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Abstract: The TiAlCrSiYN-based family of physical vapor deposition (PVD) coatings were systematically
designed through the incorporation of TiAlCrN interlayer to increase coating adhesion and consequently
the tool life for extreme conditions that arise during dry high-speed milling of hardened tool steels.
The investigation in the present paper intends to explain the effect of TiAlCrN interlayer thickness on
the overall coating properties and cutting performance. A comprehensive characterization of the
structure and properties of the coatings has been performed using focused ion beam (FIB), scanning
electron microscope (SEM), X-ray powder diffraction (XRD), nanoindentation, ramped load scratch
test, repetitive load wear test, and nano-impact test. The wear test at a subcritical load of 1.5 N
showed that there was a gradual improvement in coating adhesion to the substrate as the interlayer
thickness increased from 100 to 500 nm. However, the wear performance, being related to the ability
of the coating layer to exhibit minimal surface damage under operation, was found to be associated
with micro-mechanical characteristics (such as hardness, elastic modulus). Around a 40% increase in
the cutting performance with 300 nm interlayer exhibited that a substantial increase in tool life can
be achieved through interlayer thickness variation, by obtaining a balance between mechanical and
tribological properties of the studied coatings.

Keywords: multilayer coatings; interlayer; cutting tools

1. Introduction

Over the years, concepts such as high speed machining [1] have been considered in an attempt to
expand the application of milling of H13 tool steel (HRC 45-55) in their hardened state for dies and molds.
This process benefits material removal rates, lead times, cutting forces, part precision, and surface
finishes [2] during machining. However, excessive tool wear poses a major concern [3,4] due to poor
low cycle fatigue performance [4,5] at these heavy loads/high temperatures during dry interrupted
cutting [6]. Therefore, significant emphasis is put upon determining the best tool materials [3],
machining strategies [7], and operating parameters [5] during H13 machining. An alternative approach
is recommended to handle the corresponding situation by applying different physical vapor deposition
(PVD) [8] coatings on the cutting tools.

In recent years, advancements in coating deposition techniques [9] enabled widespread usage of
nano-crystalline PVD coatings such as TiAlN and AlTiN for the surface engineering of carbide tools used
in alloy steel machining (42 HRC and over) [6]. This in turn enhances the protection of cutting tools from
thermal and mechanical loads on the cutting zone. However, in a complex cutting environment such as

Coatings 2019, 9, 737; doi:10.3390/coatings9110737 www.mdpi.com/journal/coatings

http://www.mdpi.com/journal/coatings
http://www.mdpi.com
https://orcid.org/0000-0001-8209-7499
http://www.mdpi.com/2079-6412/9/11/737?type=check_update&version=1
http://dx.doi.org/10.3390/coatings9110737
http://www.mdpi.com/journal/coatings


Coatings 2019, 9, 737 2 of 16

interrupted cutting, the coating layer must achieve improved multi-functionality [10]. Thus, complex
coatings with nano-columnar and nano-laminated structures (i.e., multilayer coatings) [11] were
introduced to significantly improve the multi-functionality of the coating layer. This is accomplished
by reducing the brittleness of hard coatings [12], and at the same time providing simultaneous frictional
energy accumulation from the resistance to severe plastic deformation and dissipation via crack
deflection [13,14]. In their work, Hovsepian et al. [15] have shown that CrAlYN/CrN nano-scale
multilayer coated end mills outperform a range of TiAlN based PVD coatings during dry high-speed
machining of hardened steel. In addition, previous investigations showed that the increased number
of nano-layer interfaces which serve as sites for crack deflection [16] could consequently improve the
impact fatigue resistance of coatings evaluated through nano-impact fracture resistance [17]. At the
same time, it is very important to obtain a balance in optimum compressive residual stress to prevent
excessive chipping under operating conditions [18].

