Shear Bond Strength of Repaired CAD/CAM Resin-Based Composite Materials Submitted to Er:YAG Laser Treatments at Different Powers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Ageing Procedures
2.3. SBS Test
2.4. Failure Mode Analysis
2.5. Statistical Analysis
2.6. Surface Topography Analysis
3. Results
3.1. SBS Analysis
3.2. Failure Mode Analysis
3.3. Surface Topography Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mainjot, A.; Dupont, N.; Oudkerk, J.; Dewael, T.; Sadoun, M. From Artisanal to CAD-CAM Blocks: State of the Art of Indirect Composites. J. Dent. Res. 2016, 95, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Alamoush, R.A.; Silikas, N.; Salim, N.A.; Al-Nasrawi, S.; Satterthwaite, J.D. Effect of the Composition of CAD/CAM Composite Blocks on Mechanical Properties. BioMed Res. Int. 2018, 2018, 4893143. [Google Scholar] [CrossRef] [PubMed]
- Awada, A.; Nathanson, D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J. Prosthet. Dent. 2015, 114, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Yano, H.T.; Ikeda, H.; Nagamatsu, Y.; Masaki, C.; Hosokawa, R.; Shimizu, H. Correlation between microstructure of CAD/CAM composites and the silanization effect on adhesive bonding. J. Mech. Behav. Biomed. Mater. 2020, 101, 103441. [Google Scholar] [CrossRef]
- Erdemir, U.; Sancakli, H.S.; Sancakli, E.; Eren, M.M.; Ozel, S.; Yucel, T.; Yildiz, E. Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material. J. Adv. Prosthodont. 2014, 6, 434–443. [Google Scholar] [CrossRef]
- Elderton, R.J. Clinical studies concerning re-restoration of teeth. Adv. Dent. Res. 1990, 4, 4–9. [Google Scholar] [CrossRef]
- Fabianelli, A.; Pollington, S.; Papacchini, F.; Goracci, C.; Cantoro, A.; Ferrari, M.; van Noort, R. The effect of different surface treatments on bond strength between leucite reinforced feldspathic ceramic and composite resin. J. Dent. 2010, 38, 39–43. [Google Scholar] [CrossRef]
- Mjör, I.A.; Gordan, V.V. Failure, repair, refurbishing and longevity of restorations. Oper. Dent. 2002, 27, 528–534. [Google Scholar]
- Güngör, M.B.; Nemli, S.K.; Bal, B.T.; Ünver, S.; Doğan, A. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials. J. Adv. Prosthodont. 2016, 8, 259–266. [Google Scholar] [CrossRef]
- Duzyol, M.; Sagsoz, O.; Sagsoz, N.P.; Akgul, N.; Yildiz, M. The Effect of Surface Treatments on the Bond Strength Between CAD/CAM Blocks and Composite Resin. J. Prosthodont. 2016, 25, 466–471. [Google Scholar] [CrossRef]
- Elraggal, A.; Silikas, N. Effect of Air-Abraded Versus Laser-Fused Fluorapatite Glass-Ceramics on Shear Bond Strength of Repair Materials to Zirconia. Materials 2021, 14, 1468. [Google Scholar] [CrossRef]
- Demirtag, Z.; Culhaoglu, A. Surface Roughness of Ceramic-Resin Composites After Femtosecond Laser Irradiation, Sandblasting or Acid Etching and Their Bond Strength with and without Silanization to a Resin Cement. Oper. Dent. 2019, 44, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Gökçe, B.; Ozpinar, B.; Dündar, M.; Cömlekoglu, E.; Sen, B.H.; Güngör, M.A. Bond strengths of all-ceramics: Acid vs. laser etching. Oper. Dent. 2007, 32, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Bader, C.; Krejci, I. Indications and limitations of Er:YAG laser applications in dentistry. Am. J. Dent. 2006, 19, 178–186. [Google Scholar] [PubMed]
