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Abstract: When utilizing high-dimensional chaotic signals for frequency modulation, achieving a
uniformly distributed power spectrum is a challenging task. This paper addresses this challenge by
proposing a power spectrum homogenization strategy based on distribution transformation. The
strategy transforms the task of achieving a uniformly distributed power spectrum in frequency
modulation of high-dimensional chaotic signals to solve and equalize the probability density function
of the chaotic signals, thereby further enhancing the ability of high-dimensional chaotic signals to
suppress electromagnetic interference. Firstly, the difficulty of obtaining a smooth probability density
function of chaotic modulation signals is solved using the kernel density estimation algorithm. Then,
a distribution transformation algorithm is proposed to convert non-uniformly distributed chaotic
modulation signals into uniformly distributed chaotic modulation signals. By using uniformly
distributed chaotic modulation signals for frequency modulation, the objective of power spectrum
equalization is achieved. Finally, taking the Chua’s chaotic signal as an example, the effectiveness of
the proposed strategy is verified using an experimental platform based on a digital signal processor-
controlled active clamping flyback converter.

Keywords: EMI suppression; chaotic spread-spectrum modulation; kernel density estimation;
distribution transformation; uniform distribution

1. Introduction

With the widespread application of wide bandgap devices like SiC and GaN [1–4], the
switching frequency of offline power converters is on the rise, resulting in more severe elec-
tromagnetic interference (EMI) issues [5,6]. Offline power converters serve as significant
sources of supraharmonics, introducing EMI into the grid through conduction and pre-
senting challenges in addressing supraharmonics in the grid [7,8]. Therefore, investigating
strategies to suppress EMI [9,10] in offline power converters holds practical significance,
whether in improving the electromagnetic compatibility performance of these converters
or enhancing the power quality of power systems [11].

In the industrial sector, the most common EMI suppression strategy involves using
EMI filters, including passive [12], active [13], and hybrid types [14–17]. However, as
switching frequencies increase, the sizes of EMI filters also increase significantly, which is
highly detrimental to improving converter power density. Additionally, hardware-based
strategies such as soft-switching techniques [18] and optimized circuit layouts [19] are used
for EMI suppression. However, soft-switching techniques require additional components,
hindering cost reduction and the increase in power density. Optimization of circuit layouts
has limited effectiveness in EMI suppression.

Control strategy-based solutions can effectively suppress EMI at the source without
adding extra components, thereby significantly reducing the size of EMI filters and im-
proving converter power density [20]. The most commonly used control strategy for offline
power converters is conventional pulse width modulation (PWM) control. Conventional
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PWM control is characterized by periodicity, resulting in a line spectrum power, with
high peaks being a major cause of severe EMI. Spread-spectrum modulation strategies,
including periodic [21], random [22], and chaotic [23] approaches, are effective in reducing
the peak of the power spectrum, thus mitigating EMI. Among these, random and chaotic
spread-spectrum modulation techniques exhibit superior EMI suppression compared to
periodic modulation. Chaotic signals, due to their simplicity of implementation, are
often preferred over random signals as ideal alternatives in many applications. Chaotic
spread-spectrum modulation PWM (CSSM-PWM) disrupts the periodicity of conventional
PWM, resulting in a continuous spectrum power with significantly reduced peak values,
effectively suppressing EMI. Therefore, chaotic spread-spectrum modulation technology
has received widespread attention [24–28].

Theoretical research findings from reference [29] suggest that the power spectrum
of chaotic spread-spectrum modulation technology aligns with the probability density
function of the chaotic modulation signal. Non-uniformly distributed chaotic modulation
signals lead to non-uniform power spectra, while uniformly distributed chaotic modu-
lation signals result in uniformly distributed power spectra. Subsequent research has
demonstrated that uniformly distributed power spectra can effectively reduce peak values,
offering optimal EMI suppression [30]. Hence, the challenge of power spectrum equal-
ization in chaotic spread-spectrum modulation can be reframed as the task of obtaining
uniformly distributed chaotic signals. The quest for achieving chaotic modulation sig-
nals with uniform distribution now stands as a pressing issue to be addressed for the
advancement of chaotic spread-spectrum modulation technology.

