Oxide Ionic Neuro-Transistors for Bio-inspired Computing
Abstract
:1. Introduction
2. Ionic Processes in Brain Computing
3. Electrolyte-Gated Transistors
4. Dynamic Synaptic Plasticity in Oxide Ionic Transistors
4.1. Short-Term Plasticity
4.2. Long-Term Plasticity
5. Spatiotemporal Information Processing in Oxide Ionic Transistors
6. Artificial Sensory Neurons by Oxide Ionic Transistors
7. Conclusions and Outlook
- (1)
- Ionic neural functions extraction and refinement. Currently, some essential ionic neural functions like synaptic plasticity, spatiotemporal information processing, and sensory perception have been successfully implemented by various oxide ionic transistors. The human neural system has a highly interconnected complex structure and highly intelligent functions like pattern recognition and decision making. It contains about 100 billion neurons and even more highly interconnected synapses with them. The vast majority of current oxide ionic transistors have achieved biological intelligence at the device level. The implementation of more complex functions such as motion control and thinking is still in the early stages. Further research efforts are imperative to refine, abstract, and effectively implement more intricate neural functions. The advancement in complex neural function implementation requires collaborative efforts across multidisciplinary fields including neuroscience, materials, and electronics.
- (2)
- Stability. Displays driven by oxide thin-film transistors have been used as mobile phone screens, which means that the stability problem of the IGZO material has been solved. Oxide ionic synaptic/neuronal transistors often involve an electrochemical doping or reaction process, which may cause some instability factors. Currently, a large variety of organic electrolytes are employed as the gate dielectric of oxide ionic neuromorphic transistors. The introduction of these organic compounds may cause some instability issues. Future research efforts could focus on encapsulation, which is an essential strategy for improving stability. By encapsulation, the devices are effectively shielded from environmental factors like oxygen, moisture, and mechanical stress. Moving forward, research efforts in this field should prioritize the exploration of highly stable organic/inorganic materials followed by encapsulation and continue to explore new ionic neuromorphic functions.
- (3)
- Scalability. Device scaling means smaller footprint and lower power consumption. The channel length of oxide-based transistors is promising to scale below the 5 nm regime because of the unique wide bandgap and low dielectric constant. However, some of the oxide-based electrolyte synaptic/neuronal transistors adopt lateral-gate structure, as shown in Figure 2c. This lateral-gate structure provides the devices multiple inputs, which is very promising for neuronal information integration. But this lateral-gate structure will occupy much larger area and reduce integration. To achieve sustainable device scaling, manufacturing compatibility with existing fabrication processes is essential for future oxide-based electrolyte-gated transistors. Modern micro-nano electronic technology has achieved remarkable achievements worldwide. Neurons in the human brain are interconnected via synapses and arranged in a 3D manner, which is a great challenge for micro-nano technology. At present, the interconnection between massive neurons is not fully understood, which looks forward to the advancement of neuroscience. In order to realize the tremendous amount of interconnection, future research must focus on developing and optimizing 3D integration technology to meet neuromorphic interconnection requirements.
- (4)
- Integration with existing systems. Integrating oxide electrolyte transistors with existing systems can offer a range of advances in the fields of bioelectronics, neuromorphic computing, and flexible electronics. Due to the compatibility of oxide electrolyte transistors with an ionic aqueous environment, it is possible for oxide electrolyte transistors to interface with biological systems. Oxide electrolyte transistors have been proved to be efficient in mimicking synaptic/neuronal ionic computing. When integrated with current CMOS circuits, they will combine the advantages of both, that is, the powerful digital signal processing capabilities of CMOS circuits and the efficient bionic capabilities of synaptic/neuron functions of oxide electrolyte transistors. The biggest challenge in integrating oxide-based electrolyte transistors and existing CMOS circuits comes from their compatibility. Most organic electrolytes are not compatible with the CMOS process. To realize the integration with current existing systems, future efforts require more on the development of micro-nano process- compatible inorganic electrolyte transistors.
- (5)
- Power consumption. The power consumption of biological systems is estimated to be a few tens of pico-joules per event [176]. Because of the high capacitance, the working voltage of oxide-based electrolyte-gated transistors can be reduced to less than 2.0 V, and the energy consumption of oxide-based electrolyte synaptic transistors can be reduced to levels comparable to that of biological synapses. The low-off current of oxide transistors ensures low static power consumption. Nevertheless, the overall system power consumption including peripheral circuits and oxide-based electrolyte transistor neural simulation core is believed to be much larger than that of biological systems. In order to further reduce power consumption, other working regimes can be explored like subthreshold operation mode.
