Catalytic Ozonation of Pharmaceuticals Using CeO2-CeTiOx-Doped Crossflow Ultrafiltration Ceramic Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Modified Ceramic Membranes
2.3. Characterization Techniques
2.4. Permeability Tests
2.5. Hybrid Ozonation–Membrane Filtration (HOMF) Tests
2.6. Ozonation Studies
2.7. Analytical Techniques
3. Results and Discussion
3.1. Ceramic Membrane Modifications and Characterizations
3.2. Permeability Tests and Properties of the Ceramic Membranes
3.3. Performance Evaluation for the Removal of Pharmaceuticals
3.3.1. Effect of Modified Ceramic Membranes on Pharmaceuticals Degradation
3.3.2. Effect of Scavenger on Pharmaceuticals Degradation
3.3.3. Effect of Matrix on Pharmaceuticals Degradation Only with Ozonation
3.3.4. Application of Real WWTP Secondary Effluent on HOMF System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Đolić, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Lado Ribeiro, A.R.; et al. Consolidated vs New Advanced Treatment Methods for the Removal of Contaminants of Emerging Concern from Urban Wastewater. Sci. Total Environ. 2019, 655, 986–1008. [Google Scholar] [CrossRef] [PubMed]
- Kamali, M.; Aminabhavi, T.M.; Costa, M.E.V.; Ul Islam, S.; Appels, L.; Dewil, R. Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds; Green Energy and Technology; Springer International Publishing: Cham, Switzerland, 2023; ISBN 978-3-031-20805-8. [Google Scholar]
- Drechsel, P.; Qadir, M.; Baumann, J. Water Reuse to Free up Freshwater for Higher-Value Use and Increase Climate Resilience and Water Productivity. Irrig. Drain. 2022, 71, 100–109. [Google Scholar] [CrossRef]
- EU. Directive 2000/60/EC of the European Parliament and the Council—Establishing a Framework for Community Action in the Field of Water Policy; European Union: Maastricht, The Netherlands, 2000. [Google Scholar]
- EU. Directive (EU) 2020/2184 of the European Parliament and the Council on the Quality of Water Intended for Human Consumption; European Union: Maastricht, The Netherlands, 2020. [Google Scholar]
- Barbosa, M.O.; Moreira, N.F.F.; Ribeiro, A.R.; Pereira, M.F.R.; Silva, A.M.T. Occurrence and Removal of Organic Micropollutants: An Overview of the Watch List of EU Decision 2015/495. Water Res. 2016, 94, 257–279. [Google Scholar] [CrossRef]
- Eniola, J.O.; Kumar, R.; Barakat, M.A.; Rashid, J. A Review on Conventional and Advanced Hybrid Technologies for Pharmaceutical Wastewater Treatment. J. Clean. Prod. 2022, 356, 131826. [Google Scholar] [CrossRef]
- Kumar, R.; Awino, E.; Njeri, D.W.; Basu, A.; Chattaraj, S.; Nayak, J.; Roy, S.; Khan, G.A.; Jeon, B.H.; Ghosh, A.K.; et al. Advancing Pharmaceutical Wastewater Treatment: A Comprehensive Review on Application of Catalytic Membrane Reactor-Based Hybrid Approaches. J. Water Process Eng. 2024, 58, 104838. [Google Scholar] [CrossRef]
- Von Gunten, U. Ozonation of Drinking Water: Part I. Oxidation Kinetics and Product Formation. Water Res. 2003, 37, 1443–1467. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Shi, J.L.; von Gunten, U.; McCurry, D.L. Ozonation of Organic Compounds in Water and Wastewater: A Critical Review. Water Res. 2022, 213, 118053. [Google Scholar] [CrossRef] [PubMed]
- Derco, J.; Gotvajn, A.Ž.; Čižmárová, O.; Dudáš, J.; Sumegová, L.; Šimovičová, K. Removal of Micropollutants by Ozone-Based Processes. Processes 2021, 9, 1013. [Google Scholar] [CrossRef]
- Mansas, C.; Mendret, J.; Brosillon, S.; Ayral, A. Coupling Catalytic Ozonation and Membrane Separation: A Review. Sep. Purif. Technol. 2020, 236, 116221. [Google Scholar] [CrossRef]
