Analyzing Structural Optical and Phonon Characteristics of Plasma-Assisted Molecular-Beam Epitaxy-Grown InN/Al2O3 Epifilms
Abstract
:1. Introduction
2. Structural Properties
2.1. Crystal Structure
2.2. PA-MBE Growth of InN/Sapphire
2.3. Scanning Electron Microscopy
3. High Charge Carrier Concentration in InN
3.1. Temperature-Dependent van der Pauw Measurements
3.2. Impact of N-Plasma Power on Optical Emission Spectra
3.3. Impact of N-Plasma Power on Charge Carrier Concentration
4. Experimental Characterization
4.1. HR-XRD Measurements
4.2. Optical and Absorption Characteristics of InN/Sapphire
4.2.1. Photoluminescence
4.2.2. Absorption
4.3. Raman Scattering
4.4. Infrared Reflectivity
5. Theoretical Analysis of Optical and Phonon Data
5.1. Analysis of Optical Results: Varshni Model
5.2. Analysis of Phonon Spectra in the FIR Region
5.3. LO Phonon Plasmon Coupled Modes
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hermann, C. Zur systematischen Strukturtheorie I. Eine neue Raumgruppensymbolik. Z. Kristallogr. 1928, 68, 257. [Google Scholar] [CrossRef]
- Hermann, C. Zur systematischen Strukturtheorie II. Ableitung der 230 aus ihren Kennvektoren. Z. Kristallogr. 1929, 69, 226. [Google Scholar] [CrossRef]
- Hermann, C. Zur systematischen Strukturtheorie III. Ketten- und Netzgruppen. Z. Kristallogr. 1929, 69, 250. [Google Scholar] [CrossRef]
- Mauguin, C. Sur le symbolisme des groupes de repetition ou de symetrie des assemblages cristallins. Z. Kristallogr. 1931, 76, 542. [Google Scholar] [CrossRef]
- Schoenflies, A. Krystallsysteme und Krystallstructur; Teubner: Leipzig, Germany, 1891; Reprint: Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Schoenflies, A. Theorie der Kristallstruktur; Borntraeger: Berlin, Germany, 1923. [Google Scholar]
- Brudnyi, V.N.; Kosobutsky, A.V.; Kolin, N.G. The charge neutrality level and the fermi level pinning in A3N (BN, AlN, GaN, InN) nitrides. Russ. Phys. J. 2008, 51, 1270. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Yi, X.; Liu, Z.; Wei, T.; Yan, J.; Bin, X. III-Nitrides Light Emitting Diodes: Technology and Applications; Springer Series in Materials Science; Springer: Berlin/Heidelberg, 2020; ISBN 978-981-15-7948-6. [Google Scholar] [CrossRef]
- Akasaki, I. Nobel lecture: Fascinated journeys into blue light. Rev. Mod. Phys. 2015, 87, 1119. [Google Scholar] [CrossRef]
- Amano, H. Nobel lecture: Growth of GaN on sapphire via low-temperature deposited buffer layer and realization of p-type GaN by Mg doping followed by low-energy electron beam irradiation. Rev. Mod. Phys. 2015, 87, 1133. [Google Scholar] [CrossRef]
- Nakamura, S. Nobel Lecture: Background story of the invention of efficient blue InGaN light emitting diodes. Rev. Mod. Phys. 2015, 87, 1139. [Google Scholar] [CrossRef]
- Morkoc, H. Handbook of Nitride Semiconductors and Devices, GaN Based Optical and Electronic Devices; WILEY-VCH: Weinheim, Germany, 2009; Volume 3. [Google Scholar]
- Beeler, M.; Trichas, E.; Monroy, E. III-nitride semiconductors for inter-sub band optoelectronics: A review. Semicond. Sci. Technol. 2013, 28, 074022. [Google Scholar] [CrossRef]
- Bernardini, F.; Fiorentini, V.; Vanderbilt, D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 1997, 56, 10024–10027. [Google Scholar] [CrossRef]
