Effect of Coating Treatment on the Properties of Extruded Mg-1.0Zn-0.3Zr-1.0Y-2.0Sn Alloys
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Material Preparation
2.2. Performance Testing
2.3. Immersion Corrosion Tests
3. Results and Discussion
3.1. Coating Morphology and Structure
3.2. Physical Composition of Coatings
3.3. Effect of Fluorinated Coatings on Mechanical Properties of Alloys in the Extruded
3.4. Effect of Fluorinated Coatings on the Corrosion Properties of Extruded-State Alloys
3.5. Corrosion Mechanism
4. Conclusions
- (1)
- The fluorinated coating’s surface is predominantly constituted by MgO and MgF2. As the duration of immersion in the HF solution extends, the coating’s thickness on the extruded alloy increases initially, and then plateaus. After a 48 h immersion, the thickness stabilizes at approximately 8 μm.
- (2)
- Post-coating treatment, the corrosion resistance of the extruded alloy is markedly enhanced, with a corrosion rate CRH of 0.13 ± 0.012 mm/year. Following a 20-day immersion in SBF, the YS, UTS, and EL of the extruded alloy diminished by 77%, 76%, and 95%, respectively. In contrast, the mechanical properties of the fluoride-coated samples exhibit a more modest decline in YS, UTS, and EL by 21%, 15%, and 29%, respectively, after the same period.
- (3)
- The extruded Mg-1.0Zn-0.3Zr-1.0Y-2.0Sn alloy exhibits a higher dislocation density and residual stress levels than its as-cast counterpart, which results in an elevated internal dislocation rate and a subsequent reduction in corrosion resistance. However, the application of a fluorinated coating significantly augments the alloy’s corrosion resistance. This enhancement is attributed to the presence of MgO in the outer layer of the coating, which acts as a barrier to prevent direct contact between MgF2 and SBF. Upon prolonged immersion, corrosive ions infiltrate the coating’s vulnerable regions and initiate a reaction with MgF2. Concurrently, the smaller ions present in the SBF solution engage in reactions with the alloy matrix, particularly along the columnar grain boundaries of MgF2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, X.; Liu, G.; Sang, S.; Lin, Q.; Qiao, Y. Characteristics and Surface Serviceability for Cryogenic Milling Mg-1.6Ca-2.0Zn Medical Magnesium Alloy. J. Funct. Biomater. 2022, 13, 179. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; He, J.G.; Wen, J.B.; Feng, W.Y.; Zheng, X.Y.; Li, H. Effect of Hot Extrusion on Microstructure and Properties of As-cast Mg-1Zn-0.3Zr-1Y-2Sn Magnesium Alloy. Rare Met. Mater. Eng. 2023, 52, 508–516. [Google Scholar]
- Mani, G.; Feldman, M.D.; Patel, D.; Agrawal, C.M. Coronary stents: A materials perspective. Biomaterials 2007, 28, 1689–1710. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; He, J.G.; Wen, J.B.; Feng, W.Y.; Zheng, X.Y.; Li, H.A. Microstructure and Properties of As-Cast Mg–2.0Sn–1.0Zn–1.0Y–0.3Zr Alloys at Different Extrusion Ratios. Adv. Eng. Mater. 2023, 25, 2201715. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, D.M.; Dong, W.; Ding, J.J.; Ye, Z.C.; Zeng, P.; Gao, Y.Z. Design and Validation of a Nonparasitic 2R1T Parallel Hand-Held Prostate Biopsy Robot with Remote Center of Motion. J. Mech. Robot. 2024, 16, 051009. [Google Scholar] [CrossRef]
- Qi, Z.R.; Zhang, Q.; Tan, L.L.; Lin, X.; Wang, Y. Comparison of degradation behavior and the associated bone response of ZK60 and PLLA in vivo. J. Biomed. Mater. Res. Part A 2014, 102, 125–1263. [Google Scholar] [CrossRef]
- Xie, J.S.; Zhang, J.H.; You, Z.H.; Liu, S.J.; Guang, K.; Wu, R.Z.; Wang, J.; Feng, J. Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying. J. Magnes. Alloys 2021, 9, 41–56. [Google Scholar] [CrossRef]
- Imus, P.H.; Blackford, A.L.; Bettinotti, M.; Iglehart, B.; Dietrich, A.; Tucker, N.; Bolaños-Meade, J. Major histocompatibility mismatch and donor choice for second allogeneic bone marrow transplantation. Biol. Blood Marrow Transpl. 2017, 23, 1887–1894. [Google Scholar] [CrossRef]
