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Abstract: In the domain of Intelligent Transportation Systems (ITS), ensuring reliable travel time pre-
dictions is crucial for enhancing the efficiency of transportation management systems and supporting
long-term planning. Recent advancements in deep learning have demonstrated the ability to effec-
tively leverage large datasets for accurate travel time predictions. These innovations are particularly
vital as they address both short-term and long-term travel demands, which are essential for effective
traffic management and scheduled routing planning. Despite advances in deep learning applications
for traffic analysis, the dynamic nature of traffic patterns frequently challenges the forecasting capa-
bilities of existing models, especially when forecasting both immediate and future traffic conditions
across various time horizons. Additionally, the area of long-term travel time forecasting still remains
not fully explored in current research due to these complexities. In response to these challenges,
this study introduces the Periodic Transformer Encoder (PTE). PTE is a Transformer-based model
designed to enhance traffic time predictions by effectively capturing temporal dependencies across
various horizons. Utilizing attention mechanisms, PTE learns from long-range periodic traffic data
for handling both short-term and long-term fluctuations. Furthermore, PTE employs a streamlined
encoder-only architecture that eliminates the need for a traditional decoder, thus significantly sim-
plifying the model’s structure and reducing its computational demands. This architecture enhances
both the training efficiency and the performance of direct travel time predictions. With these enhance-
ments, PTE effectively tackles the challenges presented by dynamic traffic patterns, significantly
improving prediction performance across multiple time horizons. Comprehensive evaluations on
an extensive real-world traffic dataset demonstrate PTE’s superior performance in predicting travel
times over multiple horizons compared to existing methods. PTE is notably effective in adapting to
high-variability road segments and peak traffic hours. These results prove PTE’s effectiveness and
robustness across diverse traffic environments, indicating its significant contribution to advancing
traffic prediction capabilities within ITS.

Keywords: Intelligent Transportation Systems; travel time prediction; multi-horizon prediction;
periodic data processing; transformer

1. Introduction

Intelligent Transportation Systems (ITS) have experienced significant growth driven
by increasing urbanization and the increasing demands for efficient transportation manage-
ment. These systems leverage advanced data analytics and real-time control mechanisms
to enhance the reliability, safety, and efficiency of transportation networks. As urban pop-
ulations grow and transportation becomes more complex, ITS are required to handle not
only the immediate fluctuations in traffic but also to anticipate long-term changes and
challenges. Consequently, the evolution of these systems demands the development of
advanced predictive technologies capable of operating across multiple time horizons. This
capability is crucial for effectively managing day-to-day operations while also supporting
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strategic decisions that ensure sustainability and resilience in transportation planning. By
predicting traffic patterns minutes to hours or even days in advance, ITS can improve traffic
flow, reduce congestion, and enhance urban mobility in both the short and long term.

Travel time prediction is a fundamental component of ITS that significantly contributes
to the efficiency and reliability of transportation systems. Accurate predictions of travel
times are essential for route planning, congestion management, and overall traffic enhance-
ment. For example, they enable commuters to make informed decisions, reduce waiting
times, and enhance their commuting experience. As transportation networks grow in
complexity, the ability to predict travel times accurately over multiple horizons—from
a few minutes ahead to several hours—becomes critical for operational efficiency and
strategic planning.

Traffic prediction often employs traditional statistical methods such as Historical
Averages (HA) and ARIMA (Autoregressive Integrated Moving Average) due to their
straightforward computational frameworks and strong theoretical foundations [1–3]. These
methods, particularly effective for simple, short-term forecasts, rely heavily on stable
historical data patterns. HA averages historical data for predictions, which is suitable
for short-term forecasting. However, these methods face limitations when dealing with
multivariate time series or dynamic traffic conditions that require adaptation to rapid
changes. These limitations highlight a need for more advanced forecasting techniques to
handle the complexity and variability of long-term traffic predictions.

The advent of data-driven approaches, particularly those leveraging machine learning
and deep learning, has transformed traffic prediction methodologies. These methods utilize
vast amounts of data to learn complex patterns and dependencies, which are often invisible
to traditional statistical methods. In traffic prediction, deep learning techniques such as
recurrent neural networks (RNNs) and long short-term memory (LSTM) networks have
initially shown promise in handling temporal dependencies and variable traffic conditions.
Early studies highlighted the efficacy of LSTM networks in predicting traffic flow dynam-
ics [4]. Further research by [5] expanded the use of LSTM models to encompass travel time
prediction, validating their effectiveness in practical settings. Subsequent studies have
innovated by integrating Convolutional Neural Networks (CNNs) with LSTMs, enabling
the simultaneous processing of spatial and temporal traffic data to enhance prediction
precision [6]. Moreover, recent advancements have included weather data integration into
deep learning frameworks to enhance the accuracy of travel time predictions [7]. Despite
these successes, many current models are primarily designed for short-term predictions
and face challenges in long-term forecasting due to their limited ability to effectively handle
extended-range dependencies.