- Fujito, K.; Kubo, S.; Fujimura, I. Development of Bulk GaN Crystals and Nonpolar/Semipolar Substrates by HVPE. MRS Bull. 2009, 34, 313. [Google Scholar] [CrossRef]
- Gil, E.; André, Y.; Cadoret, R.; Trassoudaine, A. Hydride Vapor Phase Epitaxy for Current III–V and Nitride Semiconductor Compound Issues, Thin Films and Epitaxy. In Handbook of Crystal Growth; North-Holland: Amsterdam, The Netherlands, 2015; pp. 51–93. [Google Scholar] [CrossRef]
- Strak, P.; Kempisty, P.; Ptasinska, M.; Krukowski, S. Principal physical properties of GaN/AlN multi-quantum well (MQWs) systems determined by density functional theory (DFT) calculations. J. Appl. Phys. 2013, 113, 193706. [Google Scholar] [CrossRef]
- Doshi, B.; Brennan, K.F.; Bicknell-Tassius, R.; Grunthaner, F. The effect of strain-induced polarization fields on impact ionization in a multi-quantum-well structure. Appl. Phys. Lett. 1998, 73, 2784–2786. [Google Scholar] [CrossRef]
- Veal, T.D.; McConville, C.F.; Schaff, W.J. (Eds.) Indium Nitride and Related Alloys; CRC Press/Taylor Francis: Boca Raton, FL, USA, 2010. [Google Scholar]
- Tansley, T.L.; Foley, C.P. Optical band gap of indium nitride. J. Appl. Phys. 1986, 59, 3241. [Google Scholar] [CrossRef]
- Shen, W.Z.; Jiang, L.F.; Yang, H.F.; Meng, F.Y.; Ogawa, H.; Guo, Q. Bandtail characteristics in InN thin films. Appl. Phys. Lett. 2002, 80, 2063. [Google Scholar] [CrossRef]
- Lundin, W.; Talalaev, R. Epitaxial Systems for III-V and III-Nitride MOVPE; Irvine, S., Capper, P., Eds.; Wiley: Hoboken, NJ, USA, 2019; Chapter 12. [Google Scholar] [CrossRef]
- Miwa, H.; Gong, X.D.; Hashimoto, A.; Yamamoto, A. Nanoscale photoluminescence mapping for MOVPE InN films using scanning near-field optical microscopy (SNOM). Sci. Technol. Adv. Mater. 2006, 7, 282–285. [Google Scholar] [CrossRef]
- Detchprohm, T.; Ryou, J.-H.; Li, X.; Dupuis, R.D. Future Aspects of MOCVD Technology for Epitaxial Growth of Semiconductors; Irvine, S., Capper, P., Eds.; Wiley: Hoboken, NJ, USA, 2019; Chapter 14. [Google Scholar] [CrossRef]
- Charles, R.E., Jr.; Nepal, N.; Hite, J.K.; Mastro, M.A. Perspectives on future directions in III-N semiconductor research. J. Vac. Sci. Technol. A 2013, 31, 058501. [Google Scholar] [CrossRef]
- Ambacher, O. Growth and applications of Group III-nitrides. J. Phys. D Appl. Phys. 1998, 31, 2653. [Google Scholar] [CrossRef]
- Vashishtha, P.; Jain, S.K.; Prajapat, P.; Verma, A.K.; Aggarwal, N.; Murdoch, B.J.; Walia, S.; Gupta, G. A Self-Driven Bidirectional Photocurrent Photodetector for Optically Controlled Logic Gates Utilizes a GaN-Nanowall Network. ACS Appl. Opt. Mater. 2024, 2, 1353–1359. [Google Scholar] [CrossRef]
- Moustakas, T.D. Growth of III–V Nitrides by Molecular Beam Epitaxy. In Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 1999; Volume 57, Chapter 2; pp. 33–128. [Google Scholar]
- Wang, X.Q.; Yoshikawa, A. Molecular beam epitaxy growth of GaN, AlN and InN. Prog. Cryst. Growth Charact. Mater. 2004, 48–49, 42–103. [Google Scholar] [CrossRef]
- Goswami, L.; Pandeya, R.; Gupta, G. Epitaxial growth of GaN nanostructure by PA-MBE for UV detection application. Appl. Surf. Sci. 2018, 449, 186–192. [Google Scholar] [CrossRef]