Funding
Conflicts of Interest
References
- Bear, M.F.; Connors, B.W.; Paradiso, M.A. Neuroscience: Exploring the Brain, 3rd ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2007. [Google Scholar]
- Ho, V.M.; Lee, J.-A.; Martin, K.C. The Cell Biology of Synaptic Plasticity. Science 2011, 334, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Kovac, L. The 20 W sleep-walkers. EMBO Rep. 2010, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Squire, L.R.; Berg, D.; Bloom, F.E.; Lac, S.D.; Ghosh, A.; Spitzer, N.C. Fundamental Neuroscience, 4th ed.; Elsevier: Philadelphia, PA, USA, 2012. [Google Scholar]
- Mead, C. Analog VLSI Implementation of Neural Systems; Kluwer Academic Publishers: Norwell, MA, USA, 1989. [Google Scholar]
- Lauder, G.V.; Madden, P.G.A.; Tangorra, J.L.; Anderson, E.; Baker, T.V. Bioinspiration from fish for smart material design and function. Smart Mater. Struct. 2011, 20, 094014. [Google Scholar] [CrossRef]
- Romano, D.; Stefanini, C. Robot-Locust Social Information Transfer Occurs in Predator Avoidance Contexts. Int. J. Soc. Robot. 2024, 1–12. [Google Scholar] [CrossRef]
- Farina, D.; Vujaklija, I.; Branemark, R.; Bull, A.M.J.; Dietl, H.; Graimann, B.; Hargrove, L.J.; Hoffmann, K.P.; Huang, H.H.; Ingvarsson, T.; et al. Toward higher-performance bionic limbs for wider clinical use. Nat. Biomed. Eng. 2023, 7, 473–485. [Google Scholar] [CrossRef]
- Mead, C. How we created neuromorphic engineering. Nat. Electron. 2020, 3, 434–435. [Google Scholar] [CrossRef]
- Merolla, P.A.; Arthur, J.V.; Alvarez-Icaza, R.; Cassidy, A.S.; Sawada, J.; Akopyan, F.; Jackson, B.L.; Imam, N.; Guo, C.; Nakamura, Y.; et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 2014, 345, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; Srinivasa, N.; Lin, T.-H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 2018, 38, 82–99. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Lett. 2010, 10, 1297–1301. [Google Scholar] [CrossRef]
- Kuzum, D.; Yu, S.; Wong, H.-S.P. Synaptic electronics: Materials, devices and applications. Nanotechnology 2013, 24, 382001. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.J.; Strukov, D.B.; Stewart, D.R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Joshi, S.; Savel’ev, S.; Song, W.; Midya, R.; Li, Y.; Rao, M.; Yan, P.; Asapu, S.; Zhuo, Y.; et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 2018, 1, 137–145. [Google Scholar] [CrossRef]
- Xia, Q.; Yang, J.J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019, 18, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Fuller, E.J.; Keene, S.T.; Melianas, A.; Wang, Z.; Agarwal, S.; Li, Y.; Tuchman, Y.; James, C.D.; Marinella, M.J.; Yang, J.J.; et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 2019, 364, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Ielmini, D.; Pedretti, G. Device and Circuit Architectures for In-Memory Computing. Adv. Intell. Syst. 2020, 2, 2000040. [Google Scholar] [CrossRef]
- Lu, Y.-F.; Li, Y.; Li, H.; Wan, T.-Q.; Huang, X.; He, Y.-H.; Miao, X. Low-Power Artificial Neurons Based on Ag/TiN/HfAlOx/Pt Threshold Switching Memristor for Neuromorphic Computing. IEEE Electron Device Lett. 2020, 41, 1245–1248. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Liu, Q.; Zhao, X.; Wei, J.; Cao, R.; Yao, Z.; Zhu, X.; Zhang, F.; Lv, H.; et al. An Artificial Neuron Based on a Threshold Switching Memristor. IEEE Electron Device Lett. 2018, 39, 308–311. [Google Scholar] [CrossRef]
- Wang, Z.; Rao, M.; Han, J.-W.; Zhang, J.; Lin, P.; Li, Y.; Li, C.; Song, W.; Asapu, S.; Midya, R.; et al. Capacitive neural network with neuro-transistors. Nat. Commun. 2018, 9, 3208. [Google Scholar] [CrossRef]
- Merrikh-Bayat, F.; Guo, X.; Klachko, M.; Prezioso, M.; Likharev, K.K.; Strukov, D.B. High-Performance Mixed-Signal Neurocomputing with Nanoscale Floating-Gate Memory Cell Arrays. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 4782–4790. [Google Scholar] [CrossRef]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M.; Siegelbaum, S.A.; Hudspeth, A.J. Principles of Neural Science, 5th ed.; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Voglis, G.; Tavernarakis, N. The role of synaptic ion channels in synaptic plasticity. EMBO Rep. 2006, 7, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Zhang, L.; Li, Z.; Stickle, W.F.; Williams, R.S.; Chen, Y. Ionic/Electronic Hybrid Materials Integrated in a Synaptic Transistor with Signal Processing and Learning Functions. Adv. Mater. 2010, 22, 2448–2453. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Chen, C.L.; Truong, Q.; Shen, A.M.; Chen, Y. A carbon nanotube synapse with dynamic logic and learning. Adv. Mater. 2013, 25, 1693–1698. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Wan, C.J.; Guo, L.Q.; Shi, Y.; Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 2014, 5, 3158. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Zhu, L.Q.; Feng, P.; Shi, Y.; Wan, Q. Freestanding Artificial Synapses Based on Laterally Proton-Coupled Transistors on Chitosan Membranes. Adv. Mater. 2015, 27, 5599–5604. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.J.; Liu, Y.H.; Feng, P.; Wang, W.; Zhu, L.Q.; Liu, Z.P.; Shi, Y.; Wan, Q. Flexible Metal Oxide/Graphene Oxide Hybrid Neuromorphic Transistors on Flexible Conducting Graphene Substrates. Adv. Mater. 2016, 28, 5878–5885. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.J.; Zhu, L.Q.; Liu, Y.H.; Feng, P.; Liu, Z.P.; Cao, H.L.; Xiao, P.; Shi, Y.; Wan, Q. Proton-Conducting Graphene Oxide-Coupled Neuron Transistors for Brain-Inspired Cognitive Systems. Adv. Mater. 2016, 28, 3557–3563. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Nie, S.; Liu, R.; Jiang, S.; Shi, Y.; Wan, Q. Spatiotemporal Information Processing Emulated by Multiterminal Neuro-Transistor Networks. Adv. Mater. 2019, 31, 1900903. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yang, Y.; Nie, S.; Liu, R.; Wan, Q. Electric-double-layer transistors for synaptic devices and neuromorphic systems. J. Mater. Chem. C 2018, 6, 5336–5352. [Google Scholar] [CrossRef]