- Bayraktar, Y.; Demirtağ, Z.; Çelik, Ç. Effect of Er:YAG laser pulse duration on repair bond strength of resin-based and hybrid CAD/CAM restorative materials. J. Adhes. Sci. Technol. 2022, 36, 606–619. [Google Scholar] [CrossRef]
- Piva, A.D.; Moura, D.M.D.; Piva, A.M.D.; Januário, A.B.D.N.; Verissímo, A.H.; Bottino, M.A.; Özcan, M.; Souza, R.O.A. Repair Bond Strength of a CAD/CAM Nanoceramic Resin and Direct Composite Resin: Effect of Aging and Surface Conditioning Methods. J. Adhes. Dent. 2020, 22, 275–283. [Google Scholar] [CrossRef]
- Sismanoglu, S.; Yildirim-Bilmez, Z.; Erten-Taysi, A.; Ercal, P. Influence of different surface treatments and universal adhesives on the repair of CAD-CAM composite resins: An in vitro study. J. Prosthet. Dent. 2020, 124, 238.e1–238.e9. [Google Scholar] [CrossRef]
- Dinç Ata, G.; Yılmaz, B.; Irmak, Ö. Laser type effects on repair bond strength of ormocers and nanoceramic based composites. J. Adhes. Sci. Technol. 2018, 32, 2204–2219. [Google Scholar] [CrossRef]
- Sabatini, C. Effect of a chlorhexidine-containing adhesive on dentin bond strength stability. Oper. Dent. 2013, 38, 609–617. [Google Scholar] [CrossRef]
- Quinn, G.; Giuseppetti, A.; Hoffman, K. Chipping fracture resistance of dental CAD/CAM restorative materials: Part I-procedures and results. Dent. Mater. 2014, 30, e99–e111. [Google Scholar] [CrossRef]
- Kilinc, H.; Sanal, F.A.; Turgut, S. Shear bond strengths of aged and non-aged CAD/CAM materials after different surface treatments. J. Adv. Prosthodont. 2020, 12, 273–282. [Google Scholar] [CrossRef] [PubMed]
- D’Amario, M.; Campidoglio, M.; Morresi, A.L.; Luciani, L.; Marchetti, E.; Baldi, M. Effect of thermocycling on the bond strength between dual-cured resin cements and zirconium-oxide ceramics. J. Oral Sci. 2010, 52, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Morresi, A.L.; D’Amario, M.; Capogreco, M.; Gatto, R.; Marzo, G.; D’Arcangelo, C.; Monaco, A. Thermal cycling for restorative materials: Does a standardized protocol exist in laboratory testing? A literature review. J. Mech. Behav. Biomed. Mater. 2014, 29, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Blatz, M.B.; Sadan, A.; Kern, M. Resin-ceramic bonding: A review of the literature. J. Prosthet. Dent. 2003, 89, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Isolan, C.P.; Valente, L.L.; A Münchow, E.; Basso, G.R.; Pimentel, A.H.; Schwantz, J.K.; Da Silva, A.V.; Moraes, R.R. Bond strength of a universal bonding agent and other contemporary dental adhesives applied on enamel, dentin, composite, and porcelain. Appl. Adhes. Sci. 2014, 2, 25. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Krawczuk, A.; Ilie, N. Tensile bond strength of resin composite repair in vitro using different surface preparation conditionings to an aged CAD/CAM resin nanoceramic. Clin. Oral Investig. 2015, 19, 299–308. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Sonoda, A.; Maruo, Y.; Makita, Y.; Okihara, T.; Irie, M.; Yoshida, Y.; Van Meerbeek, B. Effectiveness and stability of silane coupling agent incorporated in ‘universal’ adhesives. Dent. Mater. 2016, 32, 1218–1225. [Google Scholar] [CrossRef]