The methods reported in the literature for obtaining uniformly distributed chaotic
signals [31–39] mainly focus on one-dimensional chaotic signals and are not suitable for
high-dimensional chaotic signals with higher complexity.

Currently, achieving power spectral homogenization in high-dimensional chaotic
signal spread-spectrum modulation encounters two primary challenges. One is the dif-
ficulty of attaining a smooth probability density function, while the other is the absence
of uniformization methods for probability density functions of high-dimensional chaotic
signals. The histogram method stands as the most prevalent approach for addressing
the probability density function in high-dimensional chaotic signals. Nevertheless, the
probability density function derived from the histogram method exhibits a step-like shape,
lacking smoothness, thereby impeding uniformization efforts.

To address these challenges, this paper proposes a power spectral homogenization
strategy based on distribution transformation. This strategy converts the task of achiev-
ing power spectral homogenization in high-dimensional chaotic signal spread-spectrum
modulation into solving the smooth probability density function and uniformization trans-
formation of chaotic modulation signals.

Firstly, the proposal of using kernel density estimation addresses the challenge of
obtaining smooth probability density functions for chaotic signals. This algorithm not only
simplifies the solving process, but also generates smooth probability density functions.
Subsequently, a distribution transformation algorithm is introduced to directly homogenize
the probability density functions. This algorithm can convert non-uniformly distributed
chaotic signals into uniformly distributed ones. By utilizing the uniformly distributed
chaotic signals for spread-spectrum modulation, uniform power spectra are achieved,
minimizing peak values to the greatest extent. Finally, a prototype of an active clamp
flyback converter based on a digital signal processor (DSP) is developed. Using the widely
used and high-performing Chua’s chaotic signal [23] as an example, the effectiveness of the
proposed strategy for power spectral homogenization is validated on this experimental
prototype. Experimental results demonstrate that the strategy can attain uniform power
spectra. For peak suppression of common-mode conducted EMI, Chua’s chaotic signal
achieves 13.18 dB, while the proposed strategy achieves 16.26 dB. Compared to Chua’s
chaotic signal, the proposed strategy shows an improvement of over 3 dB in suppressing
common-mode conducted EMI.
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2. Implementation of CSSM-PWM Converter and Its Power Spectrum
Distribution Characteristics

This common-mode conducted EMI is a major component in the conducted EMI of
high-frequency converters [40]; the flyback converter is the most widely used topology in
medium and small power applications, and active clamping technology can improve the
efficiency of flyback converters.

Therefore, researching optimization strategies for suppressing common-mode con-
ducted EMI in active clamping inverters is of practical significance. This paper takes the
DSP-based CSSM-PWM active clamping flyback converter as an example for research, as
shown in Figure 1.
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Figure 1. Schematic diagram.

In the diagram, uin is the normal grid power, Cin is the input filter capacitor, Cr is the
active clamping resonant capacitor, Do is the output rectifier diode, Co is the output filter
capacitor, Ro is the load, Uo is the output voltage, S1 is the main switching transistor, S2 is
the auxiliary switching transistor, k1 is the voltage regulation coefficient, k2 is the current
regulation coefficient, T is the transformer, and d is the duty cycle calculated by a closed-
loop control.

In Figure 1, there are two MOSFETs, S1 and S2; hence, there are two common-mode
conducted EMI noise sources. When operating in conventional PWM control mode, the
noise source is a periodic pulse source with the same frequency as PWM, with a discrete
spectrum and energy mainly concentrated at the switching frequency and its harmonics,
resulting in high spectral peaks and severe EMI. When operating in CSSM-PWM control
mode, the noise source is a non-periodic pulse source with a continuous spectrum, the
energy of concentrated spectral lines is dispersed, and the spectral peaks are significantly
reduced. A uniformly distributed power spectrum can minimize the peak value, thus
achieving an optimal EMI suppression effect.