- He, Y.; Jiang, S.; Chen, C.; Wan, C.; Shi, Y.; Wan, Q. Electrolyte-gated neuromorphic transistors for brain-like dynamic computing. J. Appl. Phys. 2021, 130, 190904. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wan, Q.; Sun, J.; Lu, A. Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature. Appl. Phys. Lett. 2009, 95, 152114. [Google Scholar] [CrossRef]
- Zhou, J.; Wan, C.; Zhu, L.; Shi, Y.; Wan, Q. Synaptic Behaviors Mimicked in Flexible Oxide-Based Transistors on Plastic Substrates. IEEE Electron Device Lett. 2013, 34, 1433–1435. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Liang, R.; Zhang, Y.; Mao, W.; Yang, Y.; Ren, T.-L. Synaptic Computation Demonstrated in a Two-Synapse Network Based on Top-Gate Electric-Double-Layer Synaptic Transistors. IEEE Electron Device Lett. 2017, 38, 1496–1499. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Yang, Y.; Ren, T.-L. Top-Gate Electric-Double-Layer IZO-Based Synaptic Transistors for Neuron Networks. IEEE Electron Device Lett. 2017, 38, 588–591. [Google Scholar] [CrossRef]
- Li, Y.; Xuan, Z.; Lu, J.; Wang, Z.; Zhang, X.; Wu, Z.; Wang, Y.; Xu, H.; Dou, C.; Kang, Y.; et al. One Transistor One Electrolyte-Gated Transistor Based Spiking Neural Network for Power-Efficient Neuromorphic Computing System. Adv. Funct. Mater. 2021, 31, 2100042. [Google Scholar] [CrossRef]
- Qiu, H.; Hao, D.; Li, H.; Shi, Y.; Dong, Y.; Liu, G.; Shan, F. Transparent and biocompatible In2O3 artificial synapses with lactose–citric acid electrolyte for neuromorphic computing. Appl. Phys. Lett. 2022, 121, 183301. [Google Scholar] [CrossRef]
- Wang, W.; He, G.; Li, Y.; Jiang, S.; Liu, Y.; Gao, Q.; Zhang, Y. All-Solution-Driven Thin-Film Transistor with Low Power Dissipation for Logic Electronics and Neuronal Synapse. IEEE Trans. Electron Dev. 2023, 70, 3590–3597. [Google Scholar] [CrossRef]
- Dayan, P.; Abbott, L.F. Theoretical Neuroscience, 1st ed.; The MIT Press: Cambridge, MA, USA; London, UK, 2005. [Google Scholar]
- Dharani, K. The Biology of Thought; Elsevier: London, UK, 2015. [Google Scholar]
- Guyton, C.; Hall, J.E. Textbook of Medical Physiology; Elsevier: Philadelphia, PA, USA, 2006. [Google Scholar]
- Park, J.S.; Maeng, W.-J.; Kim, H.-S.; Park, J.-S. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Film. 2012, 520, 1679–1693. [Google Scholar] [CrossRef]
- Robertson, J.; Wallace, R.M. High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. R 2015, 88, 1–41. [Google Scholar] [CrossRef]
- Du, H.; Lin, X.; Xu, Z.; Chu, D. Electric double-layer transistors: A review of recent progress. J. Mater. Sci. 2015, 50, 5641–5673. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Y.; Jia, R.; Liang, Z.; Zhu, W.; Rehman, Z.U.; Bao, L.; Zhang, X.; Cai, Y.; Song, L.; et al. Ion Gated Synaptic Transistors Based on 2D van der Waals Crystals with Tunable Diffusive Dynamics. Adv. Mater. 2018, 30, 1800195. [Google Scholar] [CrossRef] [PubMed]
- Gkoupidenis, P.; Schaefer, N.; Garlan, B.; Malliaras, G.G. Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors. Adv. Mater. 2015, 27, 7176–7180. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Xu, W.; Yang, Y.; Wan, X.; Shi, Y.; Wan, Q.; Zhao, J.; Cui, Z. Printed Neuromorphic Devices Based on Printed Carbon Nanotube Thin-Film Transistors. Adv. Funct. Mater. 2017, 27, 1604447. [Google Scholar] [CrossRef]
- Nath, R.; Raychaudhuri, A.K. Electric double layer gate controlled non-linear transport in a nanostructured functional perovskite oxide film. Appl. Phys. Lett. 2014, 104, 083515. [Google Scholar] [CrossRef]
- Panzer, M.J.; Frisbie, C.D. High Carrier Density and Metallic Conductivity in Poly(3-hexylthiophene) Achieved by Electrostatic Charge Injection. Adv. Funct. Mater. 2006, 16, 1051–1056. [Google Scholar] [CrossRef]
- Yuan, H.; Shimotani, H.; Tsukazaki, A.; Ohtomo, A.; Kawasaki, M.; Iwasa, Y. High-Density Carrier Accumulation in ZnO Field-Effect Transistors Gated by Electric Double Layers of Ionic Liquids. Adv. Funct. Mater. 2009, 19, 1046–1053. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, L.; Wan, Q. Nanogranular Al2O3 proton conducting films for low-voltage oxide-based homojunction thin-film transistors. J. Mater. Chem. C 2013, 1, 2781–2786. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, H.; Zhou, J.; Huang, A.; Wan, Q. Proton conducting zeolite films for low-voltage oxide-based electric-double-layer thin-film transistors and logic gates. J. Mater. Chem. C 2013, 1, 5669. [Google Scholar] [CrossRef]
- Lv, D.; Yang, Q.; Chen, Q.; Chen, J.; Lai, D.; Chen, H.; Guo, T. All-metal oxide synaptic transistor with modulatable plasticity. Nanotechnology 2020, 31, 065201. [Google Scholar] [CrossRef]