Furthermore, coating architecture could be improved by incorporating an interlayer [19] with
a potential to improve the coating’s adhesion to the substrate. The high plasma density during the
coating deposition process results in high energy ions which could lead to a superficial deterioration
of cemented carbide substrate properties during deposition [20]. As a result, local adhesion could
diminish. Conversely, deposition of these high kinetic energy ions favors their superficial diffusion into
the Co rich binding materials, thus promoting better adhesion. Therefore, an interlayer is considered to
benefit the coating structure if the combined effect improves coating adhesion. Previous works found
in literature [21,22] largely focus on improving monolayer coating adhesion through the incorporation
of an interlayer. However, introducing an interlayer into a multilayer coating [23] can make the
whole system very complex. For instance, according to the result of a previous work displayed in
Figure 1, the TiAlCrSiYN/TiAlCrN multilayer coating with a TiAlCrN interlayer was shown to have
improved adhesion than the multilayer coating [23]. This property was successfully determined by a
micro-scratch test in terms of crack propagation resistance (CPRs) [24].
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Figure 1. Comparison of micro-mechanical properties of a TiAlCrSiYN/TiAlCrN multilayer coating
with a TiAlCrN interlayer [23].

Moreover, recent research has shown that the thickness of the interlayer is equally crucial
in achieving an overall coating structure strength and adhesion when adapted to the substrate
roughness [25]. This could assure that the improved multifunctionality of the coating better serves the
purpose of H13 dry milling. However, two opposing phenomena play an important role in deciding
the thickness of the interlayer in a coating structure [22]. In the case of a very thin interlayer uncoated
substrate regions may occur due to restricted substrate exposure to plasma flux caused by the reduction
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in deposition time as well as plasma flux shadowing effect. Thus, the coating deposited in these regions
may possess a deteriorated adhesion as shown in Figure 2a. When the thickness of the interlayer is
kept in the range of the substrate roughness Rt (Figure 2b), the average shear strain on the reference
plane for an applied load is lower in comparison to the corresponding plane of a thicker interlayer. This
is due to the fact that the reference plane in the first case includes both the coating and the substrate
materials (Figure 2b), and thus contributes to a better shear stiffness on that plane. Again, as the
adhesive interlayer thickness increases (Figure 2c), an interlayer fracture may develop due to the shear
stress during operational load owing to the reduced mechanical properties of the interlayer.
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Figure 2. Schematic diagram of interlayer thickness effect on the coating substrate adhesion (a), and on
the entire coating structure shear strength in a reference plane (b,c), with the same roughness of
cemented carbide substrate [22], ti and tc represent interlayer and coating thicknesses respectively.

Considering the aforementioned dependencies, the selection of nano-interlayer thickness has to
be appropriate with regard to the substrate topography as well as the coatings’ overall mechanical and
tribological properties. Therefore, the effect of TiAlCrN interlayer thickness on the overall coating
properties was studied in this paper to optimize the coating performance in terms of its end application
for high-speed H13 dry milling.

2. Experimental Details

2.1. Substrate Specification

In this study, solid cemented carbide Mitsubishi ball nose end mill (type: C-2SB, 10 mm diameter
and two flute) was chosen as the tool substrate. In Figure 3a, an SEM image with back-scattered
electron (BSE) at 12,000×magnification exhibits the microstructure of the tool substrate (hardness HV
1950–2000) [26] with an average WC grain diameter dg (0.45 µm). Additionally, Figure 3b represents
the surface profile of the tool substrate in terms of Rt (total height of the roughness profile) and Ra
(arithmetical mean roughness value), which was measured by Alicona infinite focus at a roughness
sampling length of 250 µm.
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2.2. Coating Deposition

The interlayer (TiAlCrN) was included into nano-multilayered TiAlCrSiYN/TiAlCrN coating that
has an architecture with modulating chemical composition but similar crystal structure. The initial
thickness of the interlayer [21] was selected to be less than one third of WC grains’ average diameter in
the cemented carbide substrate. A further variation in interlayer thickness was considered by varying
the duration of coating deposition to understand its effect on machining. Different interlayer thickness
within TiAlCrSiYN-based multilayer coatings investigated in this study are presented in Table 1.