In recent years, transformer-based methods have revolutionized deep learning, espe-
cially in the analysis of sequence data. By utilizing attention mechanisms, these models
can interpret complex relationships across extended time periods, establishing their supe-
riority over traditional models in scenarios that demand an understanding of long-term
dependencies. Transformers have shown versatility and efficacy in traffic prediction within
various aspects of ITS. They excel in applications ranging from traffic speed analysis [8]
to travel time prediction [9], and traffic flow forecasting [10–13]. These methods show
their strengths in handling diverse data types, demonstrating their capability to meet
the complex demands of modern traffic systems. Models such as the Informer [14] and
PDFormer [11] address significant challenges, including high computational demands
and dynamic traffic conditions, respectively. The Informer efficiently processes long data
sequences through a ProbSparse self-attention mechanism, improving both processing time
and resource usage, which is beneficial for accurate long-term predictions. Meanwhile,
the PDFormer introduces innovative approaches to accommodate propagation delays in
dynamic scenarios, enhancing the practicality of forecasting models in ITS.

The adaptability of transformer models is further demonstrated by their capability
to manage complex spatial–temporal relationships and integrate multimodal data [15].
The Spatial–Temporal Transformer Networks (STTNs) [16] particularly demonstrate the
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ability of transformers to explore the nonlinear and dynamic dependencies typical in traffic
data, making them suitable for complex forecasting tasks. Additionally, transformers
adeptly incorporate external factors, such as weather conditions and special events, into
their predictions. This integration significantly improves model accuracy across various
traffic scenarios, as evidenced by models specifically designed to include such external
influences [12,13]. Overall, these transformer models have proven their capability to
handle complex, multifaceted data, significantly enhancing both performance and efficiency
in long-term time series analysis. Their potential within the ITS domain is significant,
demonstrating their ability to improve long-term traffic prediction by effectively managing
the intricate and varied data typical of these systems.

In advancing travel time prediction within ITS, this study introduces the Periodic
Transformer Encoder (PTE). The PTE leverages the strengths of transformer models to over-
come the limitations of existing traffic prediction methods, which are primarily designed
for short-term forecasting and remain insufficient in handling the intricacies of long-term
predictions. The PTE is specifically designed for multi-horizon prediction, adeptly handling
both immediate and extended forecasting challenges by effectively utilizing periodic data,
an aspect that existing methods have not fully explored. The contributions of this study are
detailed as follows:

• The proposed PTE framework represents a significant advancement in travel time
prediction. By learning from both short-term and long-term traffic patterns and
effectively capturing temporal dependencies across various horizons, the PTE en-
hances prediction performance for all time scales, consistently outperforming existing
methods.

• The PTE introduces a streamlined encoder-only architecture that eliminates the need
for a traditional decoder, thereby reducing model complexity and resource require-
ments. This design simplifies the training and inference processes while reducing
computational resources.

• A series of evaluations conducted on a comprehensive real-world traffic dataset
demonstrates the superior performance of the PTE. These results show that the PTE
outperforms existing methods in predicting travel times across multiple horizons.
Notably, the PTE proves its robustness in handling diverse traffic conditions and
varying degrees of complexity, affirming its capability to deliver more accurate and
reliable travel time predictions.

The rest of this paper is structured as follows. Section 2 provides an overview of
related work. Section 3 describes the proposed framework in detail. Section 4 presents the
experimental setup, and Section 5 discusses the results and implications of the experiments.
Section 6 provides a summary of the study.

2. Related Work
2.1. Short-Term Traffic Prediction

Early research in traffic prediction primarily utilized traditional machine learning
techniques. For instance, support vector regression (SVR) was employed in early works to
tackle traffic forecasting challenges [17]. The Autoregressive Integrated Moving Average
(ARIMA) model was also used to predict travel times based on historical data, achieving
effective one-step-ahead predictions [2]. Additionally, enhancements to conventional
models were proposed by the introduction of traffic trend adjustments into the K-nearest
neighbors (KNN) model, known as KNN-T [18]. Another approach combined random
vector functional link networks with empirical mode decomposition, specifically addressing
short-term traffic predictions [19].

In recent years, deep learning has significantly expanded across various fields, enhanc-
ing its utilization in traffic forecasting. Long Short-Term Memory (LSTM) networks have
demonstrated effectiveness in traffic flow prediction due to their superior capacity for cap-
turing long-term dependencies [4]. Similarly, the deployment of Long Short-Term Memory
networks combined with deep neural network layers (LSTM-DNN) has proven effective for
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analyzing travel time data on highways [20]. Convolutional neural networks (CNNs) have
been adapted to handle spatio-temporal traffic data, with local receptive fields designed
to improve predictive performance [21]. Furthermore, the integration of Gated Recurrent
Units (GRU) and XGBoost has been employed to extract hidden patterns in traffic data,
therefore enhancing the precision of predictions [22]. Significant advancements include the
development of the bidirectional spatial–temporal adaptive transformer (Bi-STAT), which
features an encoder–decoder architecture. This architecture includes spatial-adaptive and
temporal-adaptive transformer components for accurate traffic forecasting [23]. Moreover,
to capture the inherent periodicity and continuity in traffic data, models have integrated
graph convolutional networks (GCNs) for spatial dependency mapping and transformers
for temporal analysis [24]. These approaches highlight the diversity of techniques available
for short-term forecasting. However, they typically face challenges when extended to
longer durations or iterative multi-step forecasts, which can lead to error accumulation.
The challenge of modeling long-term dependencies with deep learning models remains
significant [12].