- Honjo, M.; Takeda, Y.; Aman, M.; Kobayashi, S.; Kitoh, K.; Ito, K.; Tanaka, K.; Matsukizono, H.; Nakamura, W. Advanced hybrid process with back contact IGZO-TFT. J. Soc. Inf. Disp. 2022, 30, 471–481. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor. Science 2003, 300, 1269–1272. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tian, M.; Gao, Q.; Wang, M.; Li, T.; Hu, Q.; Li, X.; Wu, Y. Nanometre-thin indium tin oxide for advanced high-performance electronics. Nat. Mater. 2019, 18, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Nie, S.; Liu, R.; Shi, Y.; Wan, Q. Indium–Gallium–Zinc–Oxide Schottky Synaptic Transistors for Silent Synapse Conversion Emulation. IEEE Electron Device Lett. 2019, 40, 139–142. [Google Scholar] [CrossRef]
- He, Y.; Zhu, Y.; Chen, C.; Liu, R.; Jiang, S.; Zhu, L.; Shi, Y.; Wan, Q. Flexible Oxide-Based Schottky Neuromorphic TFTs with Configurable Spiking Dynamic Functions. IEEE Trans. Electron Dev. 2020, 67, 5216–5220. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, H.; Ke, S.; Pei, M.; Shi, K.; Wan, C.; Wan, Q. Reservoir computing based on electric-double-layer coupled InGaZnO artificial synapse. Appl. Phys. Lett. 2023, 122, 043508. [Google Scholar] [CrossRef]
- Guo, L.; Wan, Q.; Wan, C.; Zhu, L.; Shi, Y. Short-Term Memory to Long-Term Memory Transition Mimicked in IZO Homojunction Synaptic Transistors. IEEE Electron Device Lett. 2013, 34, 1581–1583. [Google Scholar] [CrossRef]
- Lu, A.; Sun, J.; Jiang, J.; Wan, Q. Microporous SiO2 with huge electric-double-layer capacitance for low-voltage indium tin oxide thin-film transistors. Appl. Phys. Lett. 2009, 95, 222905. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.; Luo, J.; Liu, Z.; Wan, Q. Schmitt Triggers with Adjustable Hysteresis Window Based on Indium–Tungsten-Oxide Electric-Double-Layer TFTs. IEEE Electron Device Lett. 2019, 40, 1205–1208. [Google Scholar] [CrossRef]
- Min, J.-G.; Cho, W.-J. Sol-Gel Composites-Based Flexible and Transparent Amorphous Indium Gallium Zinc Oxide Thin-Film Synaptic Transistors for Wearable Intelligent Electronics. Molecules 2021, 26, 7233. [Google Scholar] [CrossRef]
- Lu, G.; Liu, Y.; Lin, F.; Gen, K.; Wu, W.; Yao, R. Realization of artificial synapse and inverter based on oxide electric-double-layer transistor gated by a chitosan biopolymer electrolyte. Semicond. Sci. Technol. 2020, 35, 075014. [Google Scholar] [CrossRef]
- Zou, C.; Sun, J.; Gou, G.; Kong, L.-A.; Qian, C.; Dai, G.; Yang, J.; Guo, G.-H. Polymer–electrolyte-gated nanowire synaptic transistors for neuromorphic applications. Appl. Phys. A 2017, 123, 597. [Google Scholar] [CrossRef]
- Zhu, H.; Mu, H.; Cai, Z.; Chu, X.; Yang, X. High-Performance Organic-Inorganic Hybrid Thin-Film Transistors with Interesting Synaptic Behaviors. Phys. Status Solidi A 2019, 216, 1900344. [Google Scholar] [CrossRef]
- Guo, L.Q.; Han, H.; Zhu, L.Q.; Guo, Y.B.; Yu, F.; Ren, Z.Y.; Xiao, H.; Ge, Z.Y.; Ding, J.N. Oxide Neuromorphic Transistors Gated by Polyvinyl Alcohol Solid Electrolytes with Ultralow Power Consumption. ACS Appl. Mater. Interfaces 2019, 11, 28352–28358. [Google Scholar] [CrossRef] [PubMed]
- Wenhui, F.; Dongliang, J.; Liangchun, H.; Yaohua, Y.; Qi, C.; Jianhua, Z.; Jun, L. Low-voltage synaptic transistor based on polyvinylpyrrolidone composite electrolyte for humidity sensing. In Proceedings of the 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Chengdu, China, 8–11 April 2021; pp. 1–3. [Google Scholar]
- Jiang, D.; Li, J.; Fu, W.; Chen, Q.; Yang, Y.; Zhou, Y.; Zhang, J. Light-Stimulated Artificial Synapse with Memory and Learning Functions by Utilizing an Aqueous Solution-Processed In2O3/AlLiO Thin-Film Transistor. ACS Appl. Electron. Mater. 2020, 2, 2772–2779. [Google Scholar] [CrossRef]
- Qin, W.; Kang, B.H.; An, J.B.; Kim, H.J. Indium oxide nanomesh-based electrolyte-gated synaptic transistors. J. Inf. Disp. 2021, 22, 179–185. [Google Scholar] [CrossRef]
- Fu, W.; Li, J.; Li, L.; Jiang, D.; Zhu, W.; Zhang, J. High ionic conductivity Li0.33La0.557TiO3 nanofiber/polymer composite solid electrolyte for flexible transparent InZnO synaptic transistors. Nanotechnology 2021, 32, 405207. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Jayabalan, M.; Kawamura, K.; Takayanagi, M.; Higuchi, T.; Jayavel, R.; Terabe, K. Neuromorphic transistor achieved by redox reaction of WO3 thin film. Jpn. J. Appl. Phys. 2018, 57, 04FK01. [Google Scholar] [CrossRef]
- Choi, H.-S.; Lee, Y.-J.; Park, H.; Cho, W.-J. Biocompatible Potato-Starch Electrolyte-Based Coplanar Gate-Type Artificial Synaptic Transistors on Paper Substrates. Int. J. Mol. Sci. 2022, 23, 15901. [Google Scholar] [CrossRef]
- Long, T.Y.; Zhu, L.Q.; Guo, Y.B.; Ren, Z.Y.; Xiao, H.; Ge, Z.Y.; Wang, L. Flexible oxide neuromorphic transistors with synaptic learning functions. J. Phys. D Appl. Phys. 2019, 52, 405101. [Google Scholar] [CrossRef]
- Guo, L.Q.; Tao, J.; Gao, W.T.; Yu, F.; Xiao, H.; Ding, J.N.; Zhu, L.Q. Activity dependent post-tetanic potentiation of starch-based biopolymer electrolyte gated oxide synaptic transistors. J. Phys. D Appl. Phys. 2018, 51, 495401. [Google Scholar] [CrossRef]
- Li, J.; Jiang, D.; Yang, Y.; Zhou, Y.; Chen, Q.; Zhang, J. Li-Ion Doping as a Strategy to Modulate the Electrical-Double-Layer for Improved Memory and Learning Behavior of Synapse Transistor Based on Fully Aqueous-Solution-Processed In2O3/AlLiO Film. Adv. Electron. Mater. 2020, 6, 1901363. [Google Scholar] [CrossRef]
- Fu, Y.M.; Zhu, L.Q.; Wen, J.; Xiao, H.; Liu, R. Mixed protonic and electronic conductors hybrid oxide synaptic transistors. J. Appl. Phys. 2017, 121, 205301. [Google Scholar] [CrossRef]