- Doernberg, E.; Kozlov, A.; Schmid-Fetzer, R. Experimental Investigation and Thermodynamic Calculation of Mg-Al-Sn Phase Equilibria and Solidification Microstructures. J. Phase Equilibria Diffus. 2007, 6, 523–535. [Google Scholar] [CrossRef]
- Munir, K.; Lin, J.; Wen, C.; Wright, P.F.A.; Li, Y. Mechanical, Corrosion, and Biocompatibility Properties of Mg-Zr-Sr-Sc Alloys for Biodegradable Implant Applications. Acta Biomater. 2020, 102, 493–507. [Google Scholar] [CrossRef]
- Cai, C.; Song, R.; Wang, L.; Li, J. Surface Corrosion Behavior and Reaction Product Film Deposition Mechanism of Mg-Zn-Zr-Nd Alloys during Degradation Process in Hank’s Solution. Surf. Coat. Technol. 2018, 342, 57–68. [Google Scholar] [CrossRef]
- Qin, H.; Zhao, Y.; An, Z.; Cheng, M.; Wang, Q.; Cheng, T.; Wang, Q.; Wang, J.; Jiang, Y.; Zhang, X.; et al. Enhanced Antibacterial Properties, Biocompatibility, and Corrosion Resistance of Degradable Mg-Nd-Zn-Zr Alloy. Biomaterials 2015, 53, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Jiang, B.; Yang, H.; Yang, Q.; Xia, X.; Pan, F. High Temperature Oxidation Behavior of Mg-Y-Sn, Mg-Y, Mg-Sn Alloys and Its Effect on Corrosion Property. Appl. Surf. Sci. 2015, 353, 1013–1022. [Google Scholar] [CrossRef]
- Luo, D.; Wang, H.Y.; Chen, L.; Liu, G.J.; Wang, J.G.; Jiang, Q.C. Strong Strain Hardening Ability in an As-Cast Mg-3Sn-1Zn Alloy. Mater. Lett. 2013, 94, 51–54. [Google Scholar] [CrossRef]
- Sasaki, T.T.; Yamamoto, K.; Honma, T.; Kamado, S.; Hono, K. A High-Strength Mg-Sn-Zn-Al Alloy Extruded at Low Temperature. Scr. Mater. 2008, 59, 1111–1114. [Google Scholar] [CrossRef]
- Sasaki, T.T.; Oh-ishi, K.; Ohkubo, T.; Hono, K. Enhanced Age Hardening Response by the Addition of Zn in Mg–Sn Alloys. Scr. Mater. 2006, 55, 251–254. [Google Scholar] [CrossRef]
- Wang, P.; Xiong, P.; Liu, J.; Gao, S.; Xi, T.F.; Cheng, Y. A silk-based coating containing GREDVY peptide and heparin on Mg–Zn–Y–Nd alloy: Improved corrosion resistance, hemocompatibility and endothelialization. J. Mater. Chem. B 2018, 6, 966–978. [Google Scholar] [CrossRef]
- Poinern, G.E.J.; Brundavanam, S.; Fawcett, D. The mechanical properties of a porous ceramic derived from a 30 nm sized particle based powder of hydroxyapatite for potential hard tissue engineering applications. Am. J. Biomed. Eng. 2012, 2, 278–286. [Google Scholar] [CrossRef]
- Shadanbaz, S.; Dias, G.J. Calcium phosphate coatings on magnesium alloys for biomedical applications: A review. Acta. Biomater. 2012, 8, 20–30. [Google Scholar] [CrossRef]
- Hornberger, H.; Virtanen, S.; Boccaccini, A.R. Biomedical coatings on magnesium alloys—A review. Acta. Biomater. 2012, 8, 2442–2455. [Google Scholar] [CrossRef]
- Li, H.; Wen, J.B.; Jin, J.; He, J.G. Roles of the micro-arc oxidation coating on the corrosion resistance and mechanical properties of extruded Mg-2Zn-0.5 Zr-1.5 Dy (mass%) alloy. Mater. Corros. 2022, 73, 414–426. [Google Scholar] [CrossRef]
- Bakhsheshi, H.R.; Idris, M.H.; Kadir, M.R.A.; Daroonparvar, M. Effect of fluoride treatment on corrosion behavior of Mg-Ca binary alloy for implant application. Trans. Nonferr. Metal. Soc. 2013, 23, 699–710. [Google Scholar] [CrossRef]
- Yan, T.; Tan, L.; Zhang, B.; Yang, K. Fluoride Conversion Coating on Biodegradable AZ31B Magnesium Alloy. J. Optoelectron Adv. M. 2014, 30, 666–674. [Google Scholar] [CrossRef]
- Weber, C.M.; Eifler, R.; Seitz, J.M.; Maier, H.J.; Reifenrath, J.; Lenarz, T. Biocompatibility of MgF2-coated MgNd2 specimens in contact with mucosa of the nasal sinus—A long term study. Acta Biomater. 2015, 18, 249–261. [Google Scholar] [CrossRef]
- GB/T 228.1-2010; Metallic Materials Tensile Testing Part 1: Method of Test at Room Temperature. The China National Standardization Management Committee: Beijing, China, 2011.