- Psaltou, S.; Zouboulis, A. Catalytic Ozonation and Membrane Contactors—A Review Concerning Fouling Occurrence and Pollutant Removal. Water 2020, 12, 2964. [Google Scholar] [CrossRef]
- Samsami, S.; Sarrafzadeh, M.H.; Ahmadi, A. Surface Modification of Thin-Film Nanocomposite Forward Osmosis Membrane with Super-Hydrophilic MIL-53 (Al) for Doxycycline Removal as an Emerging Contaminant and Membrane Antifouling Property Enhancement. Chem. Eng. J. 2022, 431, 133469. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, T.; Huang, M.; Chen, G.; Cai, T.; Chen, H.; Meng, L.; Luo, X. Nanofiber Composite Forward Osmosis (NCFO) Membranes for Enhanced Antibiotics Rejection: Fabrication, Performance, Mechanism, and Simulation. J. Memb. Sci. 2020, 595, 117425. [Google Scholar] [CrossRef]
- Yang, L.; Xia, C.; Jiang, J.; Chen, X.; Zhou, Y.; Yuan, C.; Bai, L.; Meng, S.; Cao, G. Removal of Antibiotics and Estrogens by Nanofiltration and Reverse Osmosis Membranes. J. Hazard. Mater. 2024, 461, 132628. [Google Scholar] [CrossRef] [PubMed]
- Warsinger, D.M.; Chakraborty, S.; Tow, E.W.; Plumlee, M.H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A.M.; Achilli, A.; Ghassemi, A.; et al. A Review of Polymeric Membranes and Processes for Potable Water Reuse. Prog. Polym. Sci. 2018, 81, 209–237. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, W.; Lu, Z.; Ao, X.; Li, S. Ceramic Nanocomposite Membranes and Membrane Fouling: A Review. Water Res. 2020, 175, 115674. [Google Scholar] [CrossRef] [PubMed]
- Stüber, J.; Miehe, U.; Stein, R.; Köhler, M.; Lesjean, B. Combining Ozonation and Ceramic Membrane Filtration for Tertiary Treatment. Chem. Ing. Tech. 2013, 85, 1237–1242. [Google Scholar] [CrossRef]
- Asif, M.B.; Zhang, Z. Ceramic Membrane Technology for Water and Wastewater Treatment: A Critical Review of Performance, Full-Scale Applications, Membrane Fouling and Prospects. Chem. Eng. J. 2021, 418, 129481. [Google Scholar] [CrossRef]
- Clem, V.; de Mendonça, H.V. Ozone Reactor Combined with Ultrafiltration Membrane: A New Tertiary Wastewater Treatment System for Reuse Purpose. J. Environ. Manag. 2022, 315, 115166. [Google Scholar] [CrossRef] [PubMed]
- Sawunyama, L.; Oyewo, O.A.; Seheri, N.; Onjefu, S.A.; Onwudiwe, D.C. Metal Oxide Functionalized Ceramic Membranes for the Removal of Pharmaceuticals in Wastewater. Surf. Interfaces 2023, 38, 102787. [Google Scholar] [CrossRef]
- Li, X.; Fu, L.; Chen, F.; Zhao, S.; Zhu, J.; Yin, C. Application of Heterogeneous Catalytic Ozonation in Wastewater Treatment: An Overview. Catalysts 2023, 13, 342. [Google Scholar] [CrossRef]
- Mustafa, B.; Mehmood, T.; Wang, Z.; Chofreh, A.G.; Shen, A.; Yang, B.; Yuan, J.; Wu, C.; Liu, Y.; Lu, W.; et al. Next-Generation Graphene Oxide Additives Composite Membranes for Emerging Organic Micropollutants Removal: Separation, Adsorption and Degradation. Chemosphere 2022, 308, 136333. [Google Scholar] [CrossRef] [PubMed]
- Psaltou, S.; Mitrakas, M.; Zouboulis, A. Catalytic Membrane Ozonation. Encyclopedia 2021, 1, 131–143. [Google Scholar] [CrossRef]