- Kang, H.; Woo, J. Cu-ion-actuated three-terminal neuromorphic synaptic devices based on binary metal-oxide electrolyte and channel. Appl. Phys. Lett. 2021, 119, 072103. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, W.; Wang, X.; Liang, R.; Wang, J.; Yu, B.; Ren, T.-L.; Xu, J. A Hybrid Phototransistor Neuromorphic Synapse. IEEE J. Electron Devices Soc. 2019, 7, 13–17. [Google Scholar] [CrossRef]
- Kim, S.H.; Cho, W.J. Lithography Processable Ta2O5 Barrier-Layered Chitosan Electric Double Layer Synaptic Transistors. Int. J. Mol. Sci. 2021, 22, 1344. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Zhu, L.Q.; Ai, L.; Lou, X.Q.; Cai, J.C.; Li, Z.Y.; Xiao, H. Aqueous solution processed mesoporous silica-gated photo-perception neuromorphic transistor. J. Mater. Sci. 2020, 56, 4316–4327. [Google Scholar] [CrossRef]
- Wan, X.; He, Y.; Nie, S.; Shi, Y.; Wan, Q. Biological Band-Pass Filtering Emulated by Oxide-Based Neuromorphic Transistors. IEEE Electron Device Lett. 2018, 39, 1764–1767. [Google Scholar] [CrossRef]
- Ding, Y.-X.; Huang, K.-W.; Chen, J.-W.; Hsu, H.-H.; Ying, L.-Y.; Zhang, B.-P.; Zheng, Z.-W. Oxide-based synaptic transistors gated by solid biopolymer electrolytes. J. Mater. Sci. 2023, 58, 11740–11747. [Google Scholar] [CrossRef]
- Wen, J.; Zhu, L.Q.; Fu, Y.M.; Xiao, H.; Guo, L.Q.; Wan, Q. Activity Dependent Synaptic Plasticity Mimicked on Indium–Tin–Oxide Electric-Double-Layer Transistor. ACS Appl. Mater. Interfaces 2017, 9, 37064–37069. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, L.Q.; Gao, W.T.; Fu, Y.M.; Xiao, H.; Tao, J.; Zhou, J.M. Chitosan-Based Polysaccharide-Gated Flexible Indium Tin Oxide Synaptic Transistor with Learning Abilities. ACS Appl. Mater. Interfaces 2018, 10, 16881–16886. [Google Scholar] [CrossRef]
- Liang, X.; Li, Z.; Liu, L.; Chen, S.; Wang, X.; Pei, Y. Artificial synaptic transistor with solution processed InOx channel and AlOx solid electrolyte gate. Appl. Phys. Lett. 2020, 116, 012102. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Li, Y.; Li, F.; Huang, F. Bienenstock-Cooper-Munro Learning Rule Realized in Polysaccharide-Gated Synaptic Transistors with Tunable Threshold. ACS Appl. Mater. Interfaces 2020, 12, 50061–50067. [Google Scholar] [CrossRef]
- Mallik, S.; Tsuruoka, T.; Tsuchiya, T.; Terabe, K. Effects of Mg Doping to a LiCoO2 Channel on the Synaptic Plasticity of Li Ion-Gated Transistors. ACS Appl. Mater. Interfaces 2023, 15, 47184–47195. [Google Scholar] [CrossRef]
- Balakrishna Pillai, P.; Kumar, A.; Song, X.; De Souza, M.M. Diffusion-Controlled Faradaic Charge Storage in High-Performance Solid Electrolyte-Gated Zinc Oxide Thin-Film Transistors. ACS Appl. Mater. Interfaces 2018, 10, 9782–9791. [Google Scholar] [CrossRef]
- Shi, Z.W.; Wang, W.S.; Ai, L.; Li, Y.; Chen, X.L.; Xiao, H.; Zeng, Y.H.; Zhu, L.Q. Non-associative learning behavior in mixed proton and electron conductor hybrid pseudo-diode. J. Mater. Sci. Technol. 2023, 160, 204–213. [Google Scholar] [CrossRef]
- Long, T.Y.; Zhu, L.Q.; Ren, Z.Y.; Guo, Y.B. Global modulatory heterosynaptic mechanisms in bio-polymer electrolyte gated oxide neuron transistors. J. Phys. D Appl. Phys. 2020, 53, 435105. [Google Scholar] [CrossRef]
- Gao, W.T.; Zhu, L.Q.; Tao, J.; Wan, D.Y.; Xiao, H.; Yu, F. Dendrite Integration Mimicked on Starch-Based Electrolyte-Gated Oxide Dendrite Transistors. ACS Appl. Mater. Interfaces 2018, 10, 40008–40013. [Google Scholar] [CrossRef]
- Li, Y.; Lu, J.; Shang, D.; Liu, Q.; Wu, S.; Wu, Z.; Zhang, X.; Yang, J.; Wang, Z.; Lv, H.; et al. Oxide-Based Electrolyte-Gated Transistors for Spatiotemporal Information Processing. Adv. Mater. 2020, 32, e2003018. [Google Scholar] [CrossRef]
- Lee, K.; Kwak, M.; Choi, W.; Lee, C.; Lee, J.; Noh, S.; Lee, J.; Lee, H.; Hwang, H. Improved synaptic functionalities of Li-based nano-ionic synaptic transistor with ultralow conductance enabled by Al2O3 barrier layer. Nanotechnology 2021, 32, 275201. [Google Scholar] [CrossRef]
- Cui, J.; An, F.; Qian, J.; Wu, Y.; Sloan, L.L.; Pidaparthy, S.; Zuo, J.-M.; Cao, Q. CMOS-compatible electrochemical synaptic transistor arrays for deep learning accelerators. Nat. Electron. 2023, 6, 292–300. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, T.; Zhao, C.; Liu, W.; Yang, L.; Liu, Y.; Sheng, D.; Xu, R.; Ge, Y.; Tu, X.; et al. Solid-State Electrolyte Gate Transistor with Ion Doping for Biosignal Classification of Neuromorphic Computing. Adv. Electron. Mater. 2022, 8, 2101260. [Google Scholar] [CrossRef]
- Lee, J.; Nikam, R.D.; Kwak, M.; Kwak, H.; Kim, S.; Hwang, H. Improvement of Synaptic Properties in Oxygen-Based Synaptic Transistors Due to the Accelerated Ion Migration in Sub-Stoichiometric Channels. Adv. Electron. Mater. 2021, 7, 2100219. [Google Scholar] [CrossRef]
- Wang, W.S.; Ren, Z.Y.; Shi, Z.W.; Xiao, H.; Zeng, Y.H.; Zhu, L.Q. Flexible Nanocellulose Gated Pseudo-Diode for Neuromorphic Electronic Applications. IEEE Electron Device Lett. 2022, 43, 737–740. [Google Scholar] [CrossRef]
- Nikam, R.D.; Kwak, M.; Hwang, H. All-Solid-State Oxygen Ion Electrochemical Random-Access Memory for Neuromorphic Computing. Adv. Electron. Mater. 2021, 7, 2100142. [Google Scholar] [CrossRef]
- Jeong, Y.; Lee, H.; Ryu, D.G.; Cho, S.H.; Lee, G.; Kim, S.; Kim, S.; Lee, Y.S. Elucidating Ionic Programming Dynamics of Metal-Oxide Electrochemical Memory for Neuromorphic Computing. Adv. Electron. Mater. 2021, 7, 2100185. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, H.; Cho, W.J. Light-Stimulated IGZO Transistors with Tunable Synaptic Plasticity Based on Casein Electrolyte Electric Double Layer for Neuromorphic Systems. Biomimetics 2023, 8, 532. [Google Scholar] [CrossRef]