2.2. Long-Term Traffic Prediction

Long-term traffic prediction is a critical requirement for various real-world applica-
tions, leading to the development of models adept at managing complex datasets. To
address both short-term and long-term traffic flow predictions, hybrid forecasting algo-
rithms were introduced [25]. Following this, a DNN model was utilized to improve daily
traffic flow predictions in Seattle by leveraging both contextual variables and raw traffic
data [26]. Moreover, RNNs are employed to predict long-term traffic flows in urban ar-
eas, integrating meteorological and contextual data to refine predictions [27]. Subsequent
advancements led to the creation of a hybrid model that merges wavelet decomposition
with CNN and LSTM technologies [28]. This model preprocesses traffic data using wavelet
technology to effectively extract temporal features. Furthermore, a gradient boosting model,
augmented by Fourier filtering to mitigate noise and amalgamate diverse data sources, has
been adopted to tackle the challenges of long-term traffic prediction [29]. Additionally, the
deep ensemble stacked LSTM model (DE-SLSTM) incorporates weather data to adjust for
biases in forecasts that span several hours into the future [7]. These works demonstrate
the evolving scope of traffic prediction technologies, illustrating significant advancements
in addressing long-term forecasting challenges. Each work has contributed to enhancing
predictive accuracy and adapting to the complexities of traffic data in various applications.

Recent advancements have shown the effectiveness of attention-based methods in
capturing long-term dependencies. A transformer model with multi-head attention has
been introduced for long-term traffic flow forecasting [30]. The multisize patched spatial–
temporal transformer network (MSP-STTN) utilizes self-attention for enriched context mod-
eling and cross-attention for global memory learning, aiming at both short- and long-term
grid-based crowd flow predictions [12]. Furthermore, the Temporal Fusion Transformer
(TFT) merges short-term and long-term temporal patterns and uses various input types
to effectively manage prediction horizons ranging from 5 to 150 min [31]. Although these
models work to forecast traffic conditions over extended periods, the complexity of traffic
dynamics and the need for long-duration predictions present significant challenges. Par-
ticularly, error accumulation in multi-step forecasting remains a critical issue. To tackle
this, advanced models integrating attention mechanisms within an encoder–decoder ar-
chitecture have been proposed [32]. This work uses periodic data to enhance forecasting
accuracy, particularly for long-term scenarios. By focusing on relevant segments of data
through attention mechanisms, these models aim to reduce the common problem of error
accumulation observed in multi-step long-term forecasting. However, effectively bridging
the gap between short-term and long-term prediction capabilities in traffic management
remains an ongoing challenge.
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3. Proposed Methodology
3.1. Problem Formulation

This study proposes the Periodic Transformer Encoder (PTE) as a solution for estimat-
ing future travel times from past traffic data along specific road segments. The proposed
architecture is illustrated in Figure 1. Fundamental to our approach is the construction
of a transformation function f (·) for each road segment r. This function systematically
processes historical traffic data to generate forecasts of future travel times, represented as:

Xr,τ f ∆
r−→ Yr,τ,∆ (1)

where the historical traffic data Xr,τ = {xr
τ−T+1, . . . , xr

τ} comprise observations from
the last T time steps until the current point τ, and the predicted future data Yr,τ,∆ =
{yr

τ+∆+1, . . . , yr
τ+∆+T′} represent the travel times for the next T′ steps beginning ∆ time

steps after τ.
To enhance clarity and ease of understanding, the subsequent sections of this work

will not include the time and road segment indicators (r, τ, and ∆) in the notations for X
and Y.

Figure 1. Overview of the proposed framework. FC: fully connected layers, µ: mean, σ: standard
deviation of the travel time.

3.2. Data Preprocessing and Segmentation

The initial data preprocessing stages are visualized in Figure 1, highlighting the flow
from raw historical data through various transformations necessary for effective model
input preparation, following the established procedures of [32]. Initially, missing values in
the traffic data, such as travel time and speed, are filled by linear interpolation, ensuring the
temporal integrity of the data is maintained, which is crucial for the reliability of subsequent
predictions. To standardize the data and mitigate the influence of outliers, each data point is
normalized using the Z-score method, where each value is adjusted based on the mean (µ)
and standard deviation (σ) of the dataset. In addition, the traffic dataset is complemented
by a variety of temporal attributes, including day types (weekends, weekdays, national
holidays), day of the week, months, times of day, and peak periods. Each data instance is
transformed into a 316-dimensional vector, where the first two dimensions capture critical
traffic metrics—travel time and speed—and the remaining 314 dimensions are dedicated to
binary encodings of these temporal attributes, as detailed in Table 1.
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Table 1. Temporal attributes.