- Asheghmoalla, M.; Mehrvar, M. Integrated and Hybrid Processes for the Treatment of Actual Wastewaters Containing Micropollutants: A Review on Recent Advances. Processes 2024, 12, 339. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, B.; Qi, F. A Novel Ceramic Membrane Coated with MnO2-Co3O4 Nanoparticles Catalytic Ozonation for Benzophenone-3 Degradation in Aqueous Solution: Fabrication, Characterization and Performance. Chem. Eng. J. 2016, 287, 381–389. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, H.; Qu, F.; Ding, A.; Chang, H.; Liu, B.; Tang, X.; Wu, D.; Li, G. Fabrication of Mn Oxide Incorporated Ceramic Membranes for Membrane Fouling Control and Enhanced Catalytic Ozonation of P-Chloronitrobenzene. Chem. Eng. J. 2017, 308, 1010–1020. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J. Catalytic Ozonation of Humic Acids by Ce–Ti Composite Catalysts. Kinet. Catal. 2017, 58, 734–740. [Google Scholar] [CrossRef]
- Zhang, S.; Quan, X.; Wang, D. Catalytic Ozonation in Arrayed Zinc Oxide Nanotubes as Highly Efficient Mini-Column Catalyst Reactors (MCRs): Augmentation of Hydroxyl Radical Exposure. Environ. Sci. Technol. 2018, 52, 8701–8711. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Bao, Y.; Hu, X.; Lim, T.T. Hybrid Catalytic Ozonation-Membrane Filtration Process with CeOx and MnOx Impregnated Catalytic Ceramic Membranes for Micropollutants Degradation. Chem. Eng. J. 2019, 378, 121670. [Google Scholar] [CrossRef]
- Wang, Y.; Rong, K.; Wei, J.; Chang, S.; Yu, D.; Fang, Y.; Dong, S. One-Step Synthesis of Three-Dimensional Mesoporous Co3O4@Al2O3 Nanocomposites with Deep Eutectic Solvent: An Efficient and Stable Peroxymonosulfate Activator for Organic Pollutant Degradations. Nano Res. 2023, 16, 11430–11443. [Google Scholar] [CrossRef]
- He, H.; You, N.; Deng, S.H.; Qiu, W.; Ma, J.; Leong, O.S.; Hu, J. Nanoparticles Formed in Fe(II)/KMnO4-Catalyzed Ozonation to Alleviate Ceramic Membrane Fouling and Improve Membrane Rejection Performance of Humic Acid. J. Clean. Prod. 2024, 435, 140513. [Google Scholar] [CrossRef]
- Liangdy, A.; Tonanon, P.; Webster, R.D.; Snyder, S.A.; Lim, T.T. Versatile Fe3O4-Impregnated Catalytic Ceramic Membrane for Effective Atrazine Removal: Confined Catalytic Oxidation Processes, Reactive Oxygen Species Selectivity and Performance in Real Wastewater. J. Environ. Chem. Eng. 2024, 12, 112727. [Google Scholar] [CrossRef]
- Vasile, B.S.; Birca, A.C.; Surdu, V.A.; Neacsu, I.A.; Nicoară, A.I. Ceramic Composite Materials Obtained by Electron-Beam Physical Vapor Deposition Used as Thermal Barriers in the Aerospace Industry. Nanomaterials 2020, 10, 370. [Google Scholar] [CrossRef] [PubMed]
- Sabzi, M.; Mousavi Anijdan, S.H.; Shamsodin, M.; Farzam, M.; Hojjati-Najafabadi, A.; Feng, P.; Park, N.; Lee, U. A Review on Sustainable Manufacturing of Ceramic-Based Thin Films by Chemical Vapor Deposition (CVD): Reactions Kinetics and the Deposition Mechanisms. Coatings 2023, 13, 188. [Google Scholar] [CrossRef]
- Tan, W.K.; Muto, H.; Kawamura, G.; Lockman, Z.; Matsuda, A. Nanomaterial Fabrication through the Modification of Sol–Gel Derived Coatings. Nanomaterials 2021, 11, 181. [Google Scholar] [CrossRef]
- Liu, X.; He, D. Atomic Layer Deposited Aluminium Oxide Membranes for Selective Hydrogen Separation through Molecular Sieving. J. Memb. Sci. 2022, 662, 121011. [Google Scholar] [CrossRef]
- Lee, W.J.; Bao, Y.; Guan, C.; Hu, X.; Lim, T.T. Ce/TiOx-Functionalized Catalytic Ceramic Membrane for Hybrid Catalytic Ozonation-Membrane Filtration Process: Fabrication, Characterization and Performance Evaluation. Chem. Eng. J. 2021, 410, 128307. [Google Scholar] [CrossRef]
- Ćurković, L.; Ljubas, D.; Šegota, S.; Bačić, I. Photocatalytic Degradation of Lissamine Green B Dye by Using Nanostructured Sol-Gel TiO2 Films. J. Alloys Compd. 2014, 604, 309–316. [Google Scholar] [CrossRef]