Ti0.2Al0.55Cr0.2Si0.03Y0.02 and Ti0.25Al0.65Cr0.1 targets fabricated by a powdered metallurgical
process were used for the deposition of a nano-multilayer Ti0.2Al0.55Cr0.2Si0.03Y0.02N/Ti0.25Al0.65Cr0.1N
coating and an interlayer Ti0.25Al0.65Cr0.1N of different thickness using a cathodic arc source. Coatings
were deposited in an R&D-type hybrid PVD coater (AIP-SS002, Kobe Steel Ltd., Kobe, Japan) where
samples were heated up to about 500 ◦C and cleaned through an Ar ion etching process at a pressure of
1.33 Pa and a bias of 400 V for 7.5 min. N2 gas was fed into the chamber at a pressure of 4 Pa. The arc
source was operated at 150 A for a 100 mm diameter × 16 mm thick target. The rotation speed of the
substrate holder was 5 rpm and the substrate bias was fixed at 150 V for all the depositions.

Table 1. Coatings studied for tool life and micro-mechanical property evaluation.

Overall Thickness Interlayer Thickness Deposition Time (Interlayer)

2 µm 100 nm 1 min
2 µm 300 nm 3 min
2 µm 500 nm 5 min

2.3. Determination of Micro-Mechanical Properties of Coatings

The crystal structure and preferred orientation of the coatings were determined with X-ray
diffraction (XRD, Rigaku ULTIMA-PC, Rigaku, Tokyo, Japan) using Cu Kα radiation. The residual stress
was assessed by means of a conventional X-ray diffractometer, using the multiple hkl method [27,28].
In this method, Cu Kα radiation beam with glancing incidence angle of 5.0◦ was used, combined with
a parallel beam geometry.

Nano-indentations on coatings were performed using a P-3 Micro Materials NanoTest system
(Platform-3, Micro Materials Ltd., Wrexham, UK) in a load-controlled mode with a Berkovich diamond
indenter. Initially a multiple load cycle experiment (depth profiling) with an increasing load from 5
to 100 mN was carried out to evaluate the depth dependent hardness variation within the studied
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coatings as well as to determine the appropriate load that ensures the indentation contact depth to
be less than 1/10 of the film thickness during static indentation. Thus, a coating-only (load-invariant)
hardness could be measured in combination with coating-dominated elastic modulus. Five depth
profiles with 20 cycles in each sample were conducted at a loading rate of 25 mN/s with 50% unloading
at each cycle of a particular indentation. Following this step, 40 indentation tests were performed on
each coating at a peak load of 40 mN to diminish any effect of surface roughness on the data.

Ramped load micro-scratch testing to a peak load of 5 N was performed with an Anton Paar
Revetest Micro Scratch Tester (Anton Paar, Peseux, Switzerland) using a 3-scan procedure with a 20
µm radius diamond probe to increase the sensitivity of the test to interfacial adhesion [29]. Three
sequential scans were involved in this procedure, topography-scratch-topography at 0.78 mm/min:
(i) a pre scan at low load (0.5 N) over a 500 µm track; (ii) a progressive load scratch: the load was
ramped at a constant rate of 7.02 N/min until 5 N was reached just before the end of the scan; and (iii)
a post-scan, at the same low load as the pre-scan. The scans were performed in the same direction
and at least 3 scratch tests were carried out on each sample, with neighboring tracks separated by
200 µm. Depending on the results obtained from the ramped load scratch tests, a subcritical load of
1.5 N (explained in Section 3.2) was selected for multi-pass constant load repetitive wear tests on a
track of 1000 µm. In these 15-scan tests, the progression of wear was assessed by changes in the depth
measured under load (the on-load wear depth).

