Charge-Ordering and Magnetic Transitions in Nanocrystalline Half-Doped Rare Earth Manganite Ho0.5Ca0.5MnO3
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Characterization
3.2. Magnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salamon, M.B.; Jaime, M. The Physics of Manganites: Structure and Transport. Rev. Mod. Phys. 2001, 73, 583–628. [Google Scholar] [CrossRef]
- Xia, W.; Pei, Z.; Leng, K.; Zhu, X. Research Progress in Rare Earth-Doped Perovskite Manganite Oxide Nanostructures. Nanoscale Res. Lett. 2020, 15, 9. [Google Scholar] [CrossRef]
- López, J.; De Lima, O.F.; Lisboa-Filho, P.N.; Araujo-Moreira, F.M. Specific Heat at Low Temperatures and Magnetic Measurements in Nd0.5Sr0.5MnO3 and R0.5Ca0.5MnO3 (R = Nd, Sm, Dy, and Ho) Samples. Phys. Rev. B 2002, 66, 214402. [Google Scholar] [CrossRef]
- Yoshii, K.; Abe, H.; Ikeda, N. Structure, Magnetism and Transport of the Perovskite Manganites Ln0.5Ca0.5MnO3 (Ln = Ho, Er, Tm, Yb and Lu). J. Solid State Chem. 2005, 178, 3615–3623. [Google Scholar] [CrossRef]
- Tomioka, Y.; Ito, T.; Sawa, A. Electronic Phase Diagram of Half-Doped Perovskite Manganites on the Plane of Quenched Disorder versus One-Electron Bandwidth. Phys. Rev. B 2018, 97, 014409. [Google Scholar] [CrossRef]
- Terai, T.; Sasaki, T.; Kakeshita, T.; Fukuda, T.; Saburi, T.; Kitagawa, H.; Kindo, K. Electronic and Magnetic Properties of Compounds Dy, Ho, Er, Ca). Phys. Rev. B Condens. Matter Mater. Phys. 2000, 61, 3488–3493. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Longo, M. Magnetic and Other Properties of Oxides and Related Compounds; Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology—New Series; Hellwege, K.-H., Hellwege, A.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1970; Volume 4a, ISBN 978-3-540-04898-5. [Google Scholar]
- Yakel Jnr, H.L.; Koehler, W.C.; Bertaut, E.F.; Forrat, E.F. On the Crystal Structure of the Manganese (III) Trioxides of the Heavy Lanthanides and Yttrium. Acta Cryst. 1963, 16, 957–962. [Google Scholar] [CrossRef]
- El Baggari, I.; Baek, D.J.; Zachman, M.J.; Lu, D.; Hikita, Y.; Hwang, H.Y.; Nowadnick, E.A.; Kourkoutis, L.F. Charge Order Textures Induced by Non-Linear Couplings in a Half-Doped Manganite. Nat. Commun. 2021, 12, 3747. [Google Scholar] [CrossRef] [PubMed]
- Goodenough, J.B. Electronic Structure of CMR Manganites (Invited). J. Appl. Phys. 1997, 81, 5330–5335. [Google Scholar] [CrossRef]
- Daoud-Aladine, A.; Rodríguez-Carvajal, J.; Pinsard-Gaudart, L.; Fernández-Díaz, M.T.; Revcolevschi, A. Zener Polaron Ordering in Half-Doped Manganites. Phys. Rev. Lett. 2002, 89, 097205. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, A.; Ferretti, M.; Castellano, C.; Cimberle, M.R.; Masini, R.; Ritter, C. Neutron Powder Diffraction Investigation on the Crystal and Magnetic Structure of (Ho0.50+xCa0.50−x)(Mn1−xCrx)O3. J. Phys. Condens. Matter 2011, 23, 416005. [Google Scholar] [CrossRef]
- Giri, S.K.; Yusuf, S.M.; Mukadam, M.D.; Nath, T.K. Enhanced Exchange Bias Effect in Size Modulated Sm0.5Ca0.5MnO3 Phase Separated Manganite. J. Appl. Phys. 2014, 115, 093906. [Google Scholar] [CrossRef]
