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Abstract: Visual object tracking poses challenges due to deformation of target object appearance,
fast motion, brightness change, blocking due to obstacles, etc. In this paper, a Siamese network that
is configured using a convolutional neural network is proposed to improve tracking accuracy and
robustness. Object tracking accuracy is dependent on features that can well represent objects. Thus,
we designed a convolutional neural network structure that can preserve feature information that is
produced in the previous layer to extract spatial and semantic information. Features are extracted
from the target object and search area using a Siamese network, and the extracted feature map is input
into the region proposal network, where fast Fourier-transform convolution is applied. The feature
map produces a probability score for the presence of an object region and an object in a region, where
the similarities are high to search the target. The network was trained with a video dataset called
ImageNet Large Scale Visual Recognition Challenge. In the experiment, quantitative and qualitative
evaluations were conducted using the object-tracking benchmark dataset. The evaluation results
indicated competitive results for some video attributes through various experiments. By conducting
experiments, the proposed method achieved competitive results for some video attributes, with a
success metric of 0.632 and a precision metric of 0.856 as quantitative values.

Keywords: object tracking; convolution neural network; artificial intelligence; Siamese network;
image similarity; computer vision

1. Introduction

Visual object tracking (VOT) is one of the popular research subjects in the computer
vision field due to the advantages that can be applied to visual-based application programs,
such as factory automation monitoring, autonomous driving, intruder monitoring, and
drone work [1–4]. VOT is regarded as the most challenging and fundamental field because
it has to steadily search and track a specific target in video frames. The general VOT process
serves to track a target object using a bounding box, which is given in the first frame [5–7].
However, information that is obtained from the first frame is not sufficient to track a target
object that is present in all frames. With a lack of feature information, object tracking is
likely to fail [8,9]. Thus, high-level feature extraction is needed to represent objects well.

Although studies on object tracking have been conducted over the past decade, object
tracking is still difficult due to many shortcomings in videos that capture the real world,
such as shape conversion, illumination variation, and occlusion. The success of object track-
ing is dependent on how the information representing objects can robustly represent objects
against various problems. Because of this, various approaches have been proposed to solve
these problems in object tracking. The existing appearance-model-based tracking method
employs a creation or identification model to separate the foreground and background [10].

This method depends on features created using hand-crafted methods. There are
related drawbacks, such as not being able to exhibit the key information of the target object
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or not responding to a change in appearance robustly. To solve these problems, robust
features that can represent the attributes of the target object should be extracted, and an
appearance model needs to be created. The appearance model created through this process
searches for a target in the image frame region and removes the external noise elements.

The two categories in this study are a generative method that focuses on appearance
model creation and a discriminative method. In the generative method, the appearance of
the target object is configured through the statistical model using object region information
estimated from the previous frame. To maintain appearance information, studies on
sparse representation and cellular automata have been conducted [11,12]. In contrast, the
discriminative method aims to train a classifier that distinguishes objects and surrounding
backgrounds. Studies on support vector machines and multiple instance learning have
been conducted for classification [13,14]. However, since such methods employ hand-
crafted features such as color histograms, poor information is only extracted, which cannot
effectively respond to various changes in environments contained in videos.

Deep learning has shown outstanding results in the field of computer vision by
introducing powerful algorithms that can automatically extract and learn complex patterns
and features from visual data. By applying deep learning, various advantages can be
obtained, such as improved accuracy and robustness through the learning and extraction
of hierarchical representations of visual features from large datasets. Additionally, deep-
learning models learn end-to-end mappings from raw inputs to outputs, greatly reducing
complexity and making the models easy to implement. Deep learning also has scalability,
making it suitable for applications beyond computer vision, such as the medical field [15,16].
This scalability allows for the efficient processing of large amounts of data, leveraging
the parallel processing capabilities of deep-learning models. As a result, models can be
developed to handle increasingly complex tasks and data in various domains.