The fatigue properties of the desired coatings were encountered through nano-impact testing
at an ambient temperature with a cube corner indenter serving as an impact probe. The indenter
was accelerated from 12 µm above the coating surface with 25 mN coil force corresponding to the
impact energy of 300 nJ to produce an impact every 4 s for a total test duration of 400 s. Ten repeat
tests were performed at different locations on each sample. The coatings’ nano-impact fatigue fracture
resistance was assessed by the final measured impact depth and confirmed by microscopic analysis of
impact craters.

2.4. Cutting Performance of Coated Tools

Cutting-tool life was studied under the conditions outlined in Table 2. At least three cutting tests
were performed for each kind of coating under the corresponding conditions on a three-axis vertical
milling center (Matsuura FX-5, Matsuura Machinery Corporation1-1, Fukui-City, Japan) to ensure
repeatability. The scatter of the tool-life measurements was approximately 10%. Cutting tests were
carried out on hardened AISI H13 tool steel workpiece having a hardness of HRC 53–55. The coated
tool wear was measured using an optical microscope (Mitutoyo model TM, Mitutoyo Corporation,
Kawasaki, Japan). Additionally, a tool dynamometer (9255B, Kistler, Winterthur, Switzerland) was
used to measure the cutting forces.

Table 2. Cutting parameters used for the tool-life evaluation.

Cutting Parameters

Speed, m/min Feed, mm/tooth Axial Depth, mm Radial Depth, mm Coolant

600 0.06 5 0.6 Dry condition

3. Results and Discussion

3.1. Structural Analysis

Comparative structural analysis of the nano-multilayer coatings with different interlayer thickness
is presented in Figure 4. All nano-multilayered coatings have a columnar structure with alternating
nano-layers of 20–40 nm [23] and the interlayer thicknesses are 100 nm (Figure 4a), 300 nm (Figure 4b),
and 500 nm (Figure 4c). It was previously shown that the alternating nano-layers are TiAlCrSiYN and
TiAlCrN [23].
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X-ray diffractograms of all the coatings studied are presented in Figure 5. It can be seen that all
coatings exhibit a B1 crystal structure with the preferred orientation being C(200), which is a strong
function of the substrate bias during coating deposition [30]. As previously seen, the introduction of
TiAlCrN interlayer did not result in any evidence of microstructure changes such as peak position
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variation on the microstructure of TiCrAlSiYN- based multilayer coatings is negligible. A similar kind
of result was also observed elsewhere [19].

Coatings 2019, 9, x FOR PEER REVIEW 6 of 16 

 

 
Figure 4. SEM images of the focused ion beam (FIB) cross-section showing (a) alternating nano-layers, 
the interlayer in the studied multilayer coatings, and the variation of interlayer thickness (b) (100 ± 30 
nm), (c) (300 ± 30 nm), and (d) (500 ± 30 nm). 

X-ray diffractograms of all the coatings studied are presented in Figure 5. It can be seen that all 
coatings exhibit a B1 crystal structure with the preferred orientation being C(200), which is a strong 
function of the substrate bias during coating deposition [30]. As previously seen, the introduction of 
TiAlCrN interlayer did not result in any evidence of microstructure changes such as peak position 
shifting and broadening [23]. No effect of the interlayer thickness on the diffraction peak intensity is 
observed in this study. Thus, the result indicates that the effect of TiAlCrN interlayer thickness 
variation on the microstructure of TiCrAlSiYN- based multilayer coatings is negligible. A similar kind 
of result was also observed elsewhere [19]. 

 
Figure 5. X-ray diffraction patterns of TiAlCrSiYN-based coatings with different interlayer thickness 
from 100 to 500 nm. Mark C represents the cubic (B1) phase. 

3.2. Micro-Mechanical Property Analysis 

Figure 5. X-ray diffraction patterns of TiAlCrSiYN-based coatings with different interlayer thickness
from 100 to 500 nm. Mark C represents the cubic (B1) phase.