- Shankar, U.; Singh, A.K. Origin of Suppression of Charge Ordering Transition in Nanocrystalline Ln0.5Ca0.5MnO3 (Ln = La, Nd, Pr) Ceramics. J. Phys. Chem. C 2015, 119, 28620–28630. [Google Scholar] [CrossRef]
- Liu, L.; Yuan, S.L.; Tian, Z.M.; Liu, X.; He, J.H.; Li, P.; Wang, C.H.; Zheng, X.F.; Yin, S.Y. Suppression of Charge Order and Exchange Bias Effect in Nd0.5Ca0.5MnO3. J. Phys. D Appl. Phys. 2009, 42, 045003. [Google Scholar] [CrossRef]
- Aliyu, H.D.; Alonso, J.M.; De La Presa, P.; Pottker, W.E.; Ita, B.; Garcia-Hernández, M.; Hernando, A. Surface Ferromagnetism in Pr0.5Ca0.5MnO3 Nanoparticles as a Consequence of Local Imbalance in Mn3+: Mn4+ Ratio. Chem. Mater. 2018, 30, 7138–7145. [Google Scholar] [CrossRef]
- Giri, S.K.; Poddar, A.; Nath, T.K. Surface Spin Glass and Exchange Bias Effect in Sm0.5Ca0.5MnO3 Manganites Nano Particles. AIP Adv. 2011, 1, 032110. [Google Scholar] [CrossRef]
- Zener, C. Interaction between the d-Shells in the Transition Metals II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Phys. Rev. 1951, 82, 403–405. [Google Scholar] [CrossRef]
- Anderson, P.W. Antiferromagnetism. Theory of Superexchange Interaction. Phys. Rev. 1950, 79, 350–356. [Google Scholar] [CrossRef]
- Pusceddu, E. Structure and Magnetic Properties in Half-Doped Manganites Ln0.5Ca0.5MnO3 (Ln = La, Pr, Nd,…, Lu). A Systematic Study by Neutron Scattering and Ab-Initio Calculations. Ph.D. Thesis, Doctoral School of Physics, Grenoble, France, 2011. [Google Scholar]
- Geddo Lehmann, A.; Muscas, G.; Ferretti, M.; Pusceddu, E.; Peddis, D.; Congiu, F. Structural and Magnetic Properties of Nanosized Half-Doped Rare-Earth Ho0.5Ca0.5MnO3 Manganite. Appl. Sci. 2022, 12, 695. [Google Scholar] [CrossRef]
- Muscas, G.; Anil Kumar, P.; Barucca, G.; Concas, G.; Varvaro, G.; Mathieu, R.; Peddis, D. Designing New Ferrite/Manganite Nanocomposites. Nanoscale 2016, 8, 2081–2089. [Google Scholar] [CrossRef]
- Lutterotti, L.; Matthies, S.; Wenk, H.-R. MAUD: A Friendly Java Program for Material Analysis Using Diffraction. IUCr Newsl. CPD 1999, 21, 14–15. [Google Scholar]
- Toby, B.H. R Factors in Rietveld Analysis: How Good Is Good Enough? Powder Diffr. 2006, 21, 67–70. [Google Scholar] [CrossRef]
- Ateia, E.E.; Mohamed, A.T.; Elshimy, H. The Impact of Antisite Disorder on the Physical Properties of La2FeB”O6 (B” = Fe, Ni and Co) Double Perovskites. Appl. Nanosci. 2020, 10, 1489–1499. [Google Scholar] [CrossRef]
- Matthies, S.; Merkel, S.; Wenk, H.R.; Hemley, R.J.; Mao, H. Effects of Texture on the Determination of Elasticity of Polycrystalline ϵ-Iron from Diffraction Measurements. Earth Planet. Sci. Lett. 2001, 194, 201–212. [Google Scholar] [CrossRef]
- Matthies, S.; Priesmeyer, H.G.; Daymond, M.R. On the Diffractive Determination of Single-Crystal Elastic Constants Using Polycrystalline Samples. J. Appl. Crystallogr. 2001, 34, 585–601. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Mathieu, R.; Jönsson, P.; Nam, D.N.H.; Nordblad, P. Memory and Superposition in a Spin Glass. Phys. Rev. B 2001, 63, 092401. [Google Scholar] [CrossRef]
- Martinelli, A.; Ferretti, M.; Castellano, C.; Cimberle, M.R.; Masini, R.; Peddis, D.; Ritter, C. Structural, Microstructural and Magnetic Properties of (La1−xCax)MnO3 Nanoparticles. J. Phys. Condens. Matter 2013, 25, 176003. [Google Scholar] [CrossRef]