Recent study methods have focused on deep features based on deep learning, shifting
from existing hand-crafted methods. Deep features can be mainly obtained using a con-
volutional neural network (CNN). Features based on CNNs exhibit good performances
in a wide range of visual recognition tasks. Since high-level information can be extracted
through the multilayers in a CNN, it is gaining ground as a key method that can overcome
the limitations of the tracking algorithm applied via the hand-crafted method. A CNN
is trained using a large amount of image data and numerous object class types. Features
extracted with a CNN show good performances in representing high-level information
and distinguishing objects in various categories. Thus, it is important to use deep features
extracted from a CNN for VOT applications.

In this paper, unique features of the target object and search region are extracted
using a CNN and are used in the object-tracking algorithm by comparing similarities. The
tracking problem is regarded as a method to search specific objects inside an image through
a similarity comparison rather than considering this as a problem to classify target objects.
Image similarity involves a task to compare features of the target object and features of
objects that are present in the image plane. Existing CNNs have focused on generalization
performance to classify a large number of classes in many types. Because of this, it has
caused a low performance for object location identification. Thus, a customized CNN, in
which all layers are convolutional, is produced by removing a fully connected layer to
preserve object location information. For the similarity comparison, a customized CNN is
configured as a Siamese network consisting of a Y-shaped branch network. Since this
network is composed of the same weight and shape, similar features are extracted if similar
images are input. These features are then input into a fast Fourier-transform (FFT) layer,
thus performing a similarity comparison. A region proposal network (RPN) is used to infer
a region where the target object is present from the region with the highest similarity.

The main contributions of this paper are as follows. First, we propose a method
to increase the robustness of the tracking algorithm by applying FFT to capture global
frequency information of the feature map, which can reduce sensitivity to image distortions
and noise. Second, we employ a method to leverage the hierarchical characteristics of
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a Fully Deep CNN, which can effectively utilize both spatially detailed and semantic
information. Third, we suggest a region regression technique that examines feature maps
generated from various layers and uses deep convolution features and an RPN.

The present paper is organized as follows. In Section 2, studies on VOT are sum-
marized. Section 3 describes a fully convolutional Siamese network for object tracking,
while Section 4 describes the experimental results of the proposed tracking algorithm
and performance comparison. Lastly, Section 5 presents the conclusion of this study and
future research.

2. Related Studies
2.1. Tracking Algorithm Based on Correlation Filter

A correlation filter that is applied to VOT creates an appearance model using features
extracted through hand-crafted filters. This appearance model is trained while renewing
appearance weights in the partial region of the object obtained in each video frame. Keen
attention has been paid to this process due to the high computation efficiency as a result
of using FFT. To guarantee the speed of the algorithm, the minimum output sum of the
squared error methodology that learns a minimum output sum of a squared error filter
on the luminance channel was studied [17]. Furthermore, extended studies to improve
the tracking accuracy have been proposed using context learning and a kernelized cor-
relation filter [18,19]. Generally, a correlation filter that exhibits strong signals generates
a correlation peak in each interested patch of the frame and produces a low response in
the background region. A spatially regularized discriminative correlation filter (SRDCF)
tracker imposes constraints on the correlation filter coefficients according to locations us-
ing a spatial regularization component in training to induce boundary effects [20]. The
MCCTH-Staple tracker combined various types of features and configured various experts
through DCF, thus independently tracking the target object with each expert [21]. Channel
and spatial reliability concepts were applied to discriminative correlation filter (DCF) track-
ing, and the spatial reliability map was used for the filter adjustment in the partial region of
the target object [22]. Improved kernelized correlation filters employ multichannel features,
and they are the most widely used filters because of their overall outstanding performance
and high frame-per-second rate [23].

2.2. Tracking Algorithm Based on CNN

CNNs have been used to obtain technical features, being validated in various works as
an emerging network with excellent capability in computer vision and pattern recognition,
such as image and video classification and object recognition [24,25]. It is important to
use features that can be obtained from each convolution layer in the CNN for VOT. Visual
representation plays the role of the key element in object tracking. Existing tracking
algorithms employ a large number of hand-crafted features to represent a partial space and
target shape, such as a color histogram [26,27].