- Haugen, H.J.; Bertoldi, S. Characterization of Morphology-3D and Porous Structure. In Characterization of Polymeric Biomaterials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 21–53. ISBN 9780081007372. [Google Scholar]
- Ding, H.; Hu, J. The Optimal Method for Peroxydisulfate Quenching: A Comparison of Commonly Used Reductants. Chemosphere 2021, 262, 128000. [Google Scholar] [CrossRef]
- Bader, H.; Hoigne, J. Determination of Ozone in Water by the Indigo Method. Water Res. 1981, 15, 449–456. [Google Scholar] [CrossRef]
- Athanasekou, C.P.; Moustakas, N.G.; Morales-Torres, S.; Pastrana-Martínez, L.M.; Figueiredo, J.L.; Faria, J.L.; Silva, A.M.T.; Dona-Rodriguez, J.M.; Romanos, G.E.; Falaras, P. Ceramic Photocatalytic Membranes for Water Filtration under UV and Visible Light. Appl. Catal. B 2015, 178, 12–19. [Google Scholar] [CrossRef]
- Nakada, N.; Shinohara, H.; Murata, A.; Kiri, K.; Managaki, S.; Sato, N.; Takada, H. Removal of Selected Pharmaceuticals and Personal Care Products (PPCPs) and Endocrine-Disrupting Chemicals (EDCs) during Sand Filtration and Ozonation at a Municipal Sewage Treatment Plant. Water Res. 2007, 41, 4373–4382. [Google Scholar] [CrossRef] [PubMed]
- Watts, P.; Wilesa, C. Recent Advances in Synthetic Micro Reaction Technology. Chem. Commun. 2007, 5, 443–467. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, F.J. Ozone Reaction Kinetics for Water and Wastewater Systems, 1st ed.; Lewis, P.A., Ed.; Lewis Publishers: Boca Raton, FL, USA, 2004; ISBN 1566706297. [Google Scholar]
- Hoigne, J.; Bader, H. Rate constants of reactions of ozone with organic and inorganic compounds in water-ii dissociating organic compounds. Water Res. 1983, 1, 185–194. [Google Scholar] [CrossRef]
- Huber, M.M.; Canonica, S.; Park, G.Y.; Von Gunten, U. Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes. Environ. Sci. Technol. 2003, 37, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Hollender, J.; Zimmermann, S.G.; Koepke, S.; Krauss, M.; Mcardell, C.S.; Ort, C.; Singer, H.; Von Gunten, U.; Siegrist, H. Elimination of Organic Micropollutants in a Municipal Wastewater Treatment Plant Upgraded with a Full-Scale Post-Ozonation Followed by Sand Filtration. Environ. Sci. Technol. 2009, 43, 7862–7869. [Google Scholar] [CrossRef] [PubMed]
- Hoigné, J. Chemistry of Aqueous Ozone and Transformation of Pollutants by Ozonation and Advanced Oxidation Processes. In Quality and Treatment of Drinking Water II; The Handbook of Environmental Chemistry; Hrubec, J., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 5C, pp. 83–141. [Google Scholar]
- Falås, P.; Andersen, H.R.; Ledin, A.; Jansen, J.l.C. Occurrence and Reduction of Pharmaceuticals in the Water Phase at Swedish Wastewater Treatment Plants. Water Sci. Technol. 2012, 66, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Smook, T.H.; Zho, H.; Zytner, R.G. Removal of Ibuprofen from Wastewater: Comparing Biodegradation in Conventional, Membrane Bioreactor, and Biological Nutrient Removal Treatment Systems. Water Sci. Technol. 2008, 57, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhan, J.; Yu, G.; Wang, Y. Evaluation of the Concentration and Contribution of Superoxide Radical for Micropollutant Abatement during Ozonation. Water Res. 2021, 194, 116927. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yu, J.; Wang, H.; Yu, H.; Quan, X. A Pilot-Scale Coupling Catalytic Ozonation-Membrane Filtration System for Recirculating Aquaculture Wastewater Treatment. Desalination 2015, 363, 37–43. [Google Scholar] [CrossRef]