Attribute Dimension Description

Day type 3 Includes all calendar days categorized into Weekends, Week-
days, and National holidays

Day of the week 7 Organizes days from Monday to Sunday

Month 12 Enumerates months from January to December

Peak hours 4 Identifies four distinct traffic peaks: Morning-peak, Noon-
peak, Night-peak, and Off-peak

Time slot 288 Represents the number of 5 min intervals in a day, accounting
for each day’s full 24 h, totaling 288 time slots

Periodic segment Sd is extracted from the preprocessed historical data, where d denotes
the day prior to the current time, ranging from d = 0 to d = 7. The set S is thus composed
of these segments, S = {S0, S1, ..., S7}, which include one short-term segment and seven
corresponding week-long short long-term segments. For instance, if the current time
is 8:00 A.M. on May 8, and the goal is to predict travel times for the next hour from
8:00 to 8:55 A.M., S0 covers the one-hour period immediately preceding the current time.
Specifically, S0 = {s0

0, s0
1, ..., s0

11} includes traffic data from 7:00 to 7:55 A.M., sampled at
5 min intervals. Conversely, the short long-term segments S1 to S7 represent the same one-
hour period, each containing twelve time points from 8:00 to 8:55 A.M. Each corresponds
to the same hour on the days leading up to the prediction day, stretching back from May 7
to May 1. For a visual explanation of how these segments are structured, refer to Figure 2.
These segments, {S0, S1, ..., S7}, are aggregated into a periodic tensor S with dimensions
96 × 316. The dimension 96 represents the total number of one-hour time points across
all segments, with each Sd containing 12 time points capturing hourly traffic data. The
second dimension, 316, is a 316-dimensional vector representing various traffic-related
metrics and temporal attributes for each time point. The aggregated periodic tensor is
embedded with temporal positional information, resulting in a component termed the
temporal encoded periodic segment. This step delivers important information to the model
about the sequence order, employing Positional Encoding techniques, as described in [33].
Positional encoding is applied to the input embeddings at each position using sine and
cosine functions of different frequencies:

PE(pos, 2i) = sin

(
pos

10000
2i

dmodel

)
,

PE(pos, 2i + 1) = cos

(
pos

10000
2i

dmodel

)
.

Here, pos represents the position within the sequence, and i denotes the dimension
index. Each position in the input sequence receives a unique positional encoding. The
dimension of the model, dmodel, is set at 316, which also corresponds to the dimension of
each embedding. The output dimensions remain identical to those of the input. These
segments, termed temporal encoded periodic segments, are subsequently fed into the
Periodic Transformer Encoder.
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Figure 2. Visual representation of periodic segments extracted from traffic data, showing both short-
term and week-long short long-term segments based on the current time at 8:00 A.M. on May 8, with
predictions aimed one hour ahead starting from 9:00 A.M.

3.3. Periodic Transformer Encoder

As illustrated in Figure 3, the proposed Periodic Transformer Encoder (PTE) employs
a Transformer Encoder to process the aggregated periodic tensor to capture dependencies
across various time horizons. This process enhances interactions between different periodic
elements, leading to a unified and robust representation. The temporal encoded periodic
segments, S, are input into the Transformer Encoder with dimensions of 96 × 316, which
represents 8 periodic cycles, each comprising 12 segments that correspond to one-hour time
points with 316 features each, covering both short-term and long-term dependencies. The
multi-head self-attention mechanism of the encoder is particularly effective for capturing
the long-range dependencies typical of week-long traffic data. It uses three sets of weights,
Query (Q), Key (K), and Value (V), to transform the input tensor:

Q = SWQ, K = SWK, V = SWV

These transformations project the input tensor into spaces that facilitate the computa-
tion of attention scores, calculated as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V

where dk is set as the input dimension. This mechanism enables the encoder to weigh and
prioritize different segments of the input based on their relevance to the output prediction.
Following the attention mechanism, the process continues as described in [33], involving
the addition and normalization steps and passing through feed-forward networks (FFNs)
within each encoder layer.

Finally, the output from the Transformer Encoder, maintaining the dimensions 96× 316,
Senc, is further processed through fully connected layers to predict travel times:

Y = ReLU(SencW1 + b1)W2 + b2

The dimensions transform from 96 × 316 to 12 × 1, where each output corresponds to
a predicted travel time at 5 min intervals over one hour.

Before generating the final predictions, a reverse Z-score transformation is applied.
This step is for converting normalized prediction values back to their original scale. The
reverse Z-score transformation is performed using the formula:

X = Z × σ + µ

where Z is the normalized prediction, σ is the standard deviation used during the initial
normalization, and µ is the mean of the original traffic data.
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Figure 3. Architecture of the proposed Periodic Transformer Encoder (PTE).