More recently, studies on the application of CNNs’ deep features in tracking algorithms
have been conducted. A deep-learning tracker that used a multilayer auto-encoder network
was proposed [28]. DeepTrack consists of two-layer CNN classifiers using binary samples,
while model updates are conducted via fine adjustment online [29]. Studies on the use
of neural networks that learn a target-specific saliency map for tracking have also been
conducted [30,31]. A tracking algorithm that adopted hierarchical features that were
individually output from the convolution layer in the network was proposed to guarantee
the tracking accuracy and robustness of VOT [32].

3. Proposed Method

In this section, the proposed tracking algorithm is described, as shown in Figure 1. The
target object and search region images are used for the network input. The main features
are extracted from the target object and search region in the Fully Deep CNN. This network
is a Siamese network consisting of a Y-shaped branch network. Each feature passes through
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an FFT layer included in the RPN, thus classifying objects and calculating the bounding
box center coordinates.
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Figure 1. Proposed tracking algorithm with Siamese network: (a) input image, (b) Siamese
network consisting of fully convolutional neural network for feature extraction, (c) RPN where
FFT computation is applied to predict the object region and bounding box coordinates, and
(d) tracking result.

3.1. Siamese Network with CNN for Feature Extraction

Studies using features obtained with a CNN have been positioned as the key important
element in the computer vision area. It is important to use features obtained with a CNN for
robust VOT. In a standard CNN, features are extracted using a convolutional layer, and
results are produced in a fully connected layer. However, there is a limitation in the fully
connected layer from the VOT viewpoint. It is a problem of the disappearance of spatial
location information.

Figure 2 shows that spatial information is maintained when only a convolutional
layer is used. It is effective to use a fully connected layer because generalization should
be performed inside the same class in a simple-class classification problem, and variables
such as location information should not change. However, the purpose of VOT is not to
infer a specific class but, rather, to infer the location of the target object that is present in
a video frame. Thus, it is not appropriate to use a fully connected layer where location
information disappears. In this paper, a customized network in which the fully connected
layer is removed is developed. By deeply stacking convolutional layers, spatial information
is maintained, and semantic information is used, as shown in Figure 2. To configure a
deep convolutional layer, a convolutional block consisting of 1 × 1 and 3 × 3 filters was
applied. The input feature map was compressed using a 1 × 1 filter, and the feature map
was expanded using a 3 × 3 filter. A high-level feature map could be obtained because
more convolutional layers could be stacked, even if the same number of parameters was
used, by applying a convolutional block.

Figure 3 shows the feature map produced in the visualized convolutional layer.
Figure 3a shows the input image, and 3b–d show the output results using the same layer
and filter. The figures demonstrate that the output feature map, after passing through
the convolutional layer, represented the location information and feature owned by the
object. In this paper, a custom-tailored CNN was configured with a Siamese network for
feature extraction.

Siamese networks are a type of deep-learning architecture specialized in tasks related
to comparing the similarity between two pairs of input data. In particular, it serves as a
core method in data-comparison-based applications, such as face recognition and signature
verification systems. The fundamental concept of Siamese networks involves training the
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network on pairs of datapoints to learn a similarity metric between two inputs. A Siamese
network encompasses four main features. Firstly, two pairs of data are input to the network
in the form of pairs. If the input data type is an image, the reference image and the image
to be compared are configured as a pair and fed into the network. Secondly, all parameters
of the network are shared with each other. A Siamese network consists of a Y-shaped
branch network with two identical structures, as shown in Figure 4. Since a Siamese
network employs the same CNN, it is characterized by parameter and weight sharing.
Although data pairs are input individually, the same parameters are used throughout the
process. Thirdly, data features are extracted through the same network. The structure
used for feature extraction may vary depending on the architectural layer that constitutes
the network. If similar images are input, a similar feature map is produced. Images pass
through the network to extract more detailed features. Lastly, a distance function is utilized
to measure the similarity between the features of the extracted data. It quantifies the degree
of similarity or distance between features of data pairs extracted from the network. General
neural networks train a method to predict multiple classes, whereas a Siamese network can
train the comparison of similarity between two images. The proposed architecture of the
Siamese network is shown in Figure 5.
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of first convolution block.