- Blake, G.R.; Chapon, L.C.; Radaelli, P.G.; Park, S.; Hur, N.; Cheong, S.-W.; Rodríguez-Carvajal, J. Spin Structure and Magnetic Frustration in Multiferroic RMn2O5 (R = Tb, Ho, Dy). Phys. Rev. B 2005, 71, 214402. [Google Scholar] [CrossRef]
- Muscas, G.; Singh, G.; Glomm, W.R.; Mathieu, R.; Kumar, P.A.; Concas, G.; Agostinelli, E.; Peddis, D. Tuning the Size and Shape of Oxide Nanoparticles by Controlling Oxygen Content in the Reaction Environment: Morphological Analysis by Aspect Maps. Chem. Mater. 2015, 27, 1982–1990. [Google Scholar] [CrossRef]
- Nadig, P.R.; Murari, M.S.; Daivajna, M.D. Influence of Heat Sintering on the Physical Properties of Bulk La0.67Ca0.33MnO3 Perovskite Manganite: Role of Oxygen in Tuning the Magnetocaloric Response. Phys. Chem. Chem. Phys. 2024, 26, 5237–5252. [Google Scholar] [CrossRef] [PubMed]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Holt, Rinehart and Winston: Boston, MA, USA, 1976; ISBN 978-0-03-083993-1. [Google Scholar]
- Zhou, S.; Guo, Y.; Zhao, J.; He, L.; Wang, C.; Shi, L. Particle Size Effects on Charge and Spin Correlations in Nd0.5Ca0.5MnO3 Nanoparticles. J. Phys. Chem. C 2011, 115, 11500–11506. [Google Scholar] [CrossRef]
- Dhieb, S.; Krichene, A.; Fettar, F.; Chniba Boudjada, N.; Boujelben, W. Stability of Charge Ordering in La0.5−xHoxCa0.5MnO3 Polycrystalline Manganites. Appl. Phys. A 2021, 127, 700. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-0-521-01676-6. [Google Scholar]
- Sharma, M.K.; Basu, T.; Mukherjee, K.; Sampathkumaran, E.V. Enhancement of Magnetic Ordering Temperature and Magnetodielectric Coupling by Hole Doping in a Multiferroic DyFe0.5Cr0.5O3. J. Phys. Condens. Matter 2017, 29, 085801. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, R.; He, J.P.; Yu, X.Z.; Kaneko, Y.; Uchida, M.; Lee, Y.S.; Arima, T.; Asamitsu, A.; Tokura, Y. Coexistence of Long-Ranged Charge and Orbital Order and Spin-Glass State in Single-Layered Manganites with Weak Quenched Disorder. Europhys. Lett. 2007, 80, 37001. [Google Scholar] [CrossRef]
- Mydosh, J.A. Spin Glasses: An Experimental Introduction; CRC Press: London, UK, 2014; ISBN 978-0-429-08013-5. [Google Scholar]
- Dhieb, S.; Krichene, A.; Boudjada, N.C.; Boujelben, W. Structural and Magnetic Properties of Charge-Ordered La0.5-xHoxCa0.5MnO3 (0 ≤ x ≤ 0.15). J. Alloys Compd. 2020, 823, 153728. [Google Scholar] [CrossRef]
- Žurauskienė, N.; Balevičius, S.; Žurauskaitė, L.; Keršulis, S.; Stankevič, V.; Tolvaišienė, S. Nanostructured Manganite Films as Protectors Against Fast Electromagnetic Pulses. IEEE Trans. Plasma Sci. 2013, 41, 2890–2895. [Google Scholar] [CrossRef]
- Andrade, V.M.; Pedro, S.S.; Caraballo Vivas, R.J.; Rocco, D.L.; Reis, M.S.; Campos, A.P.C.; Coelho, A.A.; Escote, M.; Zenatti, A.; Rossi, A.L. Magnetocaloric Functional Properties of Sm0.6Sr0.4MnO3 Manganite Due to Advanced Nanostructured Morphology. Mater. Chem. Phys. 2016, 172, 20–25. [Google Scholar] [CrossRef]
- Perna, P.; Maccariello, D.; Ajejas, F.; Guerrero, R.; Méchin, L.; Flament, S.; Santamaria, J.; Miranda, R.; Camarero, J. Engineering Large Anisotropic Magnetoresistance in La0.7Sr0.3MnO3 Films at Room Temperature. Adv. Funct. Mater. 2017, 27, 1700664. [Google Scholar] [CrossRef]