- Kisielius, V.; Kharel, S.; Skaarup, J.; Lauritzen, B.S.; Lukas, M.; Bogusz, A.; Szumska, M.; Bester, K. Process Design for Removal of Pharmaceuticals in Wastewater Treatment Plants Based on Predicted No Effect Concentration (PNEC). Chem. Eng. J. 2023, 476, 146644. [Google Scholar] [CrossRef]
- Xie, X.; Wang, L.; Wei, J.; He, H.; Guo, Z.; Wang, C.; Wen, X.; Song, Y. Progress in Ceramic Membrane Coupling Ozonation Process for Water and Wastewater Treatment: A Critical Review. Chem. Eng. J. 2024, 493, 152475. [Google Scholar] [CrossRef]
- Segura, Y.; Cruz del Álamo, A.; Munoz, M.; Álvarez-Torrellas, S.; García, J.; Casas, J.A.; De Pedro, Z.M.; Martínez, F. A Comparative Study among Catalytic Wet Air Oxidation, Fenton, and Photo-Fenton Technologies for the on-Site Treatment of Hospital Wastewater. J. Environ. Manag. 2021, 290, 112624. [Google Scholar] [CrossRef] [PubMed]
CM | Water Permeability, L m−2 h−1 | Porosity (ε) | HRT, s | Rm, ×10−10 m−1 | Surface Roughness, nm |
---|---|---|---|---|---|
Pristine | 631 | 0.22 | 8.4 | 0.39 | 106.4 |
CeO2 | 196 | 0.29 | 34.3 | 1.23 | 110.6 |
CeTiOx | 360 | 0.29 | 18.7 | 0.65 | 84.9 |
CeO2 + CeTiOx | 183 | 0.27 | 35.4 | 1.31 | 71.9 |
Parameter | Units | Secondary Effluent | Pristine | CeO2 + CeTiOx | ||
---|---|---|---|---|---|---|
Adsorption | Ozonation | Adsorption | Ozonation | |||
TOC | mg L−1 | 13.89 ± 1.26 | 29.47 ± 0.46 | 22.99 ± 1.08 | 24.12 ± 0.88 | 20.26 ± 0.90 |
TN | mg L−1 | 3.14 ± 0.13 | 3.02 ± 0.01 | 2.52 ± 0.14 | 2.65 ± 0.06 | 2.22 ± 0.08 |
N-NO3 | mg L−1 | 1.36 ± 0.33 | 1.83 ± 0.03 | 1.31 ± 0.10 | 1.55 ± 0.02 | 1.25 ± 0.01 |
N-NO2 | mg L−1 | 0.07 ± 0.03 | 0.03 ± 0.00 | 0.06 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.01 |
N-NH4 | mg L−1 | 0.01 ± 0.00 | 0.02 ± 0.01 | 0.01 ± 0.00 | 0.03 ± 0.02 | 0.01 ± 0.00 |
S-SO4 | mg L−1 | 21.63 ± 0.05 | 18.70 ± 0.37 | 19.21 ± 0.32 | 18.97 ± 0.18 | 18.13 ± 1.10 |
Na | mg L−1 | 111.2 ± 0.60 | 99.2 ± 0.05 | 104 ± 0.60 | 101.2 ± 1.54 | 100.2 ± 6.20 |
Ca | mg L−1 | 73.64 ± 0.23 | 64.21 ± 1.36 | 66.97 ± 1.25 | 60.35 ± 2.25 | 54.69 ± 6.26 |
K | mg L−1 | 22.10 ± 0.16 | 18.98 ± 0.29 | 19.37 ± 0.37 | 18.91 ± 0.17 | 18.23 ± 1.07 |
Mg | mg L−1 | 12.43 ± 0.06 | 11.04 ± 0.17 | 11.62 ± 0.22 | 11.15 ± 0.12 | 10.66 ± 0.70 |
F | mg L−1 | 0.12 ± 0.01 | 0.10 ± 0.00 | 0.11 ± 0.01 | 0.10 ± 0.05 | 0.06 ± 0.01 |
Cl | mg L−1 | 153.9 ± 0.09 | 135.9 ± 2.69 | 143.5 ± 2.23 | 139.2 ± 1.30 | 133.5 ± 8.83 |
Conductivity | μS cm−1 | 1016 ± 55.7 | 908.5 ± 6.5 | 865.5 ± 48.5 | 790 ± 102 | 749 ± 33 |
pH | 7.68 ± 0.07 | 7.86 ± 0.15 | 8.22 ± 0.12 | 7.81 ± 0.06 | 7.87 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiarta, N.; Morović, S.; Mandić, V.; Panžić, I.; Blažic, R.; Ćurković, L.; Gernjak, W. Catalytic Ozonation of Pharmaceuticals Using CeO2-CeTiOx-Doped Crossflow Ultrafiltration Ceramic Membranes. Nanomaterials 2024, 14, 1163. https://doi.org/10.3390/nano14131163
Tsiarta N, Morović S, Mandić V, Panžić I, Blažic R, Ćurković L, Gernjak W. Catalytic Ozonation of Pharmaceuticals Using CeO2-CeTiOx-Doped Crossflow Ultrafiltration Ceramic Membranes. Nanomaterials. 2024; 14(13):1163. https://doi.org/10.3390/nano14131163
Chicago/Turabian StyleTsiarta, Nikoletta, Silvia Morović, Vilko Mandić, Ivana Panžić, Roko Blažic, Lidija Ćurković, and Wolfgang Gernjak. 2024. "Catalytic Ozonation of Pharmaceuticals Using CeO2-CeTiOx-Doped Crossflow Ultrafiltration Ceramic Membranes" Nanomaterials 14, no. 13: 1163. https://doi.org/10.3390/nano14131163