Figure 5 shows the network structure used to solve the tracking problem. It was
designed by stacking a convolutional block consisting of convolutional layers that in-
cluded kernels measuring 1 × 1 and 3 × 3 in size to increase the number of kernels that
extracted features. The final output feature map in the tracking object region measured
18 × 18 × 256 in size, and the final output feature map in the search region measured
34 × 34 × 256 in size.

Meanwhile, Figure 6 shows the visualized heat map measuring image similarity using
the output feature map. The brighter the section, the higher the similarity. This result
verifies that the target object region could be approximated. However, we needed to obtain
high-level information, such as coordinates, using a feature map to infer an accurate region.
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3.2. Region Proposal Network for Estimating Object Area and Coordinates

In Faster R-CNN, an RPN (region proposal network) [33] is introduced to predict
bounding box coordinates around objects present in an image. The RPN takes as input a fea-
ture map generated via passing the image through a convolutional neural network (CNN).
This feature map encodes structural features and spatial information related to target ob-
jects. For the object region, feature maps of the target object and search region, which are
finally produced in a Siamese network, are used.

Figure 7 shows the anchor box structure that infers coordinates in an RPN. An anchor
box is arranged in every cell of the feature map. The number of anchor boxes can be
arbitrarily set. It can be advantageous to infer more accurate object regions if the number
of anchor boxes whose sizes are different increases. Conversely, as the number of anchor
boxes increases, so does the number of computations.
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The primary function of the RPN is to predict anchor box coordinates through regres-
sion and determine whether an object is present within each anchor box. Each anchor box
is defined by four values: center X, center Y, width, and height. The number of anchor
boxes varies based on the chosen box scale and aspect ratio. For instance, with a scale of
three and an aspect ratio of two, six anchor boxes are generated. Each anchor box is placed
individually in each cell of the feature map. Each anchor box is associated with one of
three labels. A positive number indicates that there is significant area overlap between the
object and the anchor box. A negative number indicates little or no overlap with the object,
and −1 is data that do not fall into either the positive or negative categories. Data with
−1 labels are ignored during the training process of the RPN to avoid interference.

The RPN performs binary classification to determine whether each anchor box con-
tains an object or not. This classification yields probabilities ranging from 0 to 1. Boxes
with probabilities close to 0 are classified as background, while those approaching 1 are
considered to contain a substantial portion of an object.

The object existence in the anchor box and the inference of boxes are conducted in the
converted frequency domain using FFT. The advantages of applying FFT in convolution
are as follows. Firstly, in terms of computational speed, FFT-based convolution exhibits
higher computational efficiency compared to traditional spatial domain convolution. This
efficiency is particularly pronounced when processing large input data or kernels. While
the computational complexity of conventional convolution is O

(
N2), FFT-based convo-

lution reduces it to O(Nlog N) . Here, N denotes the size of the input data or feature
map. Secondly, FFT-based convolution excels in handling large kernels. As the kernel
size increases, the computational cost of conventional convolution escalates. In contrast,
FFT-based convolution maintains a relatively consistent performance, making it advan-
tageous for operations involving large kernels. Consequently, performance gains can be
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achieved by integrating both conventional and FFT-based convolutions. Lastly, from the
perspective of convolution theory, convolution is equated in the spatial domain to multipli-
cation in the frequency domain. This equivalence offers the advantage of easily modifying
and applying algorithms. The convolution in the spatial domain can be simply represented
by the Hadamard product in the frequency domain that is obtained through FFT. It is
converted into a frequency domain by applying FFT to the feature map of the target object
and search region. In the feature map, which is used to determine whether an object is
present in the anchor box region, FFT is applied as represented in Equations (1) and (2).
In the feature map, which is used to infer the center coordinates of the anchor box, FFT is
applied as represented in Equations (3) and (4).

Tcls(u, v) = FFT(tcls(x, y)) (1)

Scls(u, v) = FFT(scls(x, y)) (2)

Tanch(u, v) = FFT(tanch(x, y)) (3)

Sanch(u, v) = FFT(sanch(x, y)) (4)

In these equations, cls refers to the object classification, and anch refers to the anchor
box. t and s refer to the feature maps of the target object and search region, respectively.
x and y refer to the location of each cell in the feature map. u and v refer to the coordinates
in the frequency domain. T and S refer to the feature maps, which are represented in the
frequency domain.