- Qiao, Z.X.; Shi, Z.M.; Hort, N.; Abidin, N.I.; Atrens, A. Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting. Corros. Sci. 2012, 61, 185–207. [Google Scholar] [CrossRef]
- Shi, H. Microstructure and Properties of Mg-2Zn-0.5Zr-1.5Dy Magnesium Alloy; Henan University of Science and Technology: Luoyang, China, 2021; Volume 5. [Google Scholar]
- Li, S.; Yi, L.; Zhu, X.; Liu, T. Ultrasonic Treatment Induced Fluoride Conversion Coating without Pores for High Corrosion Resistance of Mg Alloy. Coatings 2020, 10, 996. [Google Scholar] [CrossRef]
- Lou, G.; Xu, S.M.; Teng, X.Y.; Ye, Z.J.; Jia, P.; Wu, H.; Leng, J.F.; Zuo, M. Effects of Extrusion on Mechanical and Corrosion Resistance Properties of Biomedical Mg-Zn-Nd-xCa Alloys. Materials 2019, 12, 1049–1061. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, M.; Song, G.; Atrens, A. Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41. Corros. Sci. 2008, 50, 3168–3178. [Google Scholar] [CrossRef]
- Liu, Y.; Wen, J.; He, J.; Li, H. Enhanced mechanical properties and corrosion resistance of biodegradable Mg-Zn-Zr-Gd alloy by Y microalloying. J. Mater. Sci. 2020, 55, 1813–1825. [Google Scholar] [CrossRef]
- Xu, D.; He, J.; Wen, J.; Shi, H. Effect of immersion time on corrosion behavior of Mg-2Nd-0.5Zn-0.4Zr-1Y alloy in simulated body fluid. Mater. Res. Express 2019, 6, 125414. [Google Scholar] [CrossRef]
- Dai, C.; Gao, X.; Zhai, C.; Jia, Q.; Zhao, B.; Shi, H.; Gao, Q.; Cai, H.; Lee, E.S.; Jiang, H. Corrosion Evaluation of Pure Mg Coated by Fluorination in 0.1 M Fluoride Electrolyte. Scanning 2021, 2021, 5574946. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Wang, R.; Zhang, J.; Wu, K.; Liu, G.; Sun, J. The effect of precipitates on voiding, twinning, and fracture behaviors in Mg alloys. Mat. Sci. Eng. A-struct. 2018, 720, 98–109. [Google Scholar] [CrossRef]
- Gollapudi, S. Grain size distribution effects on the corrosion behaviour of materials. Corros. Sci. 2012, 62, 90–94. [Google Scholar] [CrossRef]
- Da Conceicao, T.F.; Scharnagl, N.; Blawert, C.; Dietzel, W.; Kainer, K.U. Surface modification of magnesium alloy AZ31 by hydrofluoric acid treatment and its effect on the corrosion behaviour. Thin. Solid. Films 2010, 518, 5209–5218. [Google Scholar] [CrossRef]
- Makkar, P.; Kang, H.J.; Padalhin, A.R.; Park, I.; Moon, B.G.; Lee, B.T. Development and properties of duplex MgF2/PCL coatings on biodegradable magnesium alloy for biomedical applications. PLoS ONE 2018, 13, e0193927. [Google Scholar] [CrossRef]