4. Experimental Setup
4.1. Datasets

To evaluate the effectiveness of the proposed PTE, comprehensive experiments were
conducted using the Taiwan Expressway dataset from the Freeway Bureau of Taiwan,
China [34]. This dataset encompasses traffic data for 322 road segments. Following the
procedures outlined in [32], we selected the same 15 road segments representing diverse
regions of Taiwan—Northern, Central, and Southern. These segments were chosen for
their varying travel time statistics, such as mean, standard deviation, and coefficient of
variation. This selection aims to capture a broad range of traffic conditions throughout
Taiwan, thereby enhancing the representativeness of our dataset. Such diversity is expected
to strengthen the validity of our findings across different traffic environments. Details
regarding these segments and their corresponding statistical data on travel times are
described in Table 2. The dataset covers the period from 1 October 2019 to 31 January 2021.
To ensure an equitable experimental design, the data from the first year were used for
training, the subsequent month for validation, and the final three months for testing.

Table 2. Statistical summary of travel time across selected road segments.

Area Segment ID Mean Standard Deviation Coefficient of Variation

NFB0370 886.61 337.96 0.381
NFB0431 519.68 128.97 0.248

North NFB0019 357.34 198.74 0.556
NFB0033 313.64 62.90 0.201
NFB0425 239.40 71.69 0.299

NFB0064 562.01 92.96 0.165
NFB0063 554.10 29.72 0.054

Central NFB0247 428.68 34.12 0.079
NFB0248 418.68 37.22 0.089
NFB0061 402.96 45.75 0.114

NFB0327 498.39 61.51 0.123
NFB0328 489.99 54.32 0.111

South NFB0117 398.29 16.64 0.042
NFB0124 394.05 15.32 0.039
NFB0123 392.02 26.46 0.067
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4.2. Segmentation of Traffic Conditions

To further illustrate performance under varying traffic densities, experimental results
are segmented into two time categories: peak and off-peak. Peak hours, defined as intervals
from 7:00 A.M. to 9:00 A.M. and 3:30 P.M. to 7:30 P.M., capture the typical rush hours and
are contrasted against less congested off-peak periods. This segmentation helps address
the expected greater variability during peak periods due to regular traffic patterns and
random events such as accidents, visually supported by Figure 4.

Figure 4. The standard deviation of travel times during peak (solid red area) and off-peak (dashed
blue line) hours for each road segment, visually depicted using a step line chart.

4.3. Road Segment Complexity Analysis

Empirical evaluation results are categorized based on the complexity levels of road
segments, assessing PTE on road segments with High, Moderate, and Low Variability,
determined by the standard deviation of travel times. Road segments are classified as
High Variability (standard deviation > 100), Moderate Variability (standard deviation
between 50 and 100), and Low Variability (standard deviation < 50), indicating varying
levels of forecasting challenges. The coefficient of variation (CV) is calculated as the ratio
of the standard deviation to the mean travel time and is defined as CV = σ

µ . CV is used
to quantify the variability relative to the mean, enhancing our understanding of each
segment’s predictability.

4.4. Competitive Methods

To effectively assess the capabilities of the proposed PTE, it is compared against a
range of established and contemporary models in the field. The following methods are
included in the comparative analysis:

• HA [1] employs historical averages for traffic forecasting by applying straightforward
time series regression techniques based on past data.

• LSTM [35] represents a type of recurrent neural network known for its capability to
manage sequence-based prediction challenges, including travel time forecasts.

• DNN [26] is a multi-layer deep neural network structured to address various predic-
tive tasks related to traffic, such as estimating travel durations and analyzing flow
dynamics.

• DE-SLSTM [7] augments conventional LSTM models by incorporating both short-term
and extensive historical traffic data to enhance travel time prediction precision.

• MTSMTT [36] is an approach designed for multivariate time series forecasting, which
combines BiLSTM units with attention mechanisms to extract and analyze underlying
data intricacies.
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• DHM [22] combines Gated Recurrent Units (GRU) with the XGBoost algorithm to
forecast freeway travel times and integrate these predictions using linear regression
techniques.

• TFT [31] utilizes Temporal Fusion Transformers to effectively merge different types
of inputs, demonstrating flexibility in forecasting speeds across varying freeway
conditions.

• PASS2S [32] integrates an attention mechanism into a sequence-to-sequence LSTM
model, focusing specifically on addressing the complexities of long-term travel time
predictions.

To ensure a fair comparison across all competitive methods, each model utilizes
both short-term and historical data from one week prior, aligning with the experimental
settings described in [32]. Furthermore, consistency in evaluation is maintained by utilizing
the test results from [32], thereby aligning our experimental data with the outcomes of
their research.

4.5. Parameter Settings and Evaluation Metrics

The configuration of our model’s hyperparameters is outlined in Table 3. Additionally,
three standard metrics commonly used in travel time forecasting are employed, defined
mathematically as follows:

MAE =
1

N × l

N

∑
i=1

l

∑
j=1

|yi,j − ŷi,j|, (2)

RMSE =

√√√√ 1
N × l

N

∑
i=1

l

∑
j=1

(yi,j − ŷi,j)2, (3)

SMAPE =
100%
N × l

N

∑
i=1

l

∑
j=1

|yi,j − ŷi,j|
(|yi,j|+ |ŷi,j|)/2

. (4)

where:

• yi,j denotes the actual travel time recorded for the i-th sample at time point j.
• ŷi,j represents the predicted travel time for the i-th sample at time point j.
• N is the total count of samples included in the dataset.
• l indicates the total number of time points within the forecast period.