- Chung, Y.; Peng, X.; Liao, Y.; Yao, S.; Chen, L.; Chen, K.; Feng, Z. Raman scattering and Rutherford backscattering studies on InN films grown by plasma-assisted molecular beam epitaxy. Thin Solid Films 2011, 519, 6778. [Google Scholar] [CrossRef]
- Feng, Z.C.; Xie, D.; Nafisa, M.T.; Lin, H.-H.; Lu, W.; Chen, J.-M.; Yiin, J.; Chen, K.-H.; Chen, L.-C.; Klein, B.; et al. optical, surface, and structural studies of InN thin films grown on sapphire by molecular beam epitaxy. J. Vac. Sci. Technol. 2023, A 41, 053401. [Google Scholar] [CrossRef]
- Anjum, F.; Ahmad, R.; Afzal, N.; Murtaza, G. Characterization of InN films prepared using magnetron sputtering at variable power. Mater. Lett. 2018, 219, 23–28. [Google Scholar] [CrossRef]
- Biju, K.P.; Subrahmanyam, A.; Jain, M.K. Growth of InN thin films by modified activated reactive evaporation. J. Phys. D Appl. Phys. 2008, 41, 155409. [Google Scholar] [CrossRef]
- Alevli, M.; Ozgit, C.; Donmez, I.; Biyikli, N. The influence of N2/H2 and ammonia N source materials on optical and structural properties of AlN films grown by plasma enhanced atomic layer deposition. J. Cryst. Growth 2011, 335, 51. [Google Scholar] [CrossRef]
- Ahmad, Z.; Cross, G.B.; Vernon, M.; Gebregiorgis, D.; Deocampo, D.; Kozhanov, A. Influence of plasma-activated nitrogen species on PA-MOCVD of InN. Appl. Phys. Lett. 2019, 115, 223101. [Google Scholar] [CrossRef]
- Kuo, S.; Kei, C.C.; Hsiao, C.; Chao, C.K.; Lai, F.; Kuo, H.; Hsieh, W.; Wang, S.-C. Catalyst-Free GaN Nanorods Grown by Metalorganic Molecular Beam Epitaxy. IEEE Trans. Nanotechnol. 2006, 5, 273. [Google Scholar] [CrossRef]
- Yim, J.W.L.; Wu, J. Optical Properties of InN and Related Alloys. In Indium Nitride and Related Alloys; Veal, T.D., McConville, C.F., Schaf, W.J., Eds.; On. abc 1; CRC Press: Boca Raton, FL, USA, 2009; Chapter 7; pp. 243–272. [Google Scholar] [CrossRef]
- Schley, P.; Goldhahn, R.; Napierala, C.; Gobsch, G.; Schoermann, J.; As, D.J.; Lischka, K.; Feneberg, M.; Thonke, K. Dielectric function of cubic InN from the mid-infrared to the visible spectral range. Semicond. Sci. Technol. 2008, 23, 055001. [Google Scholar] [CrossRef]
- Talwar, D.N.; Liao, Y.C.; Chen, L.C.; Chen, K.H.; Feng, Z.C. Optical properties of plasma-assisted molecular beam epitaxy grown InN/sapphire. Opt. Mater. 2014, 37, 1–4. [Google Scholar] [CrossRef]
- Wagner, J.-M.; Bechstedt, F. Properties of strained wurtzite GaN and AlN:Ab initio studies. Phys. Rev. B 2002, 66, 115202. [Google Scholar] [CrossRef]
- Persson, C. da Silva, A.F.; Ahuja, R.; Johansson, B. First-principles calculations of the dielectric function of zinc-blende and wurtzite InN. J. Phys. Condens. Matter 2001, 13, 8945–8950. [Google Scholar] [CrossRef]
- Goldhahn, R.; Schley, P.; Röppischer, M. Ellipsometry of InN and Related Alloys in Indium Nitride and Related Alloys; Veal, T.D., McConville, C.F., Schaf, W.J., Eds.; CRC Press: Boca Raton, FL, USA, 2009; Chapter 9; pp. 315–376. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R. Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 2003, 94, 3675–3696. [Google Scholar] [CrossRef]
- Salviati, G.; Rossi, F.; Armani, N.; Grillo, V.; Lazzarini, L. Power-dependent cathodoluminescence in III–nitrides heterostructures: From internal field screening to controlled band-gap modulation. In Characterization of Semiconductor Heterostructures and Nanostructures; Lamberti, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; Chapter 7; pp. 209–248. [Google Scholar]