The theoretical research results from the literature [29] indicate that chaotic spread-
spectrum modulation of unit sine waves results in a power spectrum shape consistent with
the probability density function of the chaotic modulation signal, as expressed below:

S( f ) ≈ 1
2∆ f

fν

(
f − f0

∆ f

)
(1)

where S( f ) represents the power spectrum of the modulated wave, ∆ f is the maximum
frequency deviation, f0 is the carrier frequency, v(t) is the chaotic modulation signal,
and fν(·) is the probability density function of the chaotic modulation signal.

Equation (1) shows that the peak of the power spectrum is inversely proportional to
the maximum frequency deviation. An increased frequency deviation leads to a decreased
peak in the power spectrum. The power spectrum’s shape corresponds to the probability
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density function of the modulation signal. If the modulation signal’s probability density
function is non-uniform, the power spectrum will also be non-uniform, and vice versa for
uniform distribution. The power spectrum characteristics of CSSM-PWM and common-
mode conducted EMI under CSSM-PWM control mode are similar to the power spectrum
of sinusoidal chaos spread-spectrum modulation [41].

The power spectra of conventional PWM, non-uniform CSSM-PWM, and uniform
CSSM-PWM are shown in Figure 2.
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Figure 2 illustrates that the power spectrum of conventional PWM exhibits a linear
distribution, whereas the power spectrum of CSSM-PWM displays a continuous distribu-
tion. In contrast, the power spectrum of non-uniform CSSM-PWM exhibits a non-uniform
distribution across both the fundamental frequency band and harmonic bands, whereas
the power spectrum of uniform CSSM-PWM demonstrates a uniform distribution across
these bands. Notably, the peak of the power spectrum for uniform CSSM-PWM is the small-
est, indicating its superior ability to suppress spectral peaks. Therefore, uniform chaotic
spread-spectrum modulation presents the most effective suppression of spectral peaks.

However, the probability density functions of common chaotic signals are often non-
uniformly distributed, making it challenging to achieve a uniformly distributed power
spectrum when used for spread-spectrum modulation. This paper aims to explore methods
for transforming non-uniformly distributed chaotic modulation signals into a uniform
distribution, in order to achieve a uniform shaping of the power spectrum in chaotic
spread-spectrum modulation and reduce peak values.

3. Solution and Uniformization Modification of Chaotic Signal Probability
Density Function

To achieve uniform transformation of chaotic signal probability density functions,
accurately resolving the probability density function is essential. The predominant method
for resolving the probability density function of high-dimensional chaotic signals is cur-
rently the histogram approach. However, this method faces difficulties in terms of attaining
a smooth probability density function. To enhance the efficiency and ensure smooth results,
this paper introduces the non-parametric estimation technique of kernel density estima-
tion [42]. Furthermore, a distribution transformation algorithm is put forth in this paper to
facilitate the uniform transformation of the probability density function.

3.1. Kernel Density Estimation Algorithm for Solving Probability Density Function of Chaotic
Modulated Signals

Let {Xn} be a sample of size N that is independently and identically distributed from
a population with distribution function Fx(x) and probability density function fx(x). The
sample values are x1, x2, . . ., xi, . . ., xN , where i = 1, 2, · · · , N. Then, the estimate of its
probability density function fx(x) is:

f̂x(x) =
1

Nh

N

∑
i=1

K
(

x − xi
h

)
(2)
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where K(·) is the kernel function and h is the window width. After thoroughly considering
the trade-off between smoothing effects and approximation errors, we chose a balanced
window width value of 0.0799 for this paper.

The distribution function Fx(x) is:

Fx(x) =
x∫

a

fx(τ)dτ, x ∈ (a, b) (3)

The kernel function K(x) must satisfy the normalization condition:
K(x) ≥ 0,

∫ +∞
−∞ K(x)dx = 1

supK(x) < +∞,
∫ +∞
−∞ K2(x)dx < +∞

lim
x→∞

K(x)·x = 0
(4)

The smoothing degree of kernel density estimation is not sensitive to the choice
of kernel function. Commonly used kernel functions include uniform kernel function,
Gaussian kernel function, Epanechnikov kernel function, etc. In this paper, the numerical
example uses Gaussian kernel function.