- Lee, D.-H.; Park, H.; Cho, W.-J. Nanowire-Enhanced Fully Transparent and Flexible Indium Gallium Zinc Oxide Transistors with Chitosan Hydrogel Gate Dielectric: A Pathway to Improved Synaptic Properties. Gels 2023, 9, 931. [Google Scholar] [CrossRef]
- Liu, Q.; Yin, L.; Zhao, C.; Wang, J.; Wu, Z.; Lei, H.; Liu, Y.; Tian, B.; Zhang, Z.; Zhao, Z.; et al. Hybrid mixed-dimensional perovskite/metal-oxide heterojunction for all-in-one opto-electric artificial synapse and retinal-neuromorphic system. Nano Energy 2022, 102, 107686. [Google Scholar] [CrossRef]
- Wei, H.; Ni, Y.; Sun, L.; Yu, H.; Gong, J.; Du, Y.; Ma, M.; Han, H.; Xu, W. Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior. Nano Energy 2021, 81, 105648. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S.; He, Y.; Chen, C.; Jiang, S.; Yang, X.; Wang, X.; Pan, L.; Wan, Q. Oxide Synaptic Transistors Coupled with Triboelectric Nanogenerators for Bio-Inspired Tactile Sensing Application. IEEE Electron Device Lett. 2020, 41, 617–620. [Google Scholar] [CrossRef]
- Wan, C.; Chen, G.; Fu, Y.; Wang, M.; Matsuhisa, N.; Pan, S.; Pan, L.; Yang, H.; Wan, Q.; Zhu, L.; et al. An Artificial Sensory Neuron with Tactile Perceptual Learning. Adv. Mater. 2018, 30, 1801291. [Google Scholar] [CrossRef]
- Wan, C.; Cai, P.; Guo, X.; Wang, M.; Matsuhisa, N.; Yang, L.; Lv, Z.; Luo, Y.; Loh, X.J.; Chen, X. An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 2020, 11, 4602. [Google Scholar] [CrossRef]
- Liu, Q.; Yin, L.; Zhao, C.; Wu, Z.; Wang, J.; Yu, X.; Wang, Z.; Wei, W.; Liu, Y.; Mitrovic, I.Z.; et al. All-in-one metal-oxide heterojunction artificial synapses for visual sensory and neuromorphic computing systems. Nano Energy 2022, 97, 107171. [Google Scholar] [CrossRef]
- Yu, F.; Cai, J.C.; Zhu, L.Q.; Sheikhi, M.; Zeng, Y.H.; Guo, W.; Ren, Z.Y.; Xiao, H.; Ye, J.C.; Lin, C.H.; et al. Artificial Tactile Perceptual Neuron with Nociceptive and Pressure Decoding Abilities. ACS Appl. Mater. Interfaces 2020, 12, 26258–26266. [Google Scholar] [CrossRef]
- Huynh, H.Q.; Trung, T.Q.; Bag, A.; Do, T.D.; Sultan, M.J.; Kim, M.; Lee, N.E. Bio-Inspired Artificial Fast-Adaptive and Slow-Adaptive Mechanoreceptors with Synapse-like Functions. Adv. Funct. Mater. 2023, 33, 2303535. [Google Scholar] [CrossRef]
- McAllister, A.K.; Katz, L.C.; Lo, D.C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 1999, 22, 295–318. [Google Scholar] [CrossRef]
- Chang, Y.; Cong, H.; Zhou, R.; Zhang, W.; Qin, Y.; Liu, X.; Wang, F. Enhanced Artificial Synaptic Properties Enabled by Arrays of Electrolyte-Gated Electrospun InZnO Nanowires. ACS Appl. Electron. Mater. 2022, 4, 2570–2579. [Google Scholar] [CrossRef]
- Fu, Y.M.; Li, H.; Huang, L.; Wei, T.; Hidayati, F.; Song, A. Sputtered Electrolyte-Gated Transistor with Modulated Metaplasticity Behaviors. Adv. Electron. Mater. 2022, 8, 2200463. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, P.; Xing, R.; Yu, T.; Zhao, L.; Wei, L.; Wang, D.; Yan, S.; Tian, Y.; Bai, L.; et al. Flexible Mott Synaptic Transistor on Polyimide Substrate for Physical Neural Networks. Adv. Electron. Mater. 2022, 8, 2200078. [Google Scholar] [CrossRef]
- Yang, J.-T.; Ge, C.; Du, J.-Y.; Huang, H.-Y.; He, M.; Wang, C.; Lu, H.-B.; Yang, G.-Z.; Jin, K.-J. Artificial Synapses Emulated by an Electrolyte-Gated Tungsten-Oxide Transistor. Adv. Mater. 2018, 30, 1801548. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Yang, Y.; Chen, Q.; Zhang, J. Artificial Synapse Emulated through Fully Aqueous Solution-Processed Low-Voltage In2O3 Thin-Film Transistor with Gd2O3 Solid Electrolyte. ACS Appl. Mater. Interfaces 2020, 12, 980–988. [Google Scholar] [CrossRef]
- Guo, L.; Wen, J.; Ding, J.; Wan, C.; Cheng, G. Excitatory Post-Synaptic Potential Mimicked in Indium-Zinc-Oxide Synaptic Transistors Gated by Methyl Cellulose Solid Electrolyte. Sci. Rep. 2016, 6, 38578. [Google Scholar] [CrossRef]
- Min, S.Y.; Cho, W.J. CMOS-compatible synaptic transistor gated by chitosan electrolyte-Ta2O5 hybrid electric double layer. Sci. Rep. 2020, 10, 15561. [Google Scholar] [CrossRef]
- Fu, Y.M.; Wan, C.J.; Yu, F.; Xiao, H.; Tao, J.; Guo, Y.B.; Gao, W.T.; Zhu, L.Q. Electrolyte Gated Oxide Pseudodiode for Inhibitory Synapse Applications. Adv. Electron. Mater. 2018, 4, 1800371. [Google Scholar] [CrossRef]
- He, Y.; Sun, J.; Qian, C.; Kong, L.-A.; Gou, G.; Li, H. Oxide-based synaptic transistors gated by solution-processed gelatin electrolytes. Appl. Phys. A 2017, 123, 277. [Google Scholar] [CrossRef]
- Chen, J.; Li, E.; Yan, Y.; Yang, Q.; Cao, S.; Zhong, J.; Chen, H.; Guo, T. Flexible metal oxide synaptic transistors using biomass-based hydrogel as gate dielectric. J. Phys. D Appl. Phys. 2019, 52, 484002. [Google Scholar] [CrossRef]
- Fu, Y.M.; Li, H.; Wei, T.; Huang, L.; Hidayati, F.; Song, A. Sputtered Electrolyte-Gated Transistor with Temperature-Modulated Synaptic Plasticity Behaviors. ACS Appl. Electron. Mater. 2022, 4, 2933–2942. [Google Scholar] [CrossRef]