Coatings 2019, 9, 737 7 of 16

3.2. Micro-Mechanical Property Analysis

The residual stress in all the coatings are highly compressive as depicted in Table 3. For the
coatings deposited under specified conditions, a similar range of residual stresses was observed
elsewhere [31]. This high compressive residual stress is beneficial for avoiding excessive chipping of
the cutting edge during the heavy loaded and high temperature conditions associated with dry milling.

Table 3. Residual stress values in the studied coatings when E is 500 GPa for all crystal axis.

Coating TiAlCrN Interlayer Thickness (nm) Residual Stress (GPa)

TiAlCrSiYN/TiAlCrN
multilayer

100 −8.21 ± 1.39
300 −8.64 ± 1.65
500 −8.71 ± 1.47

The inclusion of Si and Y in TiAlCrN (Residual stress −5.65 ± 0.3 [19]) coating results in grain size
refinement [32] and thus higher residual stress. Grain size refinement is also associated with the higher
number of defects at the alternating nano-layer interface [33]. Hence, all multilayer coatings in this
study possess a high compressive residual stress. It was previously observed that the incorporation of
an interlayer within the coating [23] as well as an increase in overall coating thickness [34] can result
in decreased compressive residual stress. The variation of residual stress with the coating thickness
is related to the deposition time during the coating deposition process. Two opposing phenomenon
decides the type and quantity of residual stress in the coating as such annealing at the temperature of
the deposition process allows increase diffusion of atoms and thus relaxation of internal stress. On the
other hand, the ion bombardment during the same process creates defects that diminish the diffusion
kinetics and contribute to the internal stress. Thus, the factor playing the dominant role during coating
deposition decides the type and quantity of residual stress. It is evident in the present study that the
variation of interlayer thickness has a negligible effect on the overall residual stress of the coatings.

The depth dependent hardness of TiAlCrSiYN/TiAlCrN multilayer coatings with varying TiAlCrN
interlayer thickness is shown in Figure 6a. Although the hardness of the coating systems at a lower
penetration depth is similar, the multilayer coating with a 500 nm interlayer shows a steep decrease in its
hardness value compared to the other two coatings at a penetration depth range of 200–300 nm. Static
indentation hardness data in Figure 6b showed that the multilayer coating with a 500 nm interlayer
has the lowest hardness of (31.99 ± 1.588) GPa. This gradual decrease in the hardness value, alongside
increasing TiAlCrN interlayer thickness, can be attributed to the crucial role of the relatively soft
TiAlCrN interlayer (25.9 ± 4.8 GPa [23]), in energy dissipation and cushioning, which accommodates
plastic deformation during indentation testing. Hence, more significant cushioning activity is observed
as the thickness of the TiAlCrN interlayer increases and the hardness of the coatings consequently
decreases. In addition, a decrease in the hardness of multilayer coatings with similar elastic moduli
(Figure 6b) resulted in the reduction of H3/E2 as TiAlCrN interlayer thickness increased, as shown
in Table 4. H3/E2 parameter scales with greater load support (resistance to plastic deformation) [35],
which indicates that a surface layer with better load support tends to be elastic for a longer period of
time. The accompanying spatial localization of damage consequently mitigates the degradation of the
structural and mechanical integrity of the entire surface engineered structure [36].

Table 4. Variation of dimensionless parameter H3/E2 and H/E with the interlayer thickness.