The probability density function obtained using the kernel density estimation method
and histogram method are shown in Figure 3.

1 

 

 

Figure 3. The probability density functions obtained by histogram and kernel density estimation method.

Figure 3 shows that the probability density function obtained by the histogram method
is stair-shaped, while the kernel density estimation method can obtain a smooth probability
density function.

3.2. Distribution Transformation Algorithm for Achieving Uniformization Modification of
Probability Density Function

Taking into account the boundedness and quasi-randomness of chaotic signals, this
paper proposes a distribution transformation method based on the concept of the inverse
problem to achieve the uniformization of chaotic signal probability density functions. The
method ensures theoretically that the transformed chaotic signals conform to a uniform
distribution. The detailed proof process is presented in Appendix A.

The expression for the proposed distribution transformation method, y = g(x), is
represented as follows:

g(x) = c + (d − c)Fx(x) (5)

where the domain of the chaotic signal x is (a, b), with distribution function Fx(x), and the
domain of the target uniformly distributed chaotic signal y is [c, d].

Equation (5) indicates that, by simply scaling and shifting the distribution func-
tion Fx(x) of the non-uniformly distributed chaotic signal x, one can obtain the analytical
expression of the transformation relationship y = g(x).

The research [39] demonstrates that among various chaotic signals, Chua’s chaotic sig-
nal exhibits better suppression effects on common-mode conducted EMI in high-frequency
converters. Therefore, this paper conducts experiments using the second component of the
state variables of Chua’s chaotic system (see Appendix B) as the intrinsic chaotic signal x to
validate the effectiveness of the proposed strategy in power spectrum equalization and the
optimization effects on common-mode conducted EMI suppression.
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Let y be the uniformly distributed chaotic signal on the interval [c, d] = [−10, 10]
obtained by transforming x. According to Equation (5), the transformation process from x
to y is illustrated in Figure 4.
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The transformation process depicted in Figure 4 can be described as follows: first,
the distribution function of x, denoted as Fx(x) (solid magenta line), is stretched ver-
tically by a factor of 20, resulting in the blue solid line, 20Fx(x). Then, it is shifted
downwards by 10 units, yielding the transformation relationship from x to y, expressed
as y = −10 + 20Fx(x) (solid black line).

By utilizing the transformation relationship illustrated by the solid black line in
Figure 4, the target uniformly distributed chaotic signal y is obtained from the chaotic
signal x. The probability density functions and waveforms of x and y are shown in Figure 5.
The sampling rate is 2 MHz, and the sample capacity is 4 × 106.
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Figure 5 shows that distribution transformation can, on one hand, expand the densely
distributed regions. In the areas where x exhibits smaller oscillation amplitudes near the
horizontal axis, the probability density function values are larger, and the sample points
are more closely packed. The distribution transformation elongates the waveforms of these
regions along the vertical axis, thereby dispersing the distribution of sample points. On the
other hand, distribution transformation can converge the sparsely distributed regions. In
areas where y has larger amplitudes, the probability density function values are smaller,
and the sample points are more sparsely distributed. The distribution transformation
compresses the waveforms of these regions along the vertical axis, leading to a denser
distribution of sample points. The probability density functions in Figure 5 demonstrate
that the chaotic signal x with a non-uniform distribution, after undergoing distribution
transformation, results in the chaotic signal y exhibiting a uniform distribution.

Figure 6 displays the attractors of Chua’s chaotic signal obtained through simulation,
as well as the attractors of the chaotic signal after distribution transformation; Figure 7
shows the attractors obtained from actual measurements after distribution transformation.
Here, x2 and x3 are the second and third components of the Chua’s chaotic system in
Appendix B, respectively, which correspond to y2 and y3 after the distribution transformation.
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By comparing Figure 6b with Figure 7, it can be seen that the measured chaotic
attractor and simulation results are quite consistent. Therefore, the proposed distribution
transformation does not alter the essence of the chaotic signal, and the resulting signal y
remains a chaotic signal.