Figure 8 shows the FFT convolution process. To multiply each component in two
feature maps, the size should be the same. However, the feature map of the target object
is smaller than the feature map of the search region. Thus, it is necessary to match the
size of the feature map of the target object with the size of the feature map of the search
region. The reference region of the feature map is located at the edge of the upper end on
the left side. For the other regions, zero padding is applied. Zero padding refers to filling
the space with a zero. By filling it with a zero, it does not influence the FFT calculation and
increases the resolution of the frequency domain. The input feature map and kernel that
are converted into the frequency domain are calculated using the Hadamard product, as
represented in Equations (5) and (6). This process offers more advantages in calculation
speed than standard convolution because the product is conducted between the elements,
which is different from that of standard convolution.

Ocls(u, v) = Tcls(u, v)
⊙

Scls(u, v) (5)

Oanch(u, v) = Tanch(u, v)
⊙

Sanch(u, v) (6)
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In Equations (5) and (6),
⊙

refers to the Hadamard product, which acquires Ocls(u, v)
for object classification and Oanch(u, v) for anchor box inference as the output. Each out-
put is restored to the spatial domain by applying InverseFFT to each output. The re-
stored final output includes the x, y, width, height of each anchor box and a probability for
object classification.

4. Experiments
4.1. Experiment Environment

The hardware specifications used in the experiment are described in the following.
For the CPU, Intel Core i7 8 Generation 8700K and, for the GPU, NVIDIA TITAN X pascal
12GB were used. The proposed algorithm was implemented using PyTorch version 1.8. In
this study, the ILSVRC2015 VID dataset [34] was used for training the tracking network
as training data. ILSVRC VID is a dataset constructed for the object detection field. It
is an expanded version of the ILSVRC dataset used for image classification and object
detection. Unlike classification datasets, ILSVRC VID consists of video sequences and
frame data and is specialized and suitable for object-tracking tasks. To quantitatively
evaluate the algorithm, the object-tracking benchmark (OTB) dataset [35] was used. The
ILSVRC 2017 VID dataset was divided into training and validation sets that consisted
of 3862 video snippets and 555 video snippets, respectively. For the network training,
extracted images with one frame were used, with the number of frames that made up each
video being different.

The object region could be acquired using the annotation that was assigned for each
frame. The annotation was composed of the bounding box coordinates (xmin, ymin,
xmax, ymax) and frame size. The OTB dataset, which was used to quantitatively evaluate
the tracking algorithm, consisted of around 100 video datasets, including 11 different
attributes such as illumination variation (IV), scale variation (SV), and occlusion (OCC).
The detailed attributes are presented in Table 1. A video contained one or more attributes.
The evaluation was conducted in this study using OTB-100, which consisted of 100 video
datasets, and OTB-50, which consisted of 50 video datasets containing videos that were
relatively difficult to track. The OTB dataset also included an annotation. The target object
region was initialized using the annotation of the first frame in the video for the qualitative
evaluation. The annotation was not used in the tracking process but was used as the ground
truth when conducting the performance evaluation.

Table 1. Description of attributes contained in the videos of the OTB dataset.

Attribute Description

Background Clutter (BC) Color or texture created similar to the object
Deformation (DEF) Non-rigid deformation of the object
Fast Motion (FM) Fast motion of the object detected

In-Plane Rotation (IPR) Object rotation detected in the image
Illumination Variation (IV) Illumination variation in the target object region

Low Resolution (LR) The low resolution of the object
Motion Blur (MB) Motion blur occurred in the target object
Occlusion (OCC) Occlusion generated in the target object region

Out-of-Plane Rotation (OPR) Object rotation detected outside the image
Out-of-View (OV) Some regions of the object moved outside the image

Scale Variation (SV) Scale variation in the tracking object

4.2. Network Training

The ILSVRC 2015 dataset was used to train the proposed Siamese network. A pair of
two images that were arbitrarily extracted from the dataset was used for the network input.
Each image was extracted from the same video, which was used as the target object and
search region. The sequence order was ignored in the image extraction process because the
training was conducted through the similarity comparison of the objects in the network.
The images used in learning were passed through preprocessing and then employed in
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the network training along with the normalized anchor box coordinate labels and object
classification labels.