These metrics provide a comprehensive view of the model’s performance, accounting
for different aspects of forecasting performance.

Table 3. Experimental settings.

Setting Value

Learning rate 0.0001

Batch size 128

Attention heads 4 per encoder block

Number of layers (Encoder, FC) 1, 2

Output dimension 12

Training epochs 15

Loss function Mean Square Error (MSE)

5. Results and Discussions

This section conducts a comparative analysis of the proposed PTE against established
competitive methods, focusing on two primary prediction types: short-term (within the next
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hour) and long-term (from 1 day to a week ahead). For detailed experimental conditions
regarding peak and off-peak hours, please refer to Section 4.2. The impact of road segment
variability on the prediction performance is also evaluated to provide insights into PTE’s
robustness across fluctuating traffic conditions; for more information, see Section 4.3. In
the results tables, the top-performing results are highlighted in bold, with the second-best
outcomes underscored.

5.1. Short-Term Travel Time Prediction

For short-term forecasts throughout the entire day, Table 4 demonstrates PTE’s ex-
ceptional capability in short-term forecasting, achieving the lowest error rates across all
evaluation metrics for predictions up to one hour. PTE significantly outperforms its nearest
competitors, with improvements of 10.16% in MAE, 9.91% in RMSE, and 9.16% in SMAPE,
reflecting its superior forecasting abilities for imminent travel times. Compared to tradi-
tional statistical models like HA, which typically underperform, these results indicate the
importance of advanced machine learning techniques in enhancing predictive performance.
While LSTM and DNN models are also competent at handling sequence predictions, PTE
excels particularly in managing dependencies in historical traffic patterns. Among the
evaluated methods, DHM ranks highly, benefiting from the combined effects of GRU and
XGBoost algorithms, and excelling in short-term forecasts by effectively capturing traffic
dynamics. However, PTE’s periodic encoding and direct prediction strategies lead to the
most notable performance enhancements.

Table 4. Comparison with competitive methods in short-term prediction.

All Peak Off-Peak

MAE RMSE SMAPE(%) MAE RMSE SMAPE(%) MAE RMSE SMAPE(%)

HA [1] 35.036 75.516 6.408 43.326 87.989 7.076 32.654 70.332 6.161
LSTM [35] 23.626 62.972 4.210 36.152 81.328 5.541 21.001 57.223 3.931
DNN [26] 23.695 57.216 4.389 32.605 68.975 5.342 21.827 53.581 4.189
DE-SLSTM [7] 20.994 51.870 3.934 29.003 62.941 4.861 19.315 48.498 3.740
MTSMFF [36] 26.048 59.649 5.092 32.49 70.536 5.837 23.742 54.207 4.825
DHM [22] 19.591 52.872 3.712 26.035 64.071 4.449 17.284 47.132 3.448
TFT [31] 31.964 70.441 6.118 44.852 89.494 8.029 28.362 62.695 5.620
PASS2S [32] 20.381 50.250 3.860 28.222 61.011 4.778 18.738 46.972 3.668

PTE 17.600 45.264 3.372 22.148 53.835 3.743 16.647 42.530 3.294
Improvement ratio (%) 10.165 9.922 9.160 14.928 11.761 15.868 3.687 9.456 4.464

5.1.1. Performance during Peak and Off-Peak Hours

As shown in Table 4, all evaluated methods face greater challenges during peak hours,
as reflected by increased error rates across all evaluation metrics. PTE consistently outper-
forms all competing models, offering substantial improvements during peak hours, with
performance gains of 14.92% in MAE, 11.76% in RMSE, and 15.86% in SMAPE compared
to other leading methods. These results not only demonstrate PTE’s robustness, main-
taining consistent performance despite traffic variability. In off-peak hours, where traffic
patterns are generally more stable, PTE maintains the lowest error rates across all metrics,
demonstrating its ability to adapt to different traffic densities.

5.1.2. Impact of Road Segment Complexity

In Table 5, PTE demonstrates its robustness by consistently achieving the lowest MAE,
RMSE, and SMAPE values across all types of road segments, including High, Moderate,
and Low Variability in short-term prediction scenarios. These results highlight PTE’s
ability to handle immediate traffic conditions effectively, regardless of the road segment’s
underlying complexity. While error rates increase with segment variability for all models,
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PTE excels particularly in higher-variability segments, demonstrating superior performance
in managing dynamic and unpredictable traffic patterns.

Table 5. Comparison of short-term prediction results on different types of road segments against
competitive methods.