In summary, the specific steps of the distribution transformation algorithm for chaotic
modulation signals are described as follows:

Step 1: Extract an independent and identically distributed sample of size N from a
component of the chaotic system;

Step 2: Calculate the probability density function fx(x) using Equation (2);
Step 3: Calculate the distribution function Fx(x) using Equation (3);
Step 4: Set parameters c and d according to the actual situation, and use Equation (5)

to obtain the distribution transformation y = g(x), thereby obtaining the desired uniformly
distributed chaotic modulation signal y.

The strategy for uniformizing the power spectrum of chaotic spread-spectrum mod-
ulation is as follows: Use the distribution transformation algorithm to transform the
non-uniformly distributed chaotic modulation signal x(t) into a uniformly distributed
chaotic modulation signal y(t); then, use y(t) for spread-spectrum modulation to achieve
the purpose of uniformizing the power spectrum and reducing the spectral peak.

4. Global and Local Spectrum Characteristics of Power Spectrum Homogenization
Strategy for Chaotic Spread-Spectrum Modulation

In this section, chaotic signals x and y are used to perform chaotic spread-spectrum
modulation on a 100 kHz unit sine wave. The global and local spectral distribution charac-
teristics of the proposed strategy are analyzed separately to demonstrate the effectiveness
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of the proposed strategy in uniformizing the power spectrum. The maximum frequency
deviation ∆ f is 20 kHz, and the spread-spectrum band is [80 kHz, 120 kHz].

4.1. Global Spectrum Characteristics

Figure 8 illustrates the spectrum of a unit sine wave and the spectral characteristics
after the wave has been modulated by chaotic spread spectrum.
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Figure 8 shows that the power spectrum of the unit sine wave is a line spectrum
at 100 kHz, and chaotic spread-spectrum modulation broadens the line spectrum into a
continuous spectrum on the spread-spectrum band.

The power spectrum of the spread-spectrum modulation of x has a peak at 100 kHz,
which has a similar shape to the probability density function of x (see Figure 5). The power
spectrum of the spread-spectrum modulation of y is uniformly distributed.

Therefore, the proposed strategy achieves uniform distribution of the power spectrum,
thereby realizing the purpose of uniform shaping of the power spectrum and reducing the
peak values.

4.2. Time–Frequency Analysis for Local Spectrum Characteristic Research

Theoretical power spectrum is obtained based on Fourier transformation, and Fourier
transformation is defined over the entire time domain, so the theoretical power spectrum
reflects the global frequency characteristics of the time-domain signal. Actual power
spectrum measurements are always performed within a short, finite time window, so the
measured power spectrum reflects the local frequency characteristics of the time-domain
signal. Fourier transformation does not have time–frequency localization functionality, so it
cannot analyze the local frequency characteristics of the time-domain signal within a short
time window. Knowing only the frequency characteristics of the theoretical power spectrum
cannot accurately predict the frequency characteristics of the measured power spectrum.

In order to obtain a uniformly distributed measured power spectrum, the local fre-
quency characteristics of the modulated signal should be uniformly distributed, and this
uniform distribution of frequency characteristics should not change over time. There-
fore, it is essential to use time–frequency analysis techniques to study the local frequency
characteristics of the modulated signal.

To study the local frequency characteristics of the proposed strategy, spreading modu-
lation is applied to unit sinusoidal waves using x and y, and their time–frequency distribu-
tions are shown in Figures 9 and 10, respectively. The color scale displays the amplitude of
the power spectrum within the short time window of the modulated wave (unit in dB).

In Figure 10a, the widths of the bright stripes near 100 kHz are wider than in Figure 9a,
indicating that the proposed strategy broadens the energy distribution of the power spec-
trum in a wider frequency band, making the energy distribution more dispersed. Figure 10a
shows that with the passage of time, the color and width of the bright stripes do not change
significantly, indicating that the consistency of the local frequency spectrum distribution
characteristics of the proposed strategy is well maintained.
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Figure 10. Time–frequency distribution of modulated wave by y: (a) contour map by y; (b) waterfall
by y.