Figure 9 shows the pair of preprocessed learning images. Figure 9a,b show the original
and preprocessed images of the target object, while Figure 9c,d show the original image of
the search region and the final image after completing preprocessing, respectively. They
were reconfigured so that the center point in the object region is positioned in the center
of the image. The target image and search region were converted into dimensions of
127 × 127 and 255 × 255 in size, respectively, for the network input. In the size conversion,
the margin was cut while maintaining the image ratio to preserve the shape of the object.
Preprocessed images were reprocessed because the coordinates in the region where the
object was located changed according to the conversion ratio, thus producing the anchor
box coordinate labels. The classification label was used to determine whether the target
object existed inside the anchor box. If the object existed, a one (otherwise a zero or −1)
was assigned. The object’s existence was determined by the intersection result between
the created anchor box region and the object region specified in the annotation of the
training image.
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The intersection over union (IOU) was used to calculate the intersection ratio. If the
IOU was more than 60%, it was determined that the object existed by assigning a one to
the anchor box. If the IOU was less than 50%, it was determined that the object did not
exist in the anchor box by assigning a zero to the anchor box. If the IOU was between 50%
and 60%, it was determined that the object’s existence was unclear. In that case, a − 1 was
assigned so as not to affect the weight training. The number of classification labels was
created, which was the same as the number of anchor boxes.

The loss function used in the network training had two types, namely the SmoothL1Loss
function used to estimate the anchor box coordinate and the cross-entropy function used
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to classify objects. Equation (7) presents the SmoothL1Loss equation. In this equation,
β refers to the hyperparameter, which is generally defined as one.

SmoothL1 =

{
0.5(xn−yn)

2

β , i f |xn − yn| < β

|xn − yn| − 0.5× β, otherwise
(7)

In Equation (7), if the |xn − yn| value is smaller than the β term, a square term is used.
Otherwise, the following L1 term is used. Due to this characteristic, it is less sensitive
to abnormal values, and gradient exploding can be prevented. Equation (8) presents the
cross-entropy function.

losscls = −log
(

exp(x[class])
∑j exp(x[j])

)
= −x[class] + log

(
∑j exp(x[j]

)) (8)

The final loss function is calculated by summing Equations (7) and (8), which are
aggregately represented in Equation (9).

losstotal = SmoothL1 + losscls (9)

4.3. Quantitative Evaluation Metrics

In this paper, the performance evaluation of the proposed tracking algorithm was
conducted using the OTB-50 and OTB-100 benchmark datasets that contained different
video attributes. OTB-50 and OTB-100 consisted of 50 and 100 types of videos, respectively.
The number of frames in each video was different, and in the evaluation of the proposed
algorithm, precision and success plots were used. The precision plot calculated a difference
in the center coordinates from the ground truth (GT) coordinates manually obtained in the
annotation of the frame and predicted object region(PR). The higher the index, the more
robust the algorithm tracking without drifting. The success plot referred to the index that
showed an intersection ratio of bounding boxes that surrounded the object region. The
intersection ratio was calculated as shown in Figure 10.
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The intersection ratio was calculated using the GT coordinates that were manually
obtained in the annotation of the frame and predicted region coordinates. As shown
in Figure 10, GT refers to a bounding box region consisting of GT coordinates, and PR refers
to a bounding box region of the object produced via tracking with the user’s tracking
algorithm. Equation (10) is used to calculate the intersection ratio.

IoU(GT, PR) =
Area(GT ∩ PR)
Area(GT ∪ PR)

(10)
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The denominator of Equation (10) is the union region of GT and PR in Figure 10b. The
numerator is the intersection region of GT and ST in Figure 10a. To express the performance
rank, the area under the curve was used.

4.4. Experiment Results

In this paper, two quantitative evaluation indices of precision and success plots were
used to evaluate the performance of the tracking algorithm. The performance verification
of the proposed algorithm was conducted using the BACF [8], MCCTH-Staple [19], and
CSRDCF-LP [20] tracking algorithms. The colors in the produced bar graph consisted, in
order, of red, yellow-green, sky blue, and purple from the first to fourth ranks.

