J. Biomed. Mater. Res. A 2015, 103, 2582–2590. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.T.L.; Johnson, S.K.; Stanley, R.A.; Mereddy, R.; Mikkelsen, D.; Halley, P.J.; Steadman, K.J. Formulation and Characterization of Drug-Loaded Microparticles Using Distillers Dried Grain Kafirin. Cereal Chem. 2015, 92, 246–252. [Google Scholar] [CrossRef]
- Taylor, J.; Taylor, J.; Dutton, M.; Kock, S. Glacial Acetic Acid—A Novel Food-Compatible Solvent for Kafirin Extraction. Cereal Chem. 2005, 82, 485–487. [Google Scholar] [CrossRef]
- Kumar, P.; Lau, P.W.; Kale, S.; Johnson, S.; Pareek, V.; Utikar, R.; Lali, A. Kafirin adsorption on ion-exchange resins: Isotherm and kinetic studies. J. Chromatogr. A 2014, 1356, 105–116. [Google Scholar] [CrossRef]
- FAO. FAO Statistical Yearbook 2023—World Food and Agriculture; FAO: Rome, Italy, 2023. [Google Scholar]
- Stefoska-Needham, A.; Beck, E.J.; Johnson, S.K.; Tapsell, L.C. Sorghum: An Underutilized Cereal Whole Grain with the Potential to Assist in the Prevention of Chronic Disease. Food Rev. Int. 2015, 31, 401–437. [Google Scholar] [CrossRef]
- Tanwar, R.; Panghal, A.; Chaudhary, G.; Kumari, A.; Chhikara, N. Nutritional, phytochemical and functional potential of sorghum: A review. Food Chem. Adv. 2023, 3, 100501. [Google Scholar] [CrossRef]
- Taylor, J.; Taylor, J.R.N. Making Kafirin, the Sorghum Prolamin, into a Viable Alternative Protein Source. J. Am. Oil Chem. Soc. 2018, 95, 969–990. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, Y.; Huang, Q. Physicochemical properties of kafirin protein and its applications as building blocks of functional delivery systems. Food Funct. 2017, 8, 1402–1413. [Google Scholar] [CrossRef]
- Abdelbost, L.; Morel, M.-H.; Nascimento, T.P.D.; Cameron, L.-C.; Bonicel, J.; Larraz, M.F.S.; Mameri, H. Sorghum grain germination as a route to improve kafirin digestibility: Biochemical and label free proteomics insights. Food Chem. 2023, 424, 136407. [Google Scholar] [CrossRef]
- Shull, J.M.; Watterson, J.J.; Kirleis, A.W. Proposed nomenclature for the alcohol-soluble proteins (kafirins) of Sorghum bicolor (L. Moench) based on molecular weight, solubility, and structure. J. Agric. Food Chem. 1991, 39, 83–87. [Google Scholar] [CrossRef]
- Duodu, K.G.; Taylor, J.R.N.; Belton, P.S.; Hamaker, B.R. Factors affecting sorghum protein digestibility. J. Cereal Sci. 2003, 38, 117–131. [Google Scholar] [CrossRef]
- Benmoussa, M.; Chandrashekar, A.; Ejeta, G.; Hamaker, B.R. Cellular Response to the high protein digestibility/high-Lysine (hdhl) sorghum mutation. Plant Sci. 2015, 241, 70–77. [Google Scholar] [CrossRef]
- Johns, C.O.; Brewster, J.F. Kafirin, an Alcohol-Soluble Protein from Kafir, Andropogon Sorghum. J. Biol. Chem. 1916, 28, 59–65. [Google Scholar] [CrossRef]
- De Mesa-Stonestreet, N.J.; Alavi, S.; Bean, S.R. Sorghum Proteins: The Concentration, Isolation, Modification, and Food Applications of Kafirins. J. Food Sci. 2010, 75, R90–R104. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J. Zein: A History of Processing and Use. Cereal Chem. 2002, 79, 1–18. [Google Scholar] [CrossRef]
- van der Walt, W.H.; Schussler, L.; Van der Walt, W.H. Fractionation of proteins from low-tannin sorghum grain. J. Agric. Food Chem. 1984, 32, 149–154. [Google Scholar] [CrossRef]
- Ioerger, B.; Bean, S.R.; Tuinstra, M.R.; Pedersen, J.F.; Erpelding, J.; Lee, K.M.; Herrman, T.J. Characterization of Polymeric Proteins from Vitreous and Floury Sorghum Endosperm. J. Agric. Food Chem. 2007, 55, 10232–10239. [Google Scholar] [CrossRef]