In Figure 9b, the top of the waterfall is arched, with a peak at 100 kHz, indicating
that the energy of the local frequency spectrum of the modulated wave corresponding
to the original chaotic modulation signal x is relatively concentrated at 100 kHz, with a
larger peak. In Figure 10b, the top of the waterfall is relatively flat, showing a uniform
distribution, indicating that the local frequency spectrum of the proposed strategy is
uniformly distributed; with the passage of time, there is no significant change in the shape
of the waterfall, indicating that the uniform distribution characteristic of the local frequency
spectrum of the proposed strategy does not change over time.

Both the contour map and the waterfall of the time–frequency analysis indicate that
the local frequency spectrum of the proposed strategy is uniformly distributed, and this
uniform distribution characteristic does not change over time. Therefore, it can be predicted
that the proposed strategy can achieve a measured power spectrum that is uniformly
distributed.

5. Results and Discussion

In this section, the measured power spectrum is used to further validate the effective-
ness of the proposed strategy in power spectral uniformization, and the optimization effect
of common mode conducted EMI suppression is measured. A prototype of an active clamp
flyback converter based on DSP28335 was built according to the circuit schematic shown
in Figure 1, as shown in Figure 11. The main parameters of the prototype are shown in
Table 1, and the measuring equipment used is shown in Table A1 in Appendix C.
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Table 1. Main parameters of the experimental platform.

Parameter Specification or Value

DSP TMS320F28335PGFA
MOSFET S1 CS9N90
MOSFET S2 SMF5N60

Diode Do AIDW10S65C5
input voltage uin 180 V~235 V ac

output voltage Uo 15 V dc
rated power Po 45 W

transformer magnetic core PQ3535
transformer excitation inductance Lm 495.9 µH

primary coil leakage inductance Ls 8.03 µH
resonant capacitor Cr 0.1 µF

voltage sensor LV25-P
current sensor LA25-NP

output capacitor Co 100 µF
operational amplifier LM358

5.1. Actual Measurement of Power Spectrum for CSSM-PWM

Using x and y, conventional PWM waves with a switching frequency of 100 kHz
were frequency-modulated, and their power spectra were measured using a spectrum
analyzer. The measured power spectra are shown in Figure 12. The maximum frequency
deviation ∆ f of the frequency modulation is 20 kHz, the spread-spectrum band is between
80 kHz and 120 kHz, and the resolution bandwidth RBW for spectrum measurement is set
to 10 Hz.

The maximum spectral peak measurement data are as follows: the power spectrum
of conventional PWM is 18.63 dBm, while the power spectra of chaotic spread-spectrum
modulated PWM are −2.46 dBm for x and −6.94 dBm for y, as indicated by the ‘×’ mark
in Figure 12a.

Figure 12a shows that the power spectrum of conventional PWM is a linear spectrum,
distributed at the switching frequency and its integer multiples; the power spectrum of
chaotic spread-spectrum modulated PWM for x and y is continuous, extending the linear
power spectrum of conventional PWM in the spreading band and its integer multiples,
resulting in a significant reduction in the peak value of the power spectrum. In the funda-
mental band [80 kHz, 120 kHz] and the 2× spreading band [160 kHz, 240 kHz], the power
spectrum has the same shape as the probability density function of the chaotic modu-
lated signal (see Figure 5). Due to the overlapping regions [320 kHz, 360 kHz] between
the 3× spreading band [240 kHz, 360 kHz] and the 4× spreading band [320 kHz, 480 kHz],
higher multiples of spreading bands also have similar overlaps, causing the power spec-
trum to merge into a continuous range in the 3× spreading band and higher multiples.
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Figure 12b shows that, in the fundamental band and 2× spreading band, the power
spectrum of x chaotic spread-spectrum modulated PWM is more evenly distributed, with
lower peak values compared to the power spectrum of y chaotic spread-spectrum modu-
lated PWM.
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Figure 12c illustrates that the maximum peak of the power spectrum for x spread-
spectrum modulated PWM decreases by 21.09 dB, while for y spread-spectrum modulated
PWM, it decreases by 25.57 dB. In comparison to the original chaotic signal x, this strategy
reduces the maximum peak of the power spectrum by 4.48 dB.