Coating Multilayer Multilayer Multilayer

Interlayer Thickness 100 nm 300 nm 500 nm
H3/E2(Resistance to Plastic Deformation) 0.1761 0.1547 0.1298

H/E 0.070223 0.0664 0.0636
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Figure 6. (a) Depth dependent hardness variation at a load range of 5–100 mN; (b) mechanical properties
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The ramped load micro-scratch test signifies two important characteristics: as load is increased
to Lc1 there is an onset of cracking within the coating and a further increase of the load to Lc2 causes
a well-defined failure event that represents coating detachment in front of the probe. It is shown
in Figure 7a,b that the multilayer coating with a 300 nm interlayer has a slightly higher value of
Lc1,whereas the coating with the 500 nm interlayer displays crack initiation at the lowest load of around
1.5 N among the coatings studied. Nonetheless, the load Lc2 at which the coatings undergo adhesive
failure, shows an increasing trend from the 100 nm interlayer to the 500 nm interlayer. This kind of
critical load data from ramped load micro-scratch tests have been previously reported elsewhere [37].
Additionally, Figure 8a–c presents the microscopic images of the scratch track, which is the same for all
the coatings studied, suggesting a brittle fracture dominated process. In the process, arc tensile cracks
opening in the direction of the scratch (Figure 8a), are formed behind the scratch probe. These tensile
cracks are then followed by coating chipping that extends laterally from the edges of the scratch groove.
This kind of failure has been previously observed for hard coatings (Figure 8b) on a hard substrate
(cemented carbide) [38].
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Previous works have shown that there is a correlation between the scratch test critical load Lc2 and
the mechanical properties of the coatings, essentially hardness and the ratio of hardness to elasticity
(H/E) [39,40]. The nano-indentation data in Figure 6b, shows that at room temperature, the multilayer
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coating with a 500 nm interlayer has the lowest hardness with elastic modulus of (502.35 ± 11.42092)
GPa, which results in the lowest H/E ratio for this coating. Hence, in the case of brittle fracture failure of
the coating in the scratch test, multilayer coating with the 500 nm interlayer having lower H/E (Table 4)
can function better due to improved ductility with increased critical load Lc2.
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adhesive (c) failure within the studied coating (same failure mechanism for all the studied coatings).

Furthermore, repetitive scratch tests performed at a subcritical load of 1.5 N (when all the studied
coatings undergo crack initiation) are more sensitive to adhesion differences than the ramped load
scratch test [41,42]. Hertzian analysis was applied on the ramped load test data for each coating and
the position of maximum von Mises stress was found to occur at a depth of ~1.5 µm below the free
surface in the vicinity of the coating surface interface at a load of 1.5 N. Thus, observations from the
repetitive scratch test at this load are more predominantly influenced by the coating layer than the
deformation of the substrate. The repetitive scratch on load depth along with the relative performance
of the coatings is illustrated in Figure 9a–d. For simplicity, only the passes where a significant change
in depth was observed among the coatings are presented. The on-load scratch depth, which combines
both plastic and the elastic deformation is sufficient to interpret the wear progression with each
consecutive pass. This is because the elastic contribution is anticipated to be relatively constant during
the tests. As depicted in Figure 9a, the penetration depth of the coating with a 300 nm interlayer is the
lowest (around 800 nm) at the fifth pass, and highest for the one with a 500 nm interlayer (around
1050 nm). However, after the next few passes, there is no significant change in the penetration depth
for the coating with a 500 nm interlayer. The coating with a 100 nm interlayer shows the first sign of
cohesive failure within the coating at the eighth pass (Figure 9b) in two of the three repeats. Evidence
of cohesive failure in the coating with a 300 nm interlayer is found at the 11th pass (Figure 9c). At the
15th pass both coatings with the 100 and 300 nm interlayers exhibit adhesive failure at a scratch depth
that exceeds the coating thickness, but with no noticeable change in the scratch depth for the coating
with the 500 nm interlayer (only tensile cracks on the scratch track). Illustration of the scratch tracks of
the studied coatings after the 15th pass is shown in Figure 10a–c. It can be observed that by the end
of the 15th pass, the multilayer coating with 100 nm interlayer has a mixture of low wear areas and
total coating failure at several positions within the track, whereas the coating with a 500 nm interlayer
shows no sign of fracture for the given load along the scratch track.