- Wong, J.H.; Lau, T.; Cai, N.; Singh, J.; Pedersen, J.F.; Vensel, W.H.; Hurkman, W.J.; Wilson, J.D.; Lemaux, P.G.; Buchanan, B.B. Digestibility of protein and starch from sorghum (Sorghum bicolor) is linked to biochemical and structural features of grain endosperm. J. Cereal Sci. 2009, 49, 73–82. [Google Scholar] [CrossRef]
- Xiao, J.; Li, Y.; Li, J.; Perez Gonzalez, A.; Xia, Q.; Huang, Q. Structure, Morphology, and Assembly Behavior of Kafirin. J. Agric. Food Chem. 2015, 63, 216–224. [Google Scholar] [CrossRef]
- Shah, U.; Dwivedi, D.; Hackett, M.; Al-Salami, H.; Utikar, R.P.; Blanchard, C.; Gani, A.; Rowles, M.R.; Johnson, S.K. Physicochemical characterisation of kafirins extracted from sorghum grain and dried distillers grain with solubles related to their biomaterial functionality. Sci. Rep. 2021, 11, 15204. [Google Scholar] [CrossRef]
- Shukla, R.; Cheryan, M. Zein: The industrial protein from corn. Ind. Crops Prod. 2001, 13, 171–192. [Google Scholar] [CrossRef]
- Wang, Y.; Tilley, M.; Bean, S.; Sun, S.; Wang, D. Comparison of Methods for Extracting Kafirin Proteins from Sorghum Distillers Dried Grains with Solubles. J. Agric. Food Chem. 2009, 57, 8366–8372. [Google Scholar] [CrossRef]
- Evans, C.D.; Manley, R.H. Ternary Solvents for Zein. Ind. Eng. Chem. 1944, 36, 408–410. [Google Scholar] [CrossRef]
- Hamaker, B.R.; Mohamed, A.A.; Habben, J.E.; Huang, C.P.; Larkins, B.A. Efficient procedure for extracting maize and sorghum kernel proteins reveals higher prolamin contents than the conventional method. Cereal Chem. 1995, 72, 583–588. [Google Scholar]
- Park, S.H.; Bean, S.R. Investigation and optimization of the factors influencing sorghum protein extraction. J. Agric. Food Chem. 2003, 51, 7050–7054. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Cavaco-Paulo, A. Effect of ultrasound on protein functionality. Ultrason. Sonochemistry 2021, 76, 105653. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Bean, S.R.; Ioerger, B.P.; Wang, D.; Boyle, D.L. Impact of Mashing on Sorghum Proteins and Its Relationship to Ethanol Fermentation. J. Agric. Food Chem. 2008, 56, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, A.C.; Pangloli, P.; Dia, V.P. Impact of ultrasonication on the physicochemical properties of sorghum kafirin and in vitro pepsin-pancreatin digestibility of sorghum gluten-like flour. Food Chem. 2018, 240, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Emmambux, N.M.; Taylor, J.R.N. Sorghum kafirin interaction with various phenolic compounds. J. Sci. Food Agric. 2003, 83, 402–407. [Google Scholar] [CrossRef]
- Belton, P.S.; Delgadillo, I.; Halford, N.G.; Shewry, P.R. Kafirin structure and functionality. J. Cereal Sci. 2006, 44, 272–286. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, L.; Guo, X.; Holding, D.R.; Messing, J. Mutation in the seed storage protein kafirin creates a high-value food trait in sorghum. Nat. Commun. 2013, 4, 2217. [Google Scholar] [CrossRef] [PubMed]
- Dianda, N.; Rouf, T.B.; Bonilla, J.C.; Hedrick, V.; Kokini, J. Effect of solvent polarity on the secondary structure, surface and mechanical properties of biodegradable kafirin films. J. Cereal Sci. 2019, 90, 102856. [Google Scholar] [CrossRef]
- Argos, P.; Pedersen, K.; Marks, M.D.; Larkins, B.A. A structural model for maize zein proteins. J Biol Chem 1982, 257, 9984–9990. [Google Scholar] [CrossRef]