In summary, the proposed strategy achieves a uniformly distributed measured
power spectrum.

5.2. Actual Measurement of Power Spectrum for Common-Mode Conducted EMI

The measured power spectra of common-mode conducted EMI in conventional PWM
control mode, x chaotic spread-spectrum modulated PWM control mode, and y chaotic
spread-spectrum modulated PWM control mode are shown in Figure 13, with the maximum
peak values shown in Table 2.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 19 
 

 

[ ]320kHz,  480 kHz , higher multiples of spreading bands also have similar overlaps, caus-
ing the power spectrum to merge into a continuous range in the 3×  spreading band and 
higher multiples. 

Figure 12b shows that, in the fundamental band and 2×  spreading band, the power 
spectrum of x   chaotic spread-spectrum modulated PWM is more evenly distributed, 
with lower peak values compared to the power spectrum of y  chaotic spread-spectrum 
modulated PWM. 

Figure 12c illustrates that the maximum peak of the power spectrum for x  spread-
spectrum modulated PWM decreases by 21.09 dB, while for y  spread-spectrum modu-
lated PWM, it decreases by 25.57 dB. In comparison to the original chaotic signal x , this 
strategy reduces the maximum peak of the power spectrum by 4.48 dB. 

In summary, the proposed strategy achieves a uniformly distributed measured 
power spectrum. 

5.2. Actual Measurement of Power Spectrum for Common-Mode Conducted EMI 
The measured power spectra of common-mode conducted EMI in conventional 

PWM control mode, x  chaotic spread-spectrum modulated PWM control mode, and y  
chaotic spread-spectrum modulated PWM control mode are shown in Figure 13, with the 
maximum peak values shown in Table 2. 

  
(a) (b) 

Figure 13. Power spectra of common mode conducted EMI under CSSM-PWM control mode: (a) 
power spectrum; (b) zoom-in region B. 

Table 2. Maximum peak values of common-mode conducted EMI. 

Control Mode f/kHz Mag. 1/dBµV Suppression/dB 
conventional PWM 200.0 79.61 -- 
x  CSSM-PWM 198.0 66.43 13.18 
y  CSSM-PWM 221.2 63.35 16.26 

1 Mag.: magnitude. 

Figure 13a shows the following. The common mode conducted EMI under normal 
PWM control mode has a linear spectrum; the common-mode conducted EMI under x  
and y   CSSM-PWM control mode has a continuous distribution, with significantly re-
duced peak values (more significant reduction in the low frequency band); and the peak 
value is lowest under y CSSM-PWM control mode, providing the best suppression effect 
on common-mode conducted EMI. 

Figure 13b shows the following. The power spectrum distribution under y  CSSM-
PWM control mode is more uniform, indicating the effectiveness of the proposed strategy 
in terms of uniformizing the power spectrum of common-mode conducted EMI; the max-
imum reduction in common-mode conducted EMI under x  CSSM-PWM control mode 
is 13.18 dB, and under y  CSSM-PWM control mode, it is 16.26 dB (as shown in Table 2). 

Figure 13. Power spectra of common mode conducted EMI under CSSM-PWM control mode:
(a) power spectrum; (b) zoom-in region B.



Electronics 2024, 13, 2296 12 of 15

Table 2. Maximum peak values of common-mode conducted EMI.

Control Mode f /kHz Mag. 1/dBµV Suppression/dB

conventional PWM 200.0 79.61 --
x CSSM-PWM 198.0 66.43 13.18
y CSSM-PWM 221.2 63.35 16.26

1 Mag.: magnitude.

Figure 13a shows the following. The common mode conducted EMI under normal
PWM control mode has a linear spectrum; the common-mode conducted EMI under x
and y CSSM-PWM control mode has a continuous distribution, with significantly reduced
peak values (more significant reduction in the low frequency band); and the peak value
is lowest under y CSSM-PWM control mode, providing the best suppression effect on
common-mode conducted EMI.