- Li, Y.; Yin, K.; Diao, Y.; Fang, M.; Yang, J.; Zhang, J.; Cao, H.; Liu, X.; Jiang, J. A biopolymer-gated ionotronic junctionless oxide transistor array for spatiotemporal pain-perception emulation in nociceptor network. Nanoscale 2022, 14, 2316–2326. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.; Lee, S.; Lee, J.; Choi, H.; Jung, B.; Baek, S.; Jang, J. Artificial Synapse Based on Oxygen Vacancy Migration in Ferroelectric-Like C-Axis-Aligned Crystalline InGaSnO Semiconductor Thin-Film Transistors for Highly Integrated Neuromorphic Electronics. Adv. Funct. Mater. 2022, 33, 2212367. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Zhu, L.Q.; Yu, F.; Xiao, H.; Xiong, W.; Ge, Z.Y. Synaptic metaplasticity of protonic/electronic coupled oxide neuromorphic transistor. Org. Electron. 2019, 74, 304–308. [Google Scholar] [CrossRef]
- Guo, L.Q.; Tao, J.; Zhu, L.Q.; Xiao, H.; Gao, W.T.; Yu, F.; Fu, Y.M. Starch-based biopolymer electrolyte gated oxide synaptic transistors. Org. Electron. 2018, 61, 312–317. [Google Scholar] [CrossRef]
- Qin, W.; Kang, B.H.; Kim, H.J. Flexible Artificial Synapses with a Biocompatible Maltose-Ascorbic Acid Electrolyte Gate for Neuromorphic Computing. ACS Appl. Mater. Interfaces 2021, 13, 34597–34604. [Google Scholar] [CrossRef]
- Guo, L.; Wen, J.; Cheng, G.; Yuan, N.; Ding, J. Synaptic behaviors mimicked in indium-zinc-oxide transistors gated by high-proton-conducting graphene oxide-based composite solid electrolytes. J. Mater. Chem. C 2016, 4, 9762–9770. [Google Scholar] [CrossRef]
- Kulkarni, M.R.; John, R.A.; Tiwari, N.; Nirmal, A.; Ng, S.E.; Nguyen, A.C.; Mathews, N. Field-Driven Athermal Activation of Amorphous Metal Oxide Semiconductors for Flexible Programmable Logic Circuits and Neuromorphic Electronics. Small 2019, 15, 1901457. [Google Scholar] [CrossRef]
- Park, M.-J.; Park, Y.; Lee, J.-S. Solution-Processed Multiterminal Artificial Synapses Based on Ion-Doped Solid Electrolytes. ACS Appl. Electron. Mater. 2020, 2, 339–345. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Chen, W.; Zhao, L.; Zhang, W.; Cheng, W.; Zhuo, Z.; Wang, J.; Ren, T.-L.; Xu, J. IGZO/Al2O3 based depressed synaptic transistor. Superlattices Microstruct. 2019, 128, 177–180. [Google Scholar] [CrossRef]
- Balakrishna Pillai, P.; De Souza, M.M. Nanoionics-Based Three-Terminal Synaptic Device Using Zinc Oxide. ACS Appl. Mater. Interfaces 2017, 9, 1609–1618. [Google Scholar] [CrossRef]
- Guo, L.Q.; Zhu, L.Q.; Ding, J.N.; Huang, Y.K. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors. AIP Adv. 2015, 5, 087112. [Google Scholar] [CrossRef]
- Lee, J.; Nikam, R.D.; Kwak, M.; Hwang, H. Strategies to Improve the Synaptic Characteristics of Oxygen-Based Electrochemical Random-Access Memory Based on Material Parameters Optimization. ACS Appl. Mater. Interfaces 2022, 14, 13450–13457. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, H.N.; Tsuruoka, T.; Mohanty, J.R.; Terabe, K. Proton-Gated Synaptic Transistors, Based on an Electron-Beam Patterned Nafion Electrolyte. ACS Appl. Mater. Interfaces 2023, 15, 19279–19289. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.M.; Wei, T.; Brownless, J.; Huang, L.; Song, A. Synaptic transistors with a memory time tunability over seven orders of magnitude. Appl. Phys. Lett. 2022, 120, 252903. [Google Scholar] [CrossRef]
- Wang, Q.N.; Zhao, C.; Liu, W.; Mitrovic, I.Z.; van Zalinge, H.; Liu, Y.N.; Zhao, C.Z. Synaptic transistors based on transparent oxide for neural image recognition. Solid-State Electron. 2022, 194, 108342. [Google Scholar] [CrossRef]
- López, A.; Tornos, J.; Peralta, A.; Barbero, I.; Fernandez-Canizares, F.; Sanchez-Santolino, G.; Varela, M.; Rivera, A.; Camarero, J.; León, C.; et al. Electrolyte Gated Synaptic Transistor based on an Ultra-Thin Film of La0.7Sr0.3MnO3. Adv. Electron. Mater. 2023, 9, 2300007. [Google Scholar] [CrossRef]
- Kim, W.-S.; Park, H.; Cho, W.-J. Biocompatible Casein Electrolyte-Based Electric-Double-Layer for Artificial Synaptic Transistors. Nanomaterials 2022, 12, 2596. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.Y.; Zhu, L.Q.; Guo, Y.B.; Long, T.Y.; Yu, F.; Xiao, H.; Lu, H.L. Threshold-Tunable, Spike-Rate-Dependent Plasticity Originating from Interfacial Proton Gating for Pattern Learning and Memory. ACS Appl. Mater. Interfaces 2020, 12, 7833–7839. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wen, J.; Guo, L.; Wan, X.; Du, P.; Feng, P.; Shi, Y.; Wan, Q. Long-Term Synaptic Plasticity Emulated in Modified Graphene Oxide Electrolyte Gated IZO-Based Thin-Film Transistors. ACS Appl. Mater. Interfaces 2016, 8, 30281–30286. [Google Scholar] [CrossRef] [PubMed]
- Buonomano, D.V. Decoding Temporal Information: A Model Based on Short-Term Synaptic Plasticity. J. Neurosci. 2000, 20, 1129–1141. [Google Scholar] [CrossRef] [PubMed]
- Zucker, R.S.; Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405. [Google Scholar] [CrossRef]
- Bliss, T.V.P.; Collingridge, G.L. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 1993, 361, 31–39. [Google Scholar] [CrossRef]
- Park, Y.; Kim, M.-K.; Lee, J.-S. Ion-gating synaptic transistors with long-term synaptic weight modulation. J. Mater. Chem. C 2021, 9, 5396–5402. [Google Scholar] [CrossRef]
- Oh, C.; Kim, I.; Park, J.; Park, Y.; Choi, M.; Son, J. Deep Proton Insertion Assisted by Oxygen Vacancies for Long-Term Memory in VO2 Synaptic Transistor. Adv. Electron. Mater. 2020, 7, 2000802. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Kim, E.-J.; Lee, W.-H.; Oh, J.-Y.; Yoon, S.-M. Short-term and long-term memory operations of synapse thin-film transistors using an In–Ga–Zn–O active channel and a poly(4-vinylphenol)–sodium β-alumina electrolytic gate insulator. RSC Adv. 2016, 6, 52913–52919. [Google Scholar] [CrossRef]