Variability Metric DE-SLSTM MTSMFF DHM TFT PASS2S PTE Improvement Ratio (%)

MAE 38.638 44.152 34.706 57.547 37.125 31.326 9.738
High RMSE 87.794 97.656 88.262 124.223 82.990 73.597 11.318

SMAPE (%) 5.849 6.939 5.254 8.868 5.697 4.834 7.990

MAE 18.308 22.695 17.805 25.550 17.847 15.547 12.524
Moderate RMSE 57.005 62.921 57.428 68.055 55.799 51.370 7.937

SMAPE (%) 4.776 6.051 4.608 6.912 4.648 4.066 11.753

MAE 8.081 13.198 8.185 14.919 8.118 7.529 6.829
Low RMSE 18.510 25.795 20.343 27.214 19.268 17.583 5.006

SMAPE (%) 1.777 2.912 1.830 3.297 1.806 1.690 4.872

5.2. Long-Term Travel Time Prediction

Table 6 displays PTE’s performance across various time segments for long-term pre-
dictions. Across the board, PTE shows superior performance, achieving the lowest MAE,
RMSE, and SMAPE values, particularly in the comprehensive all-day category. It no-
tably outperforms specialized models like PASS2S and DE-SLSTM, which are designed for
long-term dependencies but fall short of PTE’s advanced data handling capabilities.

Table 6. Comparison with competitive methods in long-term prediction.

All Peak Off-Peak

MAE RMSE SMAPE(%) MAE RMSE SMAPE(%) MAE RMSE SMAPE(%)

HA [1] 34.516 74 6.304 43.335 87.007 7.081 32.659 70.134 6.141
LSTM [35] 31.520 74.062 5.743 43.440 89.895 6.958 29.011 69.080 5.488
DNN [26] 31.279 70.295 5.886 41.065 84 6.861 29.219 66.087 5.681
DE-SLSTM [7] 31.948 72.549 5.842 41.68 84.723 6.841 29.899 68.765 5.632
MTSMFF [36] 31.639 69.964 5.91 41.23 83.999 7.026 28.193 63.141 5.509
DHM [22] 33.281 71.896 6.245 43.506 86.560 7.459 29.609 64.803 5.808
TFT [31] 32.316 70.084 6.089 46.439 91.406 7.965 29.023 62.462 5.705
PASS2S [32] 28.929 66.695 5.373 37.596 78.879 6.211 27.105 62.947 5.197

PTE 27.380 65.764 5.063 35.689 78.137 5.783 25.632 62.016 4.912
Improvement ratio (%) 5.353 1.396 5.764 5.071 0.941 6.886 5.435 0.713 5.482

5.2.1. Performance during Peak and Off-Peak Hours

During peak hours, PTE effectively handles increased prediction complexity due to
irregular congestion events, as evidenced by its outstanding metrics compared to other
models, detailed in Table 6. This ability is vital for dynamic routing and congestion
management applications. In less challenging off-peak hours, PTE maintains superior
performance, essential for reliable planning and operational decisions, demonstrating its
consistent predictive strength across different traffic conditions.

5.2.2. Impact of Road Segment Complexity

Table 7 demonstrates PTE’s robust performance across road segments of varying
complexity. Consistently recording the lowest error rates in MAE, RMSE, and SMAPE,
PTE proves highly effective in complex traffic networks, adeptly managing the inherent
uncertainties of diverse traffic patterns. This demonstrates its capacity to deliver reliable
long-term predictions across a spectrum of traffic scenarios.
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Table 7. Comparison of long-term prediction results on different types of road segments against
competitive methods.

Variability Metric DE-SLSTM MTSMFF DHM TFT PASS2S PTE Improvement Ratio (%)

MAE 61.200 58.257 61.833 59.128 54.747 51.990 5.035
High RMSE 135.985 126.716 130.079 126.357 121.140 120.380 0.628

SMAPE (%) 8.970 8.675 9.316 8.880 8.217 7.744 5.757

MAE 23.805 24.828 25.607 25.252 22.404 21.569 3.726
Moderate RMSE 63.383 64.113 64.545 63.877 61.597 59.899 2.756

SMAPE (%) 6.395 6.706 6.985 6.858 5.996 5.754 4.050

MAE 12.999 13.997 14.604 14.683 11.764 10.746 8.650
Low RMSE 25.796 26.571 28.311 27.328 24.723 24.161 2.276

SMAPE (%) 2.867 3.074 3.191 3.250 2.587 2.369 8.429

5.2.3. Day-by-Day Performance

Figure 5 details PTE’s ability to deliver accurate long-term forecasts over a seven-day
period, showcasing how well it manages daily traffic fluctuations. This aspect is crucial for
long-term planning within Intelligent Transportation Systems (ITS), where understanding
multi-horizon prediction capabilities is vital.

Figure 5. Comparison with competitive methods in long-term prediction over a 7-day horizon.