- Arpa, C.; Ceballos, L.; Fuentes, M.V.; Perdigão, J. Repair bond strength and nanoleakage of artificially aged CAD-CAM composite resin. J. Prosthet. Dent. 2019, 121, 523–530. [Google Scholar] [CrossRef]
- Güler, A.U.; Yilmaz, F.; Yenisey, M.; Güler, E.; Ural, C. Effect of acid etching time and a self-etching adhesive on the shear bond strength of composite resin to porcelain. J. Adhes. Dent. 2006, 8, 21–25. [Google Scholar]
- Loomans, B.; Özcan, M. Intraoral Repair of Direct and Indirect Restorations: Procedures and Guidelines. Oper. Dent. 2016, 41, S68–S78. [Google Scholar] [CrossRef]
- Gupta, S.; Parolia, A.; Jain, A.; Kundabala, M.; Mohan, M.; de Moraes Porto, I.C. A comparative effect of various surface chemical treatments on the resin composite-composite repair bond strength. J. Indian Soc. Pedod. Prev. Dent. 2015, 33, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Neis, C.A.; Albuquerque, N.L.G.; Albuquerque, I.D.S.; Gomes, A.; De Souza-Filho, C.B.; Feitosa, V.P.; Spazzin, A.O.; Bacchi, A. Surface treatments for repair of feldspathic, leucite-and lithium disilicate-reinforced glass ceramics using composite resin. Braz. Dent. J. 2015, 26, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Strasser, T.; Preis, V.; Behr, M.; Rosentritt, M. Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment. Clin. Oral Investig. 2018, 22, 2787–2797. [Google Scholar] [CrossRef] [PubMed]
- Ataol, A.S.; Ergun, G. Effects of surface treatments on repair bond strength of a new CAD/CAM ZLS glass ceramic and two different types of CAD/CAM ceramics. J. Oral Sci. 2018, 60, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Yavuz, T.; Dilber, E.; Kara, H.B.; Tuncdemir, A.R.; Ozturk, A.N. Effects of different surface treatments on shear bond strength in two different ceramic systems. Lasers Med. Sci. 2013, 28, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, K.; Pahinis, K.; Saltidou, K.; Dionysopoulos, D.; Tsitrou, E. Evaluation of the Surface Characteristics of Dental CAD/CAM Materials after Different Surface Treatments. Materials 2020, 13, 981. [Google Scholar] [CrossRef]
- Turp, V.; Akgungor, G.; Sen, D.; Tuncelli, B. Evaluation of surface topography of zirconia ceramic after Er:YAG laser etching. Photomed. Laser Surg. 2014, 32, 533–539. [Google Scholar] [CrossRef]
- El-Damanhoury, H.M.; Elsahn, N.A.; Sheela, S.; Gaintantzopoulou, M.D. Adhesive luting to hybrid ceramic and resin composite CAD/CAM Blocks:Er:YAG Laser versus chemical etching and micro-abrasion pretreatment. J. Prosthodont. Res. 2021, 65, 225–234. [Google Scholar] [CrossRef]
- Toledano, M.; Osorio, R.; Osorio, E.; Aguilera, F.S.; Yamauti, M.; Pashley, D.H.; Tay, F. Durability of resin-dentin bonds: Effects of direct/indirect exposure and storage media. Dent. Mater. 2007, 23, 885–892. [Google Scholar] [CrossRef]
- Elsaka, S.E. Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems. Dent. Mater. J. 2015, 34, 161–167. [Google Scholar] [CrossRef]
Ceram X SphereTEC One (A1 Shade) | Dentsply Sirona (York, USA) | 1908000514 | Organic Matrix Composition: methacrylate modified polysiloxane(organically modified ceramic), dimethacrylate resins, Camphorquinone, Ethyl-4(dimethylamino)benzoate, Bis(4-methyl-phenyl)iodonium hexafluorophosphate Inorganic Filler Particulate: (72–73 wt%/48–50 vol%) Barium glass, pre-polymerized filler, ytterbium fluoride, 0.1-3 µm filler size (0.6 µm) |