- Huang, J.; Chen, J.; Yu, R.; Zhou, Y.; Yang, Q.; Li, E.; Chen, Q.; Chen, H.; Guo, T. Tuning the synaptic behaviors of biocompatible synaptic transistor through ion-doping. Org. Electron. 2021, 89, 106019. [Google Scholar] [CrossRef]
- Guo, L.Q.; Li, Z.Y.; Zhu, L.Q.; Ren, Z.Y.; Xiao, H.; Cai, J.C. Albumen based protein gated bioinspired neuromorphic transistors with learning abilities. Org. Electron. 2020, 87, 105961. [Google Scholar] [CrossRef]
- Oh, C.; Jo, M.; Son, J. All-Solid-State Synaptic Transistors with High-Temperature Stability Using Proton Pump Gating of Strongly Correlated Materials. ACS Appl. Mater. Interfaces 2019, 11, 15733–15740. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Klyukin, K.; Lu, W.; Onen, M.; Ryu, S.; Kim, D.; Emond, N.; Waluyo, I.; Hunt, A.; Del Alamo, J.A.; et al. Protonic solid-state electrochemical synapse for physical neural networks. Nat. Commun. 2020, 11, 3134. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Ha, S.D.; Zhou, Y.; Schoofs, F.; Ramanathan, S. A correlated nickelate synaptic transistor. Nat. Commun. 2013, 4, 2676. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Kim, M.-K.; Lee, J.-S. Artificial synaptic transistors based on Schottky barrier height modulation using reduced graphene oxides. Carbon 2020, 165, 455–460. [Google Scholar] [CrossRef]
- Huang, H.Y.; Ge, C.; Zhang, Q.H.; Liu, C.X.; Du, J.Y.; Li, J.K.; Wang, C.; Gu, L.; Yang, G.Z.; Jin, K.J. Electrolyte-Gated Synaptic Transistor with Oxygen Ions. Adv. Funct. Mater. 2019, 29, 1902702. [Google Scholar] [CrossRef]
- Ge, C.; Liu, C.X.; Zhou, Q.L.; Zhang, Q.H.; Du, J.Y.; Li, J.K.; Wang, C.; Gu, L.; Yang, G.Z.; Jin, K.J. A Ferrite Synaptic Transistor with Topotactic Transformation. Adv. Mater. 2019, 31, 1900379. [Google Scholar] [CrossRef] [PubMed]
- Van de Walle, C.G. Hydrogen as a Cause of Doping in Zinc Oxide. Phys. Rev. Lett. 2000, 85, 1012–1015. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, D.M.; Hofstaetter, A.; Leiter, F.; Zhou, H.; Henecker, F.; Meyer, B.K.; Orlinskii, S.B.; Schmidt, J.; Baranov, P.G. Hydrogen: A Relevant Shallow Donor in Zinc Oxide. Phys. Rev. Lett. 2002, 88, 045504. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.S.P.; Raoux, S.; Kim, S.; Liang, J.; Reifenberg, J.P.; Rajendran, B.; Asheghi, M.; Goodson, K.E. Phase Change Memory. Proc. IEEE 2010, 98, 2201–2227. [Google Scholar] [CrossRef]
- Dan, Y.; Poo, M.-M. Spike Timing-Dependent Plasticity of Neural Circuits. Neuron 2004, 44, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Seifritz, E.; Esposito, F.; Hennel, F.; Mustovic, H.; Neuhoff, J.G.; Bilecen, D.; Tedeschi, G.; Scheffler, K.; Di Salle, F. Spatiotemporal Pattern of Neural Processing in the Human Auditory Cortex. Science 2002, 297, 1706–1708. [Google Scholar] [CrossRef]
- Buonomano, D.V.; Maass, W. State-dependent computations: Spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 2009, 10, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Johansson, R.S.; Birznieks, I. First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat. Neurosci. 2004, 7, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Yang, Y.; He, Y.; Feng, P.; Li, W.; Wan, Q. Neuromorphic Simulation of Proton Conductors Laterally Coupled Oxide-Based Transistors with Multiple in-Plane Gates. IEEE Electron Device Lett. 2017, 38, 525–528. [Google Scholar] [CrossRef]
- Guo, Y.B.; Zhu, L.Q.; Long, T.Y.; Wan, D.Y.; Ren, Z.Y. Bio-polysaccharide electrolyte gated photoelectric synergic coupled oxide neuromorphic transistor with Pavlovian activities. J. Mater. Chem. C 2020, 8, 2780–2789. [Google Scholar] [CrossRef]
- Wan, C.J.; Zhu, L.Q.; Wan, X.; Shi, Y.; Wan, Q. Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films. Appl. Phys. Lett. 2016, 108, 043508. [Google Scholar] [CrossRef]
- Branco, T.; Clark, B.A.; Häusser, M. Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons. Science 2010, 329, 1671–1675. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Chortos, A.; Xu, W.; Liu, Y.; Oh, J.Y.; Son, D.; Kang, J.; Foudeh, A.M.; Zhu, C.; Lee, Y.; et al. A bioinspired flexible organic artificial afferent nerve. Science 2018, 360, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, S.; Nagano, H.; Yamada, Y. Psychophysical dimensions of tactile perception of textures. IEEE Trans. Haptics 2013, 6, 81–93. [Google Scholar] [CrossRef]
- Fan, F.R.; Lin, L.; Zhu, G.; Wu, W.; Zhang, R.; Wang, Z.L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114. [Google Scholar] [CrossRef] [PubMed]
- Landolfa, M.A.; Barth, F.G. Vibrations in the orb web of the spider Nephila clavipes: Cues for discrimination and orientation. J. Comp. Physiol. A 1996, 179, 493–508. [Google Scholar] [CrossRef]
- Ohshiro, T.; Angelaki, D.E.; DeAngelis, G.C. A normalization model of multisensory integration. Nat. Neurosci. 2011, 14, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Attwell, D.; Laughlin, S.B. An Energy Budget for Signaling in the Grey Matter of the Brain. J. Cereb. Blood Flow Metab. 2001, 21, 1133–1145. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Zhu, Y.; Wan, Q. Oxide Ionic Neuro-Transistors for Bio-inspired Computing. Nanomaterials 2024, 14, 584. https://doi.org/10.3390/nano14070584
He Y, Zhu Y, Wan Q. Oxide Ionic Neuro-Transistors for Bio-inspired Computing. Nanomaterials. 2024; 14(7):584. https://doi.org/10.3390/nano14070584
Chicago/Turabian StyleHe, Yongli, Yixin Zhu, and Qing Wan. 2024. "Oxide Ionic Neuro-Transistors for Bio-inspired Computing" Nanomaterials 14, no. 7: 584. https://doi.org/10.3390/nano14070584