- Matsushima, N.; Danno, G.-i.; Takezawa, H.; Izumi, Y. Three-dimensional structure of maize α-zein proteins studied by small-angle X-ray scattering. Biochim. Et Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1997, 1339, 14–22. [Google Scholar] [CrossRef]
- Garratt, R.; Oliva, G.; Caracelli, I.; Leite, A.; Arruda, P. Studies of the zein-like α-prolamins based on an analysis of amino acid sequences: Implications for their evolution and three-dimensional structure. Proteins: Struct. Funct. Bioinform. 1993, 15, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Tatham, A.; Field, J.; Morris, V.; I’Anson, K.; Cardle, L.; Dufton, M.; Shewry, P. Solution conformational analysis of the alpha-zein proteins of maize. J. Biol. Chem. 1993, 268, 26253–26259. [Google Scholar] [CrossRef] [PubMed]
- Law, K.-Y. Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. J. Phys. Chem. Lett. 2014, 5, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Fu, Y.; Wang, W. Temperature effects on hydrophobic interactions: Implications for protein unfolding. Chem. Phys. 2022, 559, 111550. [Google Scholar] [CrossRef]
- Shewry, P.R. Improving the protein content and composition of cereal grain. J. Cereal Sci. 2007, 46, 239–250. [Google Scholar] [CrossRef]
- Dong, F.; Padua, G.W.; Wang, Y. Controlled formation of hydrophobic surfaces by self-assembly of an amphiphilic natural protein from aqueous solutions. Soft Matter 2013, 9, 5933–5941. [Google Scholar] [CrossRef]
- Wang, Y.; Padua, G.W. Formation of Zein Microphases in Ethanol−Water. Langmuir 2010, 26, 12897–12901. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Padua, G.W. Nanoscale characterization of zein self-assembly. Langmuir 2012, 28, 2429–2435. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xiao, J.; Chen, X.; Luo, M.; Liu, H.; Shao, P. Fabrication and characterization of multilayered kafirin/gelatin film with one-way water barrier property. Food Hydrocoll. 2018, 81, 159–168. [Google Scholar] [CrossRef]
- Liu, G.; Feng, J.; Zhu, W.; Jiang, Y. Zein self-assembly using the built-in ultrasonic dialysis process: Microphase behavior and the effect of dialysate properties. Colloid Polym. Sci. 2018, 296, 173–181. [Google Scholar] [CrossRef]
- Hamaker, B.R.; Kirleis, A.W.; Mertz, E.T.; Axtell, J.D. Effect of cooking on the protein profiles and in vitro digestibility of sorghum and maize. J. Agric. Food Chem. 1986, 34, 647–649. [Google Scholar] [CrossRef]
- Liardon, R.; Hurrell, R.F. Amino acid racemization in heated and alkali-treated proteins. J. Agric. Food Chem. 1983, 31, 432–437. [Google Scholar] [CrossRef]
- Hahn, D.; Rooney, L.; Earp, C. Tannins and phenols of sorghum. Cereal Foods World 1984. [Google Scholar]
- Elkhalil, E.A.I.; El Tinay, A.; Mohamed, B.; Elsheikh, E.A. Effect of malt pretreatment on phytic acid and in vitro protein digestibility of sorghum flour. Food Chem. 2001, 72, 29–32. [Google Scholar] [CrossRef]
- Hamaker, B.R.; Kirleis, A.W.; Butler, L.G.; Axtell, J.D.; Mertz, E.T. Improving the in vitro protein digestibility of sorghum with reducing agents. Proc. Natl. Acad. Sci. USA 1987, 84, 626–628. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.S.; Taylor, J.; Taylor, J.R. Transgenic sorghum with altered kafirin synthesis: Kafirin solubility, polymerization, and protein digestion. J. Agric. Food Chem. 2011, 59, 9265–9270. [Google Scholar] [CrossRef] [PubMed]