The difference in wear resistance of the coating with a 500 nm interlayer that shows the highest
initial penetration (consistent with its low near surface H/E and low Lc1 in the scratch test) but without
failing after 15 cycles at 1.5 N can better explained in terms of the substrate roughness, Rt. It was
previously observed [22] that a 50 nm Cr adhesive interlayer performed better than the 15 nm interlayer
in the Pt–Ir coating on a cemented carbide substrate (precision glass molding tool material) of surface
roughness Rt (60.1 ± 8) nm. Given the high surface roughness (Figure 1b) of cemented carbide substrate
in the current study, the intense coating removal at an interlayer thickness of 100 nm (Figure 10a)
compared to the 300 nm thick one (Figure 10b) can be explained by the non-uniform distribution of
adhesive interlayer thickness on the substrate. The improvement of the coating’s adhesion with the
300 nm interlayer, (which is even further improved in the 500 nm one) can be attributed to the increase
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in shear stiffness of the reference plane passing through the soft TiAlCrN interlayer as well as the
TiAlCrSiYN/TiAlCrN coating itself (Figure 2b). However, a further increase in interlayer thickness can
lead to adhesion deterioration when the reference plane only passes through softer interlayer.
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Figure 10. Microscopic images of the wear track after 15th pass at a repetitive load of 1.5 N, for coatings
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The nano-impact test performed at 25 mN is presented in Figure 11a in terms of fracture probability
variation with final probe penetration depth. Fracture probability was predicted by ranking the final
depth of penetration to fracture events in order of increasing fatigue resistance and then assigning
a probability of fracture P(f ) = n/(N + 1) to the nth-ranked fracture event in a total sample size of N
(=10), as was done previously [43]. It can be seen that both multilayer coatings with a 100 and 300 nm
interlayer with better load support (higher H3/E2 ratio) demonstrate the lowest final depths and only
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cohesive fractures. In addition, the spallation is more extensive in the 100 nm interlayer and much
deeper (2.8 ± 0.2 µm) in the 500 nm interlayer (Figure 11e) than the multilayer coating with an interlayer
thickness of 300 nm (2.1 ± 0.18 µm). It can be said that in the nano-impact test, the 300 nm works more
effectively to stop the total coating failure and substrate exposure. A combination of multilayer structure
and interlayer thickness prevent cracks from propagating to the substrate. A similar phenomenon was
previously observed [21] in a TiAlN coating with a 200 nm Cr/CrN graded interlayer that sustained
repetitive impact loads more competently than corresponding interlayers of 50 and 600 nm under an
inclined impact test.
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Furthermore, as shown in Figure 11b all the studied coatings exhibit abrupt fracture at the given
load where the multilayer coating with a 500 nm interlayer fails sooner than the other two coatings.
This can be related to the fact that both multilayer coatings with a 100 and 300 nm interlayer have
better load support (higher H3/E2 ratio). Musil et al. [44] reported in a previous work that H3/E2 ratio
and coating thickness are both determining factors for crack resistance in micro indentation with a
Vickers indenter where thicker and higher H3/E2 ratio coatings have greater resistance. Additionally,



Coatings 2019, 9, 737 12 of 16

data reported by Pei and co [45] shows that the onset critical load for indentation-induced radial
cracking with a cube corner indenter correlates well with the H3/E2 ratio at a range of 1.5 µm nc-TiC/a-C:
H film, ensuring that impact resistance of the coating is a combination of microstructural advantages
as well as load support.