- Romanitan, C.; Mihalache, I.; Tutunaru, O.; Pachiu, C. Effect of the lattice mismatch on threading dislocations in heteroepitaxial GaN layers revealed by X-ray diffraction. J. Alloys Compd. 2021, 858, 157723. [Google Scholar] [CrossRef]
- Petalas, J.; Logothetidis, S.; Boultadakis, S.; Alouani, M.; Wills, J.M. Optical and electronic-structure study of cubic and hexagonal GaN thin films. Phys. Rev. B 1995, 52, 8082–8091. [Google Scholar] [CrossRef]
- Kawashima, T.; Yoshikawa, H.; Adachi, S.; Fuke, S.; Ohtsuka, K. Optical properties of hexagonal GaN. J. Appl. Phys. 1997, 82, 3528–3535. [Google Scholar] [CrossRef]
- Takeuchi, K.; Adachi, S.; Ohtsuka, K. Optical properties of AlxGa1−xN alloy. J. Appl. Phys. 2010, 107, 023306–023311. [Google Scholar] [CrossRef]
- Zhao, G.; Xu, X.; Li, H.; Wei, H.; Han, D.; Ji, Z.; Meng, Y.; Wang, L.; Yang, S. The immiscibility of InAlN ternary alloy. Sci. Rep. 2016, 6, 26600. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, C.; Song, K.; Yu, H.; Xing, C.; Wang, D.; Liu, Z.; Sun, H. Compositionally graded III-nitride alloys: Building blocks for efficient ultraviolet optoelectronics and power electronics. Rep. Prog. Phys. 2021, 84, 044401. [Google Scholar] [CrossRef] [PubMed]
- Ueda, D. Properties and advantages of gallium nitride. In Power GaN Devices; Meneghini, M., Meneghesso, G., Zanoni, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Chapter 1. [Google Scholar]
- Bader, S.; Shinohara, K.; Molnar, A. Linearity aspects of high-power amplification in GaN transistors. In High-Frequency GaN Electronic Devices; Fay, P., Jena, D., Maki, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Chapter 4. [Google Scholar]
- Jones, E.A.; Wang, F.F.; Costinett, D. Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 707–719. [Google Scholar] [CrossRef]
- Liang, Y.-H.; Towe, E. Progress in efficient doping of high aluminum-containing group III-nitrides. Appl. Phys. Rev. 2018, 5, 011107. [Google Scholar] [CrossRef]
- Dmitriev, V.G.; Gurzadyan, G.G.; Nikogosyan, D.N. Handbook of Nonlinear Optical Crystals; Springer Series in Optical Sciences; Schawlow, A.L., Shimoda, K., Siegman, A.E., Tamir, T., Eds.; Springer: New York, NY, USA, 1996; Volume 64, ISBN 3-540-61275-0. [Google Scholar]
- Harima, H. Properties of GaN and related compounds studied by means of Raman scattering. J. Phys. Condens. Matter 2002, 14 R, 967. [Google Scholar] [CrossRef]
- Kwon, H.-J.; Lee, Y.-H.; Miki, O.; Yamano, H.; Yoshida, A. Raman spectra of indium nitride thin films grown by microwave-excited metalorganic vapor phase epitaxy on (0001) sapphire substrates. Appl. Phys. Lett. 1996, 69, 937–939. [Google Scholar] [CrossRef]
- Adachi, S. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI, Semiconductors; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Lee, M.-C.; Lin, H.-C.; Pan, Y.-C.; Shu, C.-K.; Ou, J.; Chen, W.-H.; Chen, W.-K. Raman and x-ray studies of InN films grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 1998, 73, 2606–2608. [Google Scholar] [CrossRef]
- Inushima, T.; Shiraishi, T.; Davydov, V.Y. Phonon structure of InN grown by atomic layer epitaxy. Solid State Commun. 1999, 110, 491–495. [Google Scholar] [CrossRef]