- Grootboom, A.W.; Mkhonza, N.L.; Mbambo, Z.; O’Kennedy, M.M.; da Silva, L.S.; Taylor, J.; Taylor, J.R.; Chikwamba, R.; Mehlo, L. Co-suppression of synthesis of major α-kafirin sub-class together with γ-kafirin-1 and γ-kafirin-2 required for substantially improved protein digestibility in transgenic sorghum. Plant Cell Rep. 2014, 33, 521–537. [Google Scholar] [CrossRef] [PubMed]
- Abedi, E.; Pourmohammadi, K. The effect of redox agents on conformation and structure characterization of gluten protein: An extensive review. Food Sci. Nutr. 2020, 8, 6301–6319. [Google Scholar] [CrossRef]
- Glusac, J.; Fishman, A. Enzymatic and chemical modification of zein for food application. Trends Food Sci. Technol. 2021, 112, 507–517. [Google Scholar] [CrossRef]
- Yong, Y.H.; Yamaguchi, S.; Gu, Y.S.; Mori, T.; Matsumura, Y. Effects of enzymatic deamidation by protein-glutaminase on structure and functional properties of alpha-zein. J. Agric. Food Chem. 2004, 52, 7094–7100. [Google Scholar] [CrossRef]
- Kong, B.; Xiong, Y.L. Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. J. Agric. Food Chem. 2006, 54, 6059–6068. [Google Scholar] [CrossRef] [PubMed]
- Kamani, M.H.; Semwal, J.; Mousavi Khaneghah, A. Functional modification of grain proteins by dual approaches: Current progress, challenges, and future perspectives. Colloids Surf. B Biointerfaces 2022, 211, 112306. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ding, X.; Li, Y.; Ma, H. The aggregation, structures and emulsifying properties of soybean protein isolate induced by ultrasound and acid. Food Chem. 2019, 279, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Semwal, J.; Ms, M. In situ thermal modification of kafirin using infrared radiations and microwaves. J. Sci. Food Agric. 2022, 102, 1903–1911. [Google Scholar] [CrossRef]
- Xiao, J.; Shi, C.; Zheng, H.; Shi, Z.; Jiang, D.; Li, Y.; Huang, Q. Kafirin Protein Based Electrospun Fibers with Tunable Mechanical Property, Wettability, and Release Profile. J. Agric. Food Chem. 2016, 64, 3226–3233. [Google Scholar] [CrossRef]
- Blasco, L.; Viñas, M.; Villa, T.G. Proteins influencing foam formation in wine and beer: The role of yeast. Int. Microbiol. 2011, 14, 61–71. [Google Scholar] [CrossRef]
- Murray, B.S.; Ettelaie, R. Foam stability: Proteins and nanoparticles. Curr. Opin. Colloid Interface Sci. 2004, 9, 314–320. [Google Scholar] [CrossRef]
- Maldonado-Valderrama, J.; Martin-Molina, A.; Martin-Rodriguez, A.; Cabrerizo-Vílchez, M.; Gálvez-Ruiz, M.; Langevin, D. Surface Properties and Foam Stability of Protein/Surfactant Mixtures: Theory and Experiment. J. Phys. Chem. 2007, 111, 2715–2723. [Google Scholar] [CrossRef]
- Thewissen, B.G.; Celus, I.; Brijs, K.; Delcour, J.A. Foaming properties of wheat gliadin. J. Agric. Food Chem. 2011, 59, 1370–1375. [Google Scholar] [CrossRef]
- King, B.L.; Taylor, J.; Taylor, J.R.N. Formation of a viscoelastic dough from isolated total zein (α-, β- and γ-zein) using a glacial acetic acid treatment. J. Cereal Sci. 2016, 71, 250–257. [Google Scholar] [CrossRef]
- Gupta, P.; Bansal, S.; Isser, H.S.; Chakraborty, P.; Garg, R. Soy protein hydrolysate and gelling polysaccharides systems in cooked foams: A method to improve their combinations. Sci. Postprint 2014, 1. [Google Scholar] [CrossRef]
- Zhao, M.; Xiong, W.; Chen, B.; Zhu, J.; Wang, L. Enhancing the solubility and foam ability of rice glutelin by heat treatment at pH12: Insight into protein structure. Food Hydrocoll. 2020, 103, 105626. [Google Scholar] [CrossRef]