Figure 13b shows the following. The power spectrum distribution under y CSSM-
PWM control mode is more uniform, indicating the effectiveness of the proposed strategy in
terms of uniformizing the power spectrum of common-mode conducted EMI; the maximum
reduction in common-mode conducted EMI under x CSSM-PWM control mode is 13.18 dB,
and under y CSSM-PWM control mode, it is 16.26 dB (as shown in Table 2). Compared
to the original Chua’s (x) CSSM-PWM control mode, the proposed strategy improves the
suppression effect on the maximum value of common-mode conducted EMI by 3.08 dB.

The proposed strategy is theoretically not only outstanding in suppressing common-
mode conducted EMI, but it is also effective in suppressing differential-mode conducted
EMI [43].

6. Conclusions

This paper conducts research on the uniform shaping of the power spectrum of high-
dimensional chaotic signal spread-spectrum modulation and validates the effectiveness of
the proposed strategy using an experimental prototype of an active clamp flyback converter
based on DSP. The conclusions are as follows:

(1) The use of the kernel density estimation algorithm solves the problem of obtaining a
smooth probability density function for high-dimensional chaotic signals.

(2) A distribution transformation method is proposed, theoretically guaranteeing that the
transformed chaotic signal satisfies a uniform distribution.

(3) The proposed power spectrum uniformization strategy can achieve the uniform
shaping of the power spectrum, obtain a uniformly distributed power spectrum, and
further improve the suppression effect of Chua’s chaotic spread-spectrum modulation
technology on common-mode conducted EMI.

(4) The proposed chaotic spread-spectrum modulation power spectrum uniformization
strategy provides a feasible solution for addressing the severe conducted EMI issues
in offline power converters based on digital control systems.
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Appendix A

The proposed distribution transformation algorithm follows a uniform distribution.

Proposition A1. The transformation y = g(x) follows a uniform distribution on [c, d] as long as:

g(x) = c + (d − c)Fx(x) (A1)

where Fx(x) is the distribution function of x.

Proof of Proposition A1. It can be known from the definition of the distribution function
that the distribution function Fx(x) satisfies:

0 ≤ Fx(x) ≤ 1 (A2)

Thus,
c ≤ c + (d − c)Fx(x) ≤ d (A3)

Therefore, the range of y is:
c ≤ y ≤ d (A4)

It can be known from the definition of the probability density function that fx(x) is
non-negative. From Equation (3), it can be seen that the distribution function Fx(x) is a
monotonically increasing function. Therefore, according to the Frobenius–Perron operator,
the probability density function fy(y) of y can be obtained:

fy(y) =
fx(x)∣∣∣ dy

dx

∣∣∣ = fx(x)∣∣∣ dg(x)
dx

∣∣∣ = fx(x)∣∣∣ d[c+(d−c)Fx(x)]
dx

∣∣∣ = fx(x)∣∣∣ d(d−c)Fx(x)
dx

∣∣∣
= fx(x)

(d−c)dFx(x)
dx

= 1
(d−c)

fx(x)
fx(x) =

1
d−c

(A5)

It can be seen that y follows a uniform distribution on the interval [c, d]. □

Appendix B

Chua’s chaotic system state equation is:
dx1
dt = − 1

RC1
x1 +

1
RC1

x2 − 1
C1

h(x1)
dx2
dt = 1

RC2
x1 − 1

RC2
x2 +

1
C2

x3
dx3
dt = − 1

L x2

(A6)

where
h(x1) = Gbx1 + 0.5(Ga − Gb)(|x1 + 1| − |x1 − 1|) (A7)

R = 1.7 × 103 , L = 20 × 10−3

Ga = −0.76 × 10−3 , Gb = −0.5 × 10−3

C1 = 10 × 10−9 , C2 = 100 × 10−9
(A8)

Initial conditions is:
[x1,0, x2,0, x3,0]

T = [0, 0.01, 0]T (A9)

where T represents the transpose operator.

Appendix C

The testing equipment used in this paper is shown in Table A1.
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Table A1. List of measurement devices.

Equipment Specification

Noise separator EM5016
Spectrum analyzer GSP-818

Oscilloscope TDS 2012C, TDS 1012C-EDU
Digital multimeter UT61E+, UT61D
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