- Davydov, V.Y.; Emtsev, V.V.; Goncharuk, I.N.; Smirnov, A.N.; Petrikov, V.D.; Mamutin, V.V.; Vekshin, V.A.; Ivanov, S.V.; Smirnov, M.B.; Inushima, T. Experimental and theoretical studies of phonons in hexagonal InN. Appl. Phys. Lett. 1999, 75, 3297–3299. [Google Scholar] [CrossRef]
- Davydov, V.Y.; Klochikhin, A.A. Electronic and Vibrational States in InN and InxGa1−xN Solid Solutions. Semiconductors 2004, 38, 861–898. [Google Scholar] [CrossRef]
- Kasic, A.; Schubert, M.; Saito, Y.; Nanishi, Y.; Wagner, G. Effective electron mass and phonon modes in n-type hexagonal InN. Phys. Rev. B 2002, 65, 115206. [Google Scholar] [CrossRef]
- Dyck, J.S.; Kim, K.; Limpijumnong, S.; Lambrecht, W.R.L.; Kash, K.; Angus, J.C. Identification of Raman-active phonon modes in oriented platelets of InN and polycrystalline InN. Solid State Commun. 2000, 114, 355–360. [Google Scholar] [CrossRef]
- Kaczmarczyk, G.; Kaschner, A.; Reich, S.; Hoffmann, A.; Thomsen, C.; As, D.J.; Lima, A.P.; Schikora, D.; Lischka, K.; Averbeck, R.; et al. Lattice dynamics of hexagonal and cubic InN: Raman scattering experiments and calculations. Appl. Phys. Lett. 2000, 76, 2122–2124. [Google Scholar] [CrossRef]
- Bungaro, C.; Rapcewicz, K.; Bernholc, J. Ab initio phonon dispersions of wurtzite AlN, GaN, and InN. Phys. Rev. B 2000, 61, 6720. [Google Scholar] [CrossRef]
- Talwar, D.N.; Yang, T.R.; Feng, Z.C.; Becla, P. Infrared reflectance and transmission spectra in II–VI alloys and superlattices. Phys. Rev. B 2011, 84, 174203. [Google Scholar] [CrossRef]
- Dong, L.; Sun, G.; Zheng, L.; Liu, X.; Zhang, F.; Yan, G.; Zhao, W.; Wang, L.; Li, X.; Wang, Z. Infrared reflectance study of 3C-SiC epilayers grown on silicon substrates. J. Phys. D Appl. Phys. 2012, 45, 245102. [Google Scholar] [CrossRef]
- Pascual, J.; Ben el Mekki, M.; Arnaud, G.; Camassel, J. Roughness Effects in the Infrared Reflectance of Thick 3C-SiC Films on Si Substrates; SPIE: Bellingham, WA, USA, 1995; Volume 2648, p. 12. [Google Scholar]
- Heavens, O.S. Optical Properties of Thin Solid Films; Butterworths Scientific Publications: London, UK, 1955. [Google Scholar]
- Piro, O.E. Optical properties, reflectance, and transmittance of anisotropic absorbing crystal plates. Phys. Rev. B 1987, 36, 3427. [Google Scholar] [CrossRef]
- Talwar, D.N.; Feng, Z.C. Understanding spectroscopic phonon-assisted defect features in CVD grown 3C-SiC/Si (100) by modeling and simulation. Comput. Mater. Sci. 2004, 30, 419. [Google Scholar] [CrossRef]
- Cadman, T.W.; Sadowski, D. Generalized equations for the calculation of absorptance, reflectance, and transmittance of a number of parallel surfaces. Appl. Opt. 1978, 17, 531. [Google Scholar] [CrossRef] [PubMed]
- Subashiev, A.V.; Semyonov, O.; Chen, Z.; Luryi, S. Urbach tail studies by luminescence filtering in moderately doped bulk InP. Appl. Phys. Lett. 2010, 97, 181914. [Google Scholar] [CrossRef]
- Boubaker, K. A physical explanation to the controversial Urbach tailing universality. Eur. Phys. J. Plus 2011, 126, 10. [Google Scholar] [CrossRef]
- Varshni, Y.P. Temperature dependence of the energy gap in semiconductors. Physica 1967, 34, 149–154. [Google Scholar] [CrossRef]
IR (a) | Hall | |||||||