- Teklehaimanot, W.H.; Emmambux, M.N. Foaming properties of total zein, total kafirin and pre-gelatinized maize starch blends at alkaline pH. Food Hydrocoll. 2019, 97, 105221. [Google Scholar] [CrossRef]
- Riha, W.E.; Izzo, H.V.; Zhang, J.; Ho, C.T. Nonenzymatic deamidation of food proteins. Crit. Rev. Food Sci. Nutr. 1996, 36, 225–255. [Google Scholar] [CrossRef]
- Kalirajan, C.; Dukle, A.; Nathanael, A.J.; Oh, T.H.; Manivasagam, G. A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers 2021, 13, 3015. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, X.A.; Perez Gonzalez, A.; Huang, Q. Kafirin nanoparticles-stabilized Pickering emulsions: Microstructure and rheological behavior. Food Hydrocoll. 2016, 54, 30–39. [Google Scholar] [CrossRef]
- Pickering, S.U. Cxcvi.—Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef]
- Dickinson, E. Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends Food Sci. Technol. 2012, 24, 4–12. [Google Scholar] [CrossRef]
- Giroux, H.J.; Constantineau, S.; Fustier, P.; Champagne, C.P.; St-Gelais, D.; Lacroix, M.; Britten, M. Cheese fortification using water-in-oil-in-water double emulsions as carrier for water soluble nutrients. Int. Dairy J. 2013, 29, 107–114. [Google Scholar] [CrossRef]
- Qi, X.; Wang, L.; Zhu, J.; Hu, Z.; Zhang, J. Self-double-emulsifying drug delivery system (SDEDDS): A new way for oral delivery of drugs with high solubility and low permeability. Int. J. Pharm. 2011, 409, 245–251. [Google Scholar] [CrossRef]
- Xiao, J.; Lu, X.; Huang, Q. Double emulsion derived from kafirin nanoparticles stabilized Pickering emulsion: Fabrication, microstructure, stability and in vitro digestion profile. Food Hydrocoll. 2017, 62, 230–238. [Google Scholar] [CrossRef]
- Zhong, Q.; Jin, M. Zein nanoparticles produced by liquid–liquid dispersion. Food Hydrocoll. 2009, 23, 2380–2387. [Google Scholar] [CrossRef]
- Pascoli, M.; de Lima, R.; Fraceto, L.F. Zein Nanoparticles and Strategies to Improve Colloidal Stability: A Mini-Review. Front. Chem. 2018, 6, 1–5. [Google Scholar] [CrossRef]
- Kumar, T.; Dweikat, I.; Sato, S.; Ge, Z.; Nersesian, N.; Chen, H.; Elthon, T.; Bean, S.; Ioerger, B.P.; Tilley, M.; et al. Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench). Plant Biotechnol. J. 2012, 10, 533–544. [Google Scholar] [CrossRef]
- Chen, H.; Zhong, Q. Processes improving the dispersibility of spray-dried zein nanoparticles using sodium caseinate. Food Hydrocoll. 2014, 35, 358–366. [Google Scholar] [CrossRef]
- Yao, K.; Chen, W.; Song, F.; McClements, D.J.; Hu, K. Tailoring zein nanoparticle functionality using biopolymer coatings: Impact on curcumin bioaccessibility and antioxidant capacity under simulated gastrointestinal conditions. Food Hydrocoll. 2018, 79, 262–272. [Google Scholar] [CrossRef]
- Patel, A.R.; Bouwens, E.C.; Velikov, K.P. Sodium caseinate stabilized zein colloidal particles. J Agric Food Chem 2010, 58, 12497–12503. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Huang, X.; Gong, Y.; Xiao, H.; McClements, D.J.; Hu, K. Enhancement of curcumin water dispersibility and antioxidant activity using core–shell protein–polysaccharide nanoparticles. Food Res. Int. 2016, 87, 1–9. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, R.; Liu, J. Understanding of dispersion and aggregation of suspensions of zein nanoparticles in aqueous alcohol solutions after thermal treatment. Ind. Crops Prod. 2013, 50, 764–770. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, Z.; Ma, Z.; Quan, Q.; Ding, J. A facile strategy for the modification of chitosan/gliadin composites by tannic acid. Mater. Lett. 2019, 240, 209–212. [Google Scholar] [CrossRef]