- Mrinaleni, R.S.; Amaladass, E.P.; Amirthapandian, S.; Sathyanarayana, A.T.; Jegadeesan, P.; Ganesan, K.; Ghosh, C.; Sarguna, R.M.; Rao, P.N.; Gupta, P.; et al. Enhanced Temperature Coefficient of Resistance in Nanostructured Nd0.6Sr0.4MnO3 Thin Films. Thin Solid Film. 2023, 779, 139933. [Google Scholar] [CrossRef]
- Balevičius, S.; Žurauskienė, N.; Stankevič, V.; Herrmannsdörfer, T.; Zherlitsyn, S.; Skourski, Y.; Wolff-Fabris, F.; Wosnitza, J. CMR-B-Scalar Sensor Application for High Magnetic Field Measurement in Nondestructive Pulsed Magnets. IEEE Trans. Magn. 2013, 49, 5480–5484. [Google Scholar] [CrossRef]
- Balevičius, S.; Žurauskienė, N.; Stankevič, V.; Keršulis, S.; Plaušinaitienė, V.; Abrutis, A.; Zherlitsyn, S.; Herrmannsdörfer, T.; Wosnitza, J.; Wolff-Fabris, F. Nanostructured Thin Manganite Films in Megagauss Magnetic Field. Appl. Phys. Lett. 2012, 101, 092407. [Google Scholar] [CrossRef]
Sample | D (nm) | a (Å) | b (Å) | c (Å) | ε (degrees) | Rwp (%) | Rexp (%) | RB (%) | Gof |
---|---|---|---|---|---|---|---|---|---|
T650 | 39 (3) | 5.458 (1) | 7.470 (2) | 5.301 (1) | 0.0029 (2) | 10.58 | 6.70 | 8.46 | 1.52 |
T750 | 53 (2) | 5.459 (2) | 7.467 (2) | 5.298 (1) | 0.0038 (4) | 12.49 | 7.52 | 9.99 | 1.66 |
T900 | 86 (3) | 5.462 (1) | 7.460 (1) | 5.310 (1) | 0.0027 (1) | 12.69 | 8.19 | 10.03 | 1.55 |
T1000 | 106 (3) | 5.462 (1) | 7.460 (1) | 5.310 (1) | 0.0025 (1) | 12.71 | 8.26 | 10.06 | 1.54 |
T1100 | 135 (5) | 5.459 (1) | 7.454 (1) | 5.306 (1) | 0.0023 (1) | 11.08 | 7.40 | 8.66 | 1.50 |
Sample | TCO (K) | Tirr (K) | θHT (K) | θIT (K) | CMn IT/CMn HT |
---|---|---|---|---|---|
T650 | 292 (10) | 102 (5) | 10 (3) | −16 (2) | 1.50 (12) |
T750 | 270 (10) | 108 (5) | 15 (6) | −23 (1) | 1.49 (12) |
T900 | 278 (10) | 111 (5) | 21 (4) | −30 (3) | 1.59 (13) |
T1000 | 274 (10) | 115 (5) | 9 (3) | −39 (4) | 1.50 (12) |
T1100 | 293 (30) | 115 (5) | 2 (3) | −46 (5) | 1.53 (12) |
Sample | MR (A m2 kg−1) | µ0HC (mT) | M9T (A m2 kg−1) |
---|---|---|---|
T650 | 0.66 (3) | 22 (2) | 86.0 (1) |
T750 | 0.93 (3) | 36 (2) | 95.3 (1) |
T900 | 0.59 (1) | 22.3 (5) | 91.0 (1) |
T1000 | 0.33 (1) | 11.4 (2) | 85.6 (1) |
T1100 | 0.25 (2) | 9 (1) | 86.3 (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muscas, G.; Congiu, F.; Geddo Lehmann, A.; Concas, G. Charge-Ordering and Magnetic Transitions in Nanocrystalline Half-Doped Rare Earth Manganite Ho0.5Ca0.5MnO3. Nanomaterials 2025, 15, 203. https://doi.org/10.3390/nano15030203
Muscas G, Congiu F, Geddo Lehmann A, Concas G. Charge-Ordering and Magnetic Transitions in Nanocrystalline Half-Doped Rare Earth Manganite Ho0.5Ca0.5MnO3. Nanomaterials. 2025; 15(3):203. https://doi.org/10.3390/nano15030203
Chicago/Turabian StyleMuscas, Giuseppe, Francesco Congiu, Alessandra Geddo Lehmann, and Giorgio Concas. 2025. "Charge-Ordering and Magnetic Transitions in Nanocrystalline Half-Doped Rare Earth Manganite Ho0.5Ca0.5MnO3" Nanomaterials 15, no. 3: 203. https://doi.org/10.3390/nano15030203
APA StyleMuscas, G., Congiu, F., Geddo Lehmann, A., & Concas, G. (2025). Charge-Ordering and Magnetic Transitions in Nanocrystalline Half-Doped Rare Earth Manganite Ho0.5Ca0.5MnO3. Nanomaterials, 15(3), 203. https://doi.org/10.3390/nano15030203