---|---|---|---|---|---|---|---|---|
Samples Name | Substrate Temp. (°C) | In Temp. (°C) | Growth Pressure (Torr) | Thickness d (nm) | Carrier Conc. (×1019 cm−3) | Mobility (cm2/Vs) | Carrier Conc. (×1019 cm−3) | Mobility (cm2/Vs) |
CD2 | 360 | 840 | 7 × 10−5 | 182.65 | 1.80 | 363.02 | 2.08 | 961.0 |
CD7 | 360 | 846 | 3 × 10−5 | 347.12 | 2.30 | 556.92 | 2.49 | 751.4 |
CD8 | 340 | 836 | 5 × 10−5 | 366.93 | 2.45 | 550.34 | 3.29 | 809.3 |
CD9 | 360 | 846 | 3 × 10−5 | 232.57 | 3.09 | 491.39 | - | - |
CD10 | 360 | 840 | 3 × 10−5 | 195.31 | 1.16 | 427.33 | - | - |
CD14 | 360 | 840 | 3 × 10−5 | 362.37 | 1.58 | 644.93 | 1.74 | 692.2 |
CD15 | 360 | 846 | 3 × 10−5 | 355.08 | 2.24 | 443.59 | - | - |
CD16 | 360 | 825 | 3 × 10−5 | 728.02 | 4.98 | 877.78 | - | - |
CC21 | 360 | 825 | 5 × 10−5 | 272.92 | 5.68 | 550.24 | 9.49 | 451.2 |
CC28 | 440 | 840 | 5 × 10−5 | 514.17 | 3.36 | 620.89 | 5.13 | 464.0 |
CC30 | 360 | 840 | 5 × 10−5 | 418.80 | 1.91 | 942.11 | - | - |
CC40 | 360 | 836 | 5 × 10−5 | 351.01 | 2.77 | 852.52 | 3.32 | 788.8 |
Sample #1 (a) | Sample #2 (a) | Sample #3 (a) | Sample #4 (a) | Experimental (b) | Lattice Dynamical (c) | |
---|---|---|---|---|---|---|
Mode | η = 1.3 × 1019 | η = 5.2 × 1019 | η = 7.2 × 1019 | η = 1.1 × 1020 | ||
(LO) | 590 | 590 | 590 | 590 | 580, 586, 588, 590, 596 | 586, 587, 589 |
540 | 540 | 550 | 550 | 540, 565 | 530, 566, 568, 570 | |
491 | 491 | 491 | 491 | 488, 490, 491, 495 | 483, 485, 492 | |
(TO) | 475 | 477 | 477 | 477 | 472, 475, 476, 477 | 457,467, 470, 472 |
440 | 445 | 447 | 447 |
Samples | (cm−1) | (cm−1) | (cm−1) | (cm−1) | (cm−1) |
---|---|---|---|---|---|
CD2 | 4.72 | 478.35 | 4.48 | 1385.37 | 256.67 |
CD7 | 4.91 | 478.70 | 4.53 | 1564.27 | 167.31 |
CD8 | 3.68 | 477.17 | 5.34 | 1615.79 | 169.30 |
CD9 | 6.18 | 479.21 | 5.15 | 1814.30 | 189.62 |
CD10 | 4.63 | 474.77 | 5.55 | 1108.99 | 218.04 |
CD14 | 2.65 | 473.91 | 6.36 | 1296.51 | 144.47 |
CD15 | 3.78 | 477.68 | 3.59 | 1543.39 | 210.05 |
CD16 | 5.63 | 475.68 | 5.08 | 2302.70 | 106.15 |
CC21 | 5.47 | 478.01 | 5.84 | 2457.15 | 169.34 |
CC28 | 4.87 | 477.65 | 5.56 | 1890.96 | 150.07 |
CC30 | 3.34 | 475.54 | 7.15 | 1425.87 | 98.90 |
CC40 | 5.11 | 478.33 | 5.09 | 1715.75 | 109.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talwar, D.N.; Chen, L.C.; Chen, K.H.; Feng, Z.C. Analyzing Structural Optical and Phonon Characteristics of Plasma-Assisted Molecular-Beam Epitaxy-Grown InN/Al2O3 Epifilms. Nanomaterials 2025, 15, 291. https://doi.org/10.3390/nano15040291
Talwar DN, Chen LC, Chen KH, Feng ZC. Analyzing Structural Optical and Phonon Characteristics of Plasma-Assisted Molecular-Beam Epitaxy-Grown InN/Al2O3 Epifilms. Nanomaterials. 2025; 15(4):291. https://doi.org/10.3390/nano15040291
Chicago/Turabian StyleTalwar, Devki N., Li Chyong Chen, Kuei Hsien Chen, and Zhe Chuan Feng. 2025. "Analyzing Structural Optical and Phonon Characteristics of Plasma-Assisted Molecular-Beam Epitaxy-Grown InN/Al2O3 Epifilms" Nanomaterials 15, no. 4: 291. https://doi.org/10.3390/nano15040291
APA StyleTalwar, D. N., Chen, L. C., Chen, K. H., & Feng, Z. C. (2025). Analyzing Structural Optical and Phonon Characteristics of Plasma-Assisted Molecular-Beam Epitaxy-Grown InN/Al2O3 Epifilms. Nanomaterials, 15(4), 291. https://doi.org/10.3390/nano15040291