Shofu Block HC (A2-HT Shade) (SB) | Shofu Inc. (Kyoto, Japan) | 0916055 | Organic Matrix Composition: TEGDMA, UDMA Inorganic Filler Particulate: %61 wt/silica powder, microfumed silica, zirconium silicate, silica (20 nm), barium glass(300 nm), |
Grandio Blocs (A2-HT Shade) Nano-ceramic hybrid (GB) | Voco GmbH (Cuxhoven, Germany) | 2027146 | Organic Matrix Composition: 14% UDMA+DMA Inorganic Filler Particulate: 86% wt/%71 vol nanohybrid fillers 0.5–3 µm glass ceramic particles 0–40 nm SiO2 nanoparticles |
Ultradent Porcelain Etch (HF) | Ultradent Products Inc. (South Jordan, UT, USA) | BJ4TD | Composition: Bufffered 9% hydrofluoric acid |
Monobond Plus | Ivoclar Vivadent (AG, Lichtenstein) | Y33677 | Composition: Alcohol solution of silane methacrylate, phosphoric acid methacrylate and sulphide methacrylate. |
3M Single Bond Universal Adhesive | 3M ESPE (St Paul, MN, USA) | 81129D | Composition: MDP phosphate monomer, dimethacrylate resins, HEMA, vitrebond copolymer, filler, ethanol, water, initiators, silane |
SB | GB | p | |
---|---|---|---|
No pretreatment (control) | 11.755 ± 2.497 b | 13.895 ± 1.11 c | <0.001 |
HF | 13.946 ± 1.405 c | 22.175 ± 0.63 f | <0.001 |
bur | 20.489 ± 1.332 d | 17.687 ± 0.996 e | <0.001 |
3 W | 9.567 ± 1.025 a | 8.054 ± 0.909 a | 0.001 |
5 W | 13.347 ± 1.109 c | 10.049 ± 0.955 b | <0.001 |
7 W | 10.246 ± 0.618 a | 15.693 ± 1.109 d | <0.001 |
p | <0.001 | <0.001 |
Adhesive | Cohesive (Rest. Mat.) | Cohesive (Repair Mat.) | Mixed (Rest. Mat.) | Mixed (Repair Mat.) | TOTAL | |
---|---|---|---|---|---|---|
SB + no treatment | 80 | 0 | 0 | 0 | 20 | 100 |
SB + bur | 13.33 | 60 | 6.66 | 6.66 | 13.33 | 100 |
SB + HF | 46.66 | 0 | 0 | 26.66 | 26.66 | 100 |
SB + 3 W | 73.33 | 0 | 0 | 0 | 26.66 | 100 |
SB + 5 W | 53.33 | 13.33 | 0 | 13.33 | 20 | 100 |
SB + 7 W | 46.66 | 6.66 | 0 | 0 | 46.66 | 100 |
GB + no treatment | 33.33 | 0 | 0 | 33.33 | 33.33 | 100 |
GB + bur | 20 | 0 | 0 | 26.66 | 53.33 | 100 |
GB + HF | 20 | 0 | 13.33 | 6.66 | 60 | 100 |
GB + 3 W | 100 | 0 | 0 | 0 | 0 | 100 |
GB + 5 W | 86.66 | 0 | 0 | 0 | 13.33 | 100 |
GB + 7 W | 46.66 | 0 | 0 | 0 | 53.33 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozturk Yesilirmak, S.; Oglakci, B.; Ozduman, Z.C.; Eliguzeloglu Dalkilic, E. Shear Bond Strength of Repaired CAD/CAM Resin-Based Composite Materials Submitted to Er:YAG Laser Treatments at Different Powers. Coatings 2023, 13, 1498. https://doi.org/10.3390/coatings13091498
Ozturk Yesilirmak S, Oglakci B, Ozduman ZC, Eliguzeloglu Dalkilic E. Shear Bond Strength of Repaired CAD/CAM Resin-Based Composite Materials Submitted to Er:YAG Laser Treatments at Different Powers. Coatings. 2023; 13(9):1498. https://doi.org/10.3390/coatings13091498
Chicago/Turabian StyleOzturk Yesilirmak, Sevda, Burcu Oglakci, Zumrut Ceren Ozduman, and Evrim Eliguzeloglu Dalkilic. 2023. "Shear Bond Strength of Repaired CAD/CAM Resin-Based Composite Materials Submitted to Er:YAG Laser Treatments at Different Powers" Coatings 13, no. 9: 1498. https://doi.org/10.3390/coatings13091498