- Ching, S.H.; Bhandari, B.; Webb, R.; Bansal, N. Visualizing the interaction between sodium caseinate and calcium alginate microgel particles. Food Hydrocoll. 2015, 43, 165–171. [Google Scholar] [CrossRef]
- Chang, C.; Wang, T.; Hu, Q.; Zhou, M.; Xue, J.; Luo, Y. Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin. Food Hydrocoll. 2017, 70, 143–151. [Google Scholar] [CrossRef]
- Chen, H.; Zhong, Q. A novel method of preparing stable zein nanoparticle dispersions for encapsulation of peppermint oil. Food Hydrocoll. 2015, 43, 593–602. [Google Scholar] [CrossRef]
- Philipp, B.; Dautzenberg, H.; Linow, K.-J.; Kötz, J.; Dawydoff, W. Polyelectrolyte complexes—Recent developments and open problems. Prog. Polym. Sci. 1989, 14, 91–172. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, B.; Zhao, Y.; Yang, Y.; Gao, Z.; Nishinari, K.; Yang, J.; Zhang, Y.; Fang, Y. Electrostatic Interaction-Based Fabrication of Calcium Alginate–Zein Core–Shell Microcapsules of Regulable Shapes and Sizes. Langmuir 2021, 37, 10424–10432. [Google Scholar] [CrossRef]
- Gali, L.; Bedjou, F.; Ferrari, G.; Donsì, F. Formulation and characterization of zein/gum arabic nanoparticles for the encapsulation of a rutin-rich extract from Ruta chalepensis L. Food Chem. 2022, 367, 129982. [Google Scholar] [CrossRef]
- Mejia, C.D.; Gonzalez, D.C.; Mauer, L.J.; Campanella, O.H.; Hamaker, B.R. Increasing and Stabilizing β-Sheet Structure of Maize Zein Causes Improvement in Its Rheological Properties. J. Agric. Food Chem. 2012, 60, 2316–2321. [Google Scholar] [CrossRef]
- Tanner, G.; Juhász, A.; Florides, C.G.; Nye-Wood, M.; Békés, F.; Colgrave, M.L.; Russell, A.K.; Hardy, M.Y.; Tye-Din, J.A. Preparation and Characterization of Avenin-Enriched Oat Protein by Chill Precipitation for Feeding Trials in Celiac Disease. Front. Nutr. 2019, 6, 162. [Google Scholar] [CrossRef]
- Amagliani, L.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. Composition and protein profile analysis of rice protein ingredients. J. Food Compos. Anal. 2017, 59, 18–26. [Google Scholar] [CrossRef]
- Redant, L.; Buggenhout, J.; Brijs, K.; Delcour, J.A. Extractability and chromatographic separation of rye (Secale cereale L.) flour proteins. J. Cereal Sci. 2017, 73, 68–75. [Google Scholar] [CrossRef]
- Yu, W.; Tan, X.; Zou, W.; Hu, Z.; Fox, G.; Gidley, M. Relationships between protein content, starch molecular structure and grain size in barley. Carbohydr. Polym. 2016, 155, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.W.; Beckwith, A.C. Proximate composition and proteins of three grain sorghum hybrids and their dry-mill fractions. J. Agric. Food Chem. 1970, 18, 33–36. [Google Scholar] [CrossRef]
- Shull, J.M.; Watterson, J.J.; Kirleis, A.W. Purification and immunocytochemical localization of kafirins in Sorghum bicolor (L. Moench) endosperm. Protoplasma 1992, 171, 64–74. [Google Scholar] [CrossRef]
- Dey, T. Fennema’s Food Chemistry, 4th ed.; Damodaran, S., Parkin, K.L., Fennema, O.R., Eds.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
- El Nour, I.N.A.; Peruffo, A.D.; Curioni, A. Characterisation of Sorghum Kafirins in Relation to their Cross-linking Behaviour. J. Cereal Sci. 1998, 28, 197–207. [Google Scholar] [CrossRef]