3.3. Tool Life Analysis

Tool life of the studied coatings investigated under extreme cutting conditions is presented in
Figure 12. It can be observed that failure of the coated cutting tool is caused by flank wear (Figure 12a),
rake wear (Figure 12b) (with minimal buildup edge formation), and predominantly, flank chipping
(Figure 12c). This type of wear phenomenon was previously reported [11] under these severe cutting
conditions where the machining temperature can reach as high as 1000–1100 ◦C with stresses around
1.5–2 GPa [46]. A more gradual wear evolution is exhibited by the multilayer coating with a 300 nm
interlayer. A 40% and 50% increase in tool life is observed in comparison to the 100 and 500 nm
interlayer, respectively. Resultant cutting forces are presented in Figure 12d. Both multilayer coatings
with a 100 and 500 nm interlayer have higher resultant forces than the 300 nm interlayer due to the
high force contribution in the feed direction (in the 500 nm interlayer) and high force perpendicular to
it (in the 100 nm interlayer).
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Better wear characteristics and chipping behavior are a combination of both tribological and
micromechanical properties of the coatings. The ramped load scratch tests and more significantly,
the wear tests outlined above, demonstrated that the multilayer coating with a 100 nm interlayer has
the worst performance in terms of adhesion of the coating to the substrate. This confirms that the
coating undergoes a briefer machining length prior to tool failure than the multilayer coating with a
300 nm interlayer. The superior performance of the multilayer coating with a 500 nm interlayer in
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terms of adhesion is not consistent with its behavior in the cutting test. Therefore, the importance of
micromechanical properties come into play. A better load support achieved through high H3/E2 ratio
for the multilayer coatings with 100 and 300 nm interlayer plays a crucial role in damage localization
observed in nano-impact tests. This is more substantial for coatings with high brittleness as they are
susceptible to radial cracking and catastrophic fracture as a leading failure mechanism typically seen
in interrupted cutting conditions [47]. Thus, the multilayer coating with a 300 nm interlayer having
improved micro-mechanical characteristics ensures lower intensity of surface damage compare to the
500 nm interlayer and a better surface protection [48,49]. Another important aspect to consider is the
state of high temperatures during the milling process. Previous nanoindentation tests at temperature
ranges between 25–600 ◦C on a TiAlCrSiYN/TiAlCrN multilayer coating [50] demonstrate that a
drop-in hardness with no significant change in elastic modulus causes a steeper decrease in the H3/E2

ratio at a higher temperature. Additionally, Guiliani et al. reported a similarly significant hardness
drop from 25 to 15 GPa occurring over a temperature range of 25–500 ◦C in AlN/CrN multilayered
coatings on M2 tool steel, although the elastic modulus was virtually unchanged [51]. Cross-sectional
TEM of the indentations showed that the drop in measured hardness with temperature was due to
the softening of CrN layers and/or changes in residual stress with temperature causing substrate
and coating deformation. A similar phenomenon may occur in the studied TiAlCrSiYN/TiAlCrN
multilayer coating, especially with a 500 nm TiAlCrN interlayer, which is already softer than the 100
and 300 nm interlayer at room temperature. The absence of yttrium in the composition of the interlayer
hinders grain coarsening at the elevated temperature [52] and probably increases phase stability [53],
possibly resulting in further softening of the coating with a 500 nm (the thickest) interlayer. Therefore,
increasing plastic deformation causes a decrease in hardness as well as H3/E2 ratio (already lowest at
room temperature), which if too great, can be damaging to tool life.

4. Conclusions

In this paper, TiAlCrSiYN based multilayer coatings with varying interlayer thicknesses were
systematically studied in terms of microstructure and micromechanical properties. A significant
improvement in the wear performance of the TiAlCrSiYN-based coatings was achieved through the
proper selection of the interlayer thickness within the multilayer coating structure. This result is
attributed to the combination of the coating’s micro-mechanical and tribological characteristics that
control the tool life under extreme cutting conditions during high speed dry milling of hardened
tool steel. The multilayer coating with a 300 nm interlayer has a better repetitive wear resistance
resulting in better adherence to the substrate considering its high roughness. The coating also has
better load support, which can contribute to the localization of damage. This paper also suggests that
a coating with good adhesion (500 nm interlayer) at room temperature can behave differently at a
higher temperature during machining in terms of load support, which carries a significant importance
during milling.
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