Figure 11 shows the performance evaluation results using the OTB-50 benchmark
dataset. The proposed algorithm achieved a 0.581 success score and a 0.811 precision score,
which were the highest scores.
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Table 2 presents individual results of 11 attributes. The highest value is expressed in
bold font. The proposed algorithm exhibited better results in the OCC, OV, FM, MB, SV,
DEF, and OPR attributes than those of the comparable algorithms. However, it showed
a worse performance in the IPR, IV, and BC attributes, given by a 0.535 success score in
the LR attribute, which was lower than that of MCCTH-Staple. However, it did achieve a
0.879 precision score, which was the best result. These results indicated that the error of the
intersection ratio between the GT and the predicted box was relatively higher than those of
other algorithms, whereas the GT and center point error were lower. It can be deduced that
the tracking success rate of the proposed algorithm was high.

Figure 12 shows the performance evaluation results using the OTB-100 benchmark
dataset. The proposed algorithm achieved a 0.632 success score and a 0.856 precision score,
which were the highest scores. Table 3 presents the scores for each attribute. The proposed
algorithm exhibited higher scores in the OCC, OV, FM, MB, SV, DEF, and OPR attributes,
showing the robustness of the algorithm. It also showed a weakness in the BC attribute,
which was also shown using OTB-50. However, it showed strength in both the success
score for the IV attribute and the precision score for the LR attribute.
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Table 2. Quantitative evaluation results of proposed tracking algorithm using OTB-50 dataset.

Metrics Proposed MCCTH-
Staple BACF CSRDCF-LP

Total
Success 0.581 0.549 0.550 0.502

Precision 0.811 0.713 0.757 0.662

IPR
Success 0.521 0.514 0.540 0.462

Precision 0.745 0.683 0.748 0.607

OCC
Success 0.567 0.552 0.516 0.464

Precision 0.821 0.715 0.708 0.608

OV
Success 0.560 0.491 0.483 0.435

Precision 0.804 0.671 0.704 0.624

IV
Success 0.566 0.549 0.587 0.466

Precision 0.766 0.724 0.792 0.607

LR
Success 0.535 0.571 0.437 0.486

Precision 0.879 0.834 0.695 0.711

BC
Success 0.572 0.517 0.585 0.445

Precision 0.772 0.679 0.797 0.575

FM
Success 0.578 0.524 0.534 0.536

Precision 0.770 0.646 0.749 0.693

MB
Success 0.578 0.492 0.542 0.535

Precision 0.791 0.625 0.756 0.692

SV
Success 0.577 0.525 0.506 0.470

Precision 0.801 0.680 0.710 0.622

DEF
Success 0.530 0.530 0.514 0.493

Precision 0.753 0.692 0.710 0.688

OPR
Success 0.543 0.536 0.518 0.432

Precision 0.780 0.694 0.719 0.562
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Table 3. Quantitative evaluation results of proposed tracking algorithm using OTB-100 dataset.