- Chamba, E.B.; Halford, N.G.; Forsyth, J.; Wilkinson, M.; Shewry, P.R. Molecular cloning of β-kafirin, a methionine-rich protein of sorghum grain. J. Cereal Sci. 2005, 41, 381–383. [Google Scholar] [CrossRef]
- de Barros, E.G.; Takasaki, K.; Kirleis, A.W.; Larkins, B.A. Nucleotide Sequence of a cDNA Clone Encoding γ-Kafirin Protein from Sorghum bicolor. Plant Physiol. 1991, 97, 1606–1607. [Google Scholar] [CrossRef]
- Song, R.; Segal, G.; Messing, J. Expression of the sorghum 10-member kafirin gene cluster in maize endosperm. Nucleic Acids Res. 2004, 32, e189. [Google Scholar] [CrossRef]
- Carter, R.; Reck, D.R. Low Temperature Solvent Extraction Process for Producing High Purity Zein. U.S. Patent 3,535,305, 20 October 1970. [Google Scholar]
- Giteru, S.G.; Oey, I.; Ali, M.A.; Johnson, S.K.; Fang, Z. Effect of kafirin-based films incorporating citral and quercetin on storage of fresh chicken fillets. Food Control 2017, 80, 37–44. [Google Scholar] [CrossRef]
- Muhiwa, P.; Taylor, J.; Taylor, J. Extraction and Film Properties of Kafirin from Coarse Sorghum and Sorghum DDGS by Percolation. Cereal Chem. J. 2017, 94, 693–698. [Google Scholar] [CrossRef]
Amino Acid | 1 Content in Total Kafirin (g/100 g) | 2 Content in α-Kafirin (mol %) | 3 Content in γ-Kafirin (mol %) | 4 Hydrophobicity (kJ/mol) at 25 °C |
---|---|---|---|---|
Aspartic (Asp) | 6.0 *–6.5 ** | 5.91 | 0 | 2.09 |
Threonine (Thr) | 2.9 *–2.6 ** | 2.82 | 4.16 | 1.6 |
Serine (Ser) | 4.3 *–41 ** | 4.98 | 4.89 | −1.25 |
Glutamic acid (Glu) | 28.2 *–30.0 ** | 23.80 | 14.18 | 2.09 |
Glycine (Gly) | 1.4 *–1.1 ** | 0.67 | 4.95 | 0 |
Alanine (Ala) | 11.8 *–12.4 ** | 11.87 | 6.22 | 2.09 |
Half-cysteine | 3.2 *–0.4 ** | 0.36 | 7.05 | NA |
Valine (Val) | 3.8 *–5.0 ** | 5.20 | 6.36 | 6.27 |
Methionine (Met) | 2.1 *–1.0 ** | 1.77 | 1.74 | 5.43 |
Leucine (Leu) | 17.5 *–19.2 ** | 17.48 | 11.20 | 9.61 |
Tyrosine (Tyr) | 3.6 *–5.5 ** | 4.29 | 2.81 | 9.61 |
Phenylalanine (Phe) | 6.6 *–6.4 ** | 4.40 | 1.92 | 10.45 |
Lysine (Lys) | 0.1 *–0.1 ** | 0.89 | 0.57 | NA |
Proline (Pro) | 10.2 *–10.0 ** | 7.50 | 19.65 | 10.85 |
Histidine (His) | 1.6 *–0.9 ** | 2.30 | 9.03 | NA |
Arginine (Arg) | 3.8 *–1.0 ** | 0.52 | 2.70 | 0 |
Isoleucine (Ile) | 3.0 *–4.8 ** | NA | NA | 12.54 |
Amino Acids | α-Zein at 22 kDa | α-Kafirin at 22 kDa |
---|---|---|
Alanine | 40 | 46 |
Arginine | 3 | 2 |
Asparagine | 14 | 16 |
Histidine | 4 | 2 |
Leucine | 48 | 46 |
Proline | 22 | 21 |
Valine | 15 | 17 |
Tyrosine | 7 | 8 |
Tryptophan | 0 | 1 |
Serine | 19 | 14 |
Methionine | 5 | 3 |
Glycine | 3 | 2 |
Glutamine | 50 | 56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, U.; Bhattarai, R.; Al-Salami, H.; Blanchard, C.; Johnson, S.K. Advances in Extraction, Structure, and Physiochemical Properties of Sorghum Kafirin for Biomaterial Applications: A Review. J. Funct. Biomater. 2024, 15, 172. https://doi.org/10.3390/jfb15070172
Shah U, Bhattarai R, Al-Salami H, Blanchard C, Johnson SK. Advances in Extraction, Structure, and Physiochemical Properties of Sorghum Kafirin for Biomaterial Applications: A Review. Journal of Functional Biomaterials. 2024; 15(7):172. https://doi.org/10.3390/jfb15070172
Chicago/Turabian StyleShah, Umar, Rewati Bhattarai, Hani Al-Salami, Christopher Blanchard, and Stuart K. Johnson. 2024. "Advances in Extraction, Structure, and Physiochemical Properties of Sorghum Kafirin for Biomaterial Applications: A Review" Journal of Functional Biomaterials 15, no. 7: 172. https://doi.org/10.3390/jfb15070172