NaCl | CaCl2 | KCl | NaHCO3 | MgCl2·6H2O | C6H12O6 | Na2HPO4·12 H2O | KH2PO4 | MgSO4·7H2O |
---|---|---|---|---|---|---|---|---|
8.00 | 0.14 | 0.40 | 0.35 | 0.10 | 1.00 | 0.06 | 0.06 | 0.06 |
As-Cast | 0 d | 5 d | 10 d | 15 d | 20 d | 25 d |
---|---|---|---|---|---|---|
UTS (MPa) | 211 ± 10 | 192 ± 9 | 165 ± 8 | 139 ± 6 | 86 ± 10 | 46 ± 9 |
YS (MPa) | 154 ± 10 | 133 ± 10 | 126 ± 8 | 84 ± 5 | 58 ± 8 | 31 ± 9 |
EL (%) | 19.1 ± 0.5 | 17.4 ± 0.4 | 14.3 ± 0.2 | 10.5 ± 0.2 | 6.8 ± 0.3 | 2.2 ± 0.4 |
Extruded | 0 d | 5 d | 10 d | 15 d | 20 d | 25 d |
---|---|---|---|---|---|---|
UTS (MPa) | 277 ± 9 | 235 ± 10 | 188 ± 10 | 123 ± 9 | 68 ± 10 | - |
YS (MPa) | 221 ± 9 | 193 ± 10 | 162 ± 10 | 106 ± 9 | 52 ± 10 | - |
EL (%) | 22.3 ± 0.5 | 18.6 ± 0.4 | 12.7 ± 0.5 | 6.9 ± 0.6 | 1.2 ± 0.5 | - |
Coated | 0 d | 5 d | 10 d | 15 d | 20 d | 25 d |
---|---|---|---|---|---|---|
UTS (MPa) | 272 ± 8 | 263 ± 10 | 254 ± 10 | 238 ± 8 | 229 ± 10 | 210 ± 8 |
YS (MPa) | 219 ± 9 | 208 ± 9 | 193 ± 10 | 184 ± 9 | 172 ± 8 | 158 ± 9 |
EL (%) | 22.1 ± 0.4 | 21.8 ± 0.5 | 18.9 ± 0.4 | 16.9 ± 0.4 | 15.7 ± 0.6 | 13.3 ± 0.4 |
Sample | Rs (Ω·cm2) | CPE1 | R1 (Ω·cm2) | CPE2 | R2 (Ω·cm2) | ||
---|---|---|---|---|---|---|---|
Y01 (Ω−1·cm−2·s−n) | n1 | Y02 (Ω−1·cm−2·s−n) | n2 | ||||
As-cast | 36.47 | 1.41 × 10−5 | 0.71 | 64.63 | 1.08 × 10−5 | 0.89 | 6.58 × 103 |
Extruded alloy | 38.78 | 8.23 × 10−6 | 0.70 | 140.4 | 1.28 × 10−5 | 0.87 | 5.44 × 103 |
Coated alloy | 41.35 | 1.29 × 10−6 | 0.91 | 44.01 | 4.48 × 10−6 | 0.91 | 1.72 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Gao, Q.; Wen, J.; Gong, Y.; Feng, W.; Cheng, Z.; Li, X. Effect of Coating Treatment on the Properties of Extruded Mg-1.0Zn-0.3Zr-1.0Y-2.0Sn Alloys. Coatings 2024, 14, 1350. https://doi.org/10.3390/coatings14111350
He J, Gao Q, Wen J, Gong Y, Feng W, Cheng Z, Li X. Effect of Coating Treatment on the Properties of Extruded Mg-1.0Zn-0.3Zr-1.0Y-2.0Sn Alloys. Coatings. 2024; 14(11):1350. https://doi.org/10.3390/coatings14111350
Chicago/Turabian StyleHe, Junguang, Qinglei Gao, Jiuba Wen, Yuan Gong, Wuyun Feng, Zhenfei Cheng, and Xuyang Li. 2024. "Effect of Coating Treatment on the Properties of Extruded Mg-1.0Zn-0.3Zr-1.0Y-2.0Sn Alloys" Coatings 14, no. 11: 1350. https://doi.org/10.3390/coatings14111350
APA StyleHe, J., Gao, Q., Wen, J., Gong, Y., Feng, W., Cheng, Z., & Li, X. (2024). Effect of Coating Treatment on the Properties of Extruded Mg-1.0Zn-0.3Zr-1.0Y-2.0Sn Alloys. Coatings, 14(11), 1350. https://doi.org/10.3390/coatings14111350