Metrics Proposed MCCTH-
Staple BACF CSRDCF-LP

Total
Success 0.632 0.616 0.602 0.585

Precision 0.856 0.799 0.817 0.764

IPR
Success 0.559 0.565 0.567 0.534

Precision 0.791 0.754 0.792 0.716

OCC
Success 0.618 0.595 0.560 0.527

Precision 0.843 0.756 0.756 0.671

OV
Success 0.604 0.529 0.529 0.508

Precision 0.830 0.730 0.740 0.685

IV
Success 0.638 0.592 0.627 0.564

Precision 0.829 0.755 0.830 0.721

LR
Success 0.514 0.572 0.446 0.495

Precision 0.880 0.851 0.729 0.743

BC
Success 0.629 0.610 0.646 0.553

Precision 0.843 0.788 0.863 0.715

FM
Success 0.619 0.580 0.572 0.593

Precision 0.814 0.713 0.782 0.759

MB
Success 0.631 0.570 0.584 0.584

Precision 0.823 0.705 0.777 0.732

SV
Success 0.599 0.585 0.538 0.537

Precision 0.817 0.766 0.764 0.710

DEF
Success 0.591 0.586 0.555 0.544

Precision 0.818 0.779 0.777 0.747

OPR
Success 0.598 0.585 0.566 0.524

Precision 0.831 0.769 0.788 0.694

The highest success scores were found to be 0.578 for the FM attribute using OTB-50 and
0.638 for the IV attribute using OTB-100. The highest precision scores were found to be
0.879 and 0.880 for the same LR attribute in both datasets. Figure 13 shows the tracking
results of the highest-scoring attributes using OTB-50 and OTB-100. In the figure, the green
box indicates the GT region, and the red box indicates the object region extracted using the
proposed algorithm. Figure 13a depicts the FM attribute results, in which the target object
that appeared in frame Nos. 10 and 11 moved fast, with the moving distance being long
between the continuous frames. In this process, this figure showed that a blur phenomenon
occurred, but the object region was well-preserved and tracked.

Figure 13b shows the IV attribute results. Although illumination variation occurred
over the entire target object and partial region due to shade, the proposed algorithm tracked
a target object region similar to that of the GT region. Figure 13c shows the LR attribution
results. This figure depicts that the object regions of frame 1530 and 1904 were smaller than
the initialized object region in frame No. 0. Although errors occurred in the intersection
region, the object was well-tracked without a drift phenomenon.

Meanwhile, Figure 14 shows the qualitative evaluation results of the proposed algo-
rithm. Figure 14a verifies that both the proposed and compared algorithms were robust
in sequences with partial deformation and mild occlusion. Figure 14b,c show that object
deformation was more severe than that of Figure 14a. However, the proposed tracking al-
gorithm (red box) responded more robustly compared to comparable algorithms, in which
tracking failed or the intersection ratio error was larger. Figure 14d shows the blocking of
the object with a specific obstacle. Only the proposed algorithm and the BACF algorithm
tracked the target object continuously, but tracking failed with the other algorithms in the
No. 78 frame when the target object passed through the obstacle.
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Tracking failure results of the proposed algorithm are shown in Figure 15. Example
video sequences of failure results are Biker and Birds. The target object area was initialized
using the object area given in frame 0 of Biker and Birds. In the case of Biker, the helmet
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part of the object was set as the initial area, and in the case of Birds, the body part of the
bird was selected.
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In the Biker sequence, object tracking proceeded normally until frame 66, but the shape
of the object rapidly changed in the process of moving to frame 80. In the com-parison
algorithm, object drift results were shown, and tracking failed, but the proposed algorithm
showed continuous tracking results. However, the area of the bounding box extended to
the green upper body area, not the helmet area, resulting in lower overlap accuracy. During
the process of inferring the object’s region, the candidate region’s range was expanded
between frames 66 and 79, leading to an erroneous detection.

The Birds sequence showed correct inference in situations where objects appeared,
but tracking failed because the object was obscured by clouds from frames 129 to 183. As
a result, even if the object reappeared in frame 184, it was judged that the position of the
candidate area designated an area other than the object, causing retracking to fail. This
phenomenon could be addressed by resetting the starting position via retrieving the object’s
position if it is missed in the future using an algorithm such as a sliding window.

5. Conclusions

In this paper, an algorithm for object tracking was proposed for two items, namely success
and precision plots, using a Siamese network that was trained with the ILSVRC 2015 dataset.
The CNN that made up the Siamese network was developed from convolutional layers
to maintain spatial information. The feature maps of the target object and search region,
which included spatial and semantic information, were commonly used in the RPN, where
the Siamese network and FFT convolution were contained for tracking. In this study,
tracking was conducted, as well as inferring the object region in regions with a high object
similarity. The evaluation results indicated competitive results for some video attributes
based on various experiments. However, the proposed algorithm exhibited a limitation
in the in-plane rotation and background clutter attributes. To address this limitation,
future studies should be conducted to enhance tracking performance by extracting only
the necessary information required for object tracking within a small region. Specifically,
we plan to investigate a novel feature map selection method using graph concepts to
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choose discriminative features while discarding noisy or irrelevant ones and to analyze
the interrelationship of information surrounding objects. This future study aims to further
improve tracking performance and overcome the challenges faced in the current study.
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