For the 1-day-ahead prediction, PTE leads with robust performance, effectively utiliz-
ing prior data to achieve the lowest MAE and RMSE scores, demonstrating its precise grasp
of immediate traffic conditions. From 2-day to 7-day forecasts, PTE maintains lower error
rates, highlighting its consistency in adapting to daily changes, including weekday and
weekend variations. While models such as DE-SLSTM and PASS2S are designed to handle
long-term dependencies, PTE consistently outperforms them and other advanced models
such as MTSMTT, DHM, and TFT, illustrating its superior capability in long-term forecast-
ing. PTE’s performance remains notably reliable across the entire week, demonstrating its
strong predictive performance and adaptability in varying traffic conditions.
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5.2.4. Individual Segment Analysis

The analysis presented in Table 8 details PTE’s MAE performance across selected
road segments with varying traffic complexities. This day-by-day examination provides a
deeper insight into PTE’s performance trends over a week.

Table 8. Performance comparison on MAE for particular road segments.

Segment ID Method 1 Day 2 Days 3 Days 4 Days 5 Days 6 Days 7 Days

NFB0370

DE-SLSTM [7] 112.711 124.196 116.160 113.254 113.503 126.214 111.231
MTSMFF [36] 112.253 112.012 104.217 100.242 107.015 103.390 104.751
DHM [22] 105.368 112.994 118.828 115.879 115.242 118.125 103.395
TFT [31] 110.994 110.249 108.464 111.004 110.218 110.996 114.244
PASS2S [32] 100.001 102.632 99.829 101.235 99.102 101.020 99.723
PTE 94.864 98.443 96.953 94.781 97.978 99.904 98.822

NFB0425

DE-SLSTM [7] 30.622 31.292 32.338 31.655 31.893 33.589 34.009
MTSMFF [36] 30.998 31.596 32.223 31.638 31.705 31.800 30.499
DHM [22] 32.830 33.745 34.410 35.336 33.328 33.466 31.666
TFT [31] 29.216 31.592 30.776 30.884 31.463 31.534 31.898
PASS2S [32] 28.946 29.879 30.632 30.910 29.713 30.301 30.690
PTE 27.959 28.784 28.210 29.053 28.475 28.616 28.474

NFB0247

DE-SLSTM [7] 15.791 15.885 16.359 18.616 16.650 18.372 16.187
MTSMFF [36] 18.159 17.782 17.777 17.807 17.323 17.596 17.639
DHM [22] 29.039 20.302 17.884 19.488 18.607 18.829 16.430
TFT [31] 19.083 18.063 20.052 19.229 20.460 18.786 18.373
PASS2S [32] 13.838 14.505 15.057 15.831 15.213 15.119 15.167
PTE 13.421 14.341 14.642 14.746 14.750 15.046 15.001

PTE consistently excels on the high-variability segment NFB0370, demonstrating the
lowest MAE each day. This demonstrates its adept handling of the unpredictable and
complex traffic patterns typical of such roads. Its robustness in these conditions likely
stems from the effective use of attention mechanisms that selectively focus on crucial
temporal features for the forecast period. Notably, its performance remains stable across
the week, highlighting PTE’s ability to manage daily traffic fluctuations effectively.

On the moderately variable road segment NFB0425, PTE also maintains superior
performance throughout the week. Although the traffic patterns here are less complex
than those of high-variability roads, PTE’s capacity to discern and analyze key temporal
dynamics ensures consistent and reliable predictions, which is vital for long-term planning
in environments with moderate traffic variability.

For the low-variability segment NFB0247, PTE continues to lead, showing the best
performance throughout the week. Traffic on such roads is generally more predictable and
stable. Despite slight day-to-day variations in MAE, PTE consistently outperforms other
models, proving its efficacy in managing both dynamic and stable traffic conditions.

6. Conclusions

This study introduces the Periodic Transformer Encoder (PTE), designed to enhance
travel time predictions across multiple horizons within Intelligent Transportation Systems
(ITS). By leveraging the strengths of transformer models and focusing on periodic data,
the PTE successfully addresses the limitations of existing methods that primarily target
short-term forecasting and often struggle with complex long-term prediction scenarios.
The PTE’s encoder-only architecture eliminates the need for a traditional decoder, thereby
simplifying the model and significantly reducing computational demands. This design
not only streamlines the training and inference processes but also enhances the model’s
operational efficiency. Empirical evaluations on a comprehensive real-world traffic dataset
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have demonstrated that the PTE significantly outperforms existing methods across both
short-term and long-term prediction intervals. Its ability to handle complex traffic patterns
across diverse road conditions also proves the model’s versatility and robustness. The
significant improvements demonstrated by the PTE across multiple prediction horizons
indicate its potential to substantially advance the field of traffic time prediction by offering
more reliable and precise solutions.

Despite these significant advancements, opportunities for further exploration remain.
The model’s integration of multi-horizon data has yet to fully reveal the distinct impacts
of different temporal scales on prediction performance, pointing to a potential area for
more focused studies. Future work will delve into these topics more thoroughly by con-
ducting analyses to understand how various types of temporal data influence prediction
performance across different horizons. Investigating the interpretability of the attention
mechanism is a promising direction for this research. These efforts are expected to lead to
further improvements in how we manage and interpret these data interactions.
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