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Abstract: With the boom in mobile internet services, computationally intensive applications such
as virtual and augmented reality have emerged. Mobile edge computing (MEC) technology allows
mobile devices to offload heavy computational tasks to edge servers, which are located at the edge
of the network. This technique is considered an effective approach to help reduce the burden on
devices and enable efficient task offloading. This paper addresses a dynamic real-time task-offloading
problem within a stochastic multi-user MEC network, focusing on the long-term stability of system
energy consumption and energy budget constraints. To solve this problem, a task-offloading strategy
with long-term constraints is proposed, optimized through the construction of multiple queues to
maintain users’ long-term quality of experience (QoE). The problem is decoupled using Lyapunov
theory into a single time-slot problem, modeled as a Markov decision process (MDP). A deep
reinforcement learning (DRL)-based LMADDPG algorithm is introduced to solve the task-offloading
decision. Finally, Experiments are conducted under the constraints of a limited MEC energy budget
and the need to maintain the long-term energy stability of the system. The results from simulation
experiments demonstrate that the algorithm outperforms other baseline algorithms in terms of
task-offloading decisions.

Keywords: mobile edge computing; task offloading; multi-queue joint optimization; Lyapunov
optimization; deep reinforcement learning

1. Introduction

Over the past few years, the number of applications has grown exponentially, and the
variety of innovative applications has exploded [1]. It has become increasingly challenging
for computing resources to meet the demands of application devices, which cannot process
tasks locally with low latency. The traditional way of offloading tasks in cloud computing
suffers from high latency, network congestion, and long transmission distances, which
no longer meet the demands of compute-intensive and latency-sensitive tasks [2]. MEC
provides computing power closer to the user by pushing computing resources to the edge
of the network, enabling faster and more responsive task processing [3–5]. Users can place
tasks on edge servers for processing by means of task offloading, thus not only relying on
local device computation [6]. In contrast to traditional cloud computing, MEC is less costly
for data transfer and easier for task offloading [7].

Although MEC is gradually moving in a prominent direction, there are still many
challenges. In mobile edge computing scenarios, the dynamic and random tasks to be
processed are difficult to predict accurately. There is a need to consider how to offload tasks
to MEC edge servers while maintaining system performance benefits [8]. When performing
task offloading, the offloading incurs a series of overheads. The energy consumption and
latency in performing task offloading are particularly important. Therefore, we need to
find a task-offloading strategy to optimize energy consumption and latency.
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In order to find a suitable task-offloading strategy, current research delves deeply
and has conducted a large number of studies on computational task-offloading strategies.
Typically, this involves solving mixed-integer nonlinear programming (MINLP) problems.
Since decoupling these problems is very complex, most studies have focused on how
to reduce the complexity of the algorithms, and many heuristic algorithms have been
proposed [9–15]. However, finding a superior task-offloading strategy through heuristic
algorithms requires complex and repetitive iteration. In a realistic scenario, if the parameters
change, the MINLP problem needs to be solved all over again, resulting in computational
redundancy. Therefore, the costs incurred by using traditional optimization algorithms in
MEC environments with frequent dynamic changes are very high. However, the emergence
of deep reinforcement learning now provides a state-of-the-art solution to address online
computational offloading strategy.

In addition to the need to optimize performance, long-term system stability and
staying within the MEC’s energy budget need to be considered. Failure to consider local
energy stability and the limited energy budget of the MEC may result in performance
degradation of the offloading policy during a long-term task-offloading process, resulting
in a reduced ability to make accurate decisions in real time. Yet most DRL-based research
approaches nowadays give little consideration to the stability of local system energy
consumption in the long term and the impact of energy budget constraints in MEC. There is
no overall optimization of the system in the context of a long-term constraint, and most of
the studies only introduce events that trigger task failures, such as [16–18] by introducing
packet loss events.

In this paper, we study the dynamic task-offloading strategy in dynamic multi-user
MEC scenarios and propose a strategy to solve task offloading with long-term constraints.
The long-term constraints are represented by building multiple queues. And the LMAD-
DPG algorithm is designed using a joint approach to its optimization, which can take full
advantage of Lyapunov optimization and DRL. In a dynamic stochastic MEC scenario,
an optimal task-offloading policy is found to ensure minimizing the task-offloading cost,
which maximizes the user’s QoE. The main contributions are as follows:

• We propose a real-time task-offloading problem with long-term local system energy
consumption and energy budget constraints for MEC in a dynamic MEC scenario. The
objective is to maximize the QoE while ensuring that the constraints can be satisfied in
the long run. An optimal task-offloading strategy is found to minimize the weighted
sum of delay and energy consumption in an unknown dynamic scenario.

• We propose a task-offloading strategy with long-term constraints. The long-term
constraint states are represented by creating multiple queues that are jointly opti-
mized with the optimization objective. Unlike other studies that directly add adverse
behaviors to the penalty term, we model the problem as a problem with long-term
constraints. The problem is decoupled using Lyapunov optimization and transformed
into a MINLP problem with a single time slot, thus facilitating the solving of real-time
optimization problems.

• We describe the problem as an MDP and then design an LMADDPG algorithm based
on the union of Lyapunov optimization and deep reinforcement learning, which
solves the real-time task-offloading problem by establishing the advantages of deep
reinforcement learning.

• We testify the LMADDPG algorithm experimentally, proving its ability to find an
optimal task-offloading strategy to ensure minimization of cost under long-term
constraints, and comparing it with other baseline algorithms.

The rest of the paper is structured as follows: Section 2 discusses related work.
Section 3 describes the system modeling. Section 4 describes the problem description
and problem transformation process. Section 5 details the algorithmic design of the LMAD-
DPG algorithm. Section 6 describes the experimental parameter settings and analyses the
experimental simulation results. Section 7 concludes the paper.
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2. Related Work

MEC has strong computing power, which can provide a platform for user devices to
support them in offloading tasks to their servers for processing. In terms of server layout,
MEC servers are located a short distance from the end devices. More emerging applications
can use MEC to process tasks [19].

Hao et al. [20] proposed a MURL algorithm to minimize long-term average latency.
Wu et al. [21] proposed a DAR-AC algorithm to optimize computational performance and
energy consumption. Zhao et al. [22] proposed a branch-bounding method to minimize
energy consumption. Zhuang et al. [23] proposed an OTDDPG algorithm to optimize
energy consumption and delay. Xiao et al. [24] performed a modeling transformation of
collaborative offloading into a MINLP problem formulated to minimize execution delay.
Li et al. [25] successfully achieved more flexible energy savings in MEC environments
by quantifying the correlation between statistical quality of service guarantees and task-
offloading policies. Kim et al. [26] proposed a migration optimization scheme for user
mobility by using integer linear programming and heuristic solution algorithms aimed at
minimizing service provider costs and user latency. Lim et al. [27] considered optimizing
latency, energy consumption, and the packet loss rate with DRL-OS based on the D3QN
algorithm. Cao et al. [28] proposed the NSGA-II algorithm to solve the problem of
minimizing the overall latency and energy consumption, taking into account time-varying
networks and limited computational resources in realistic scenarios. The above work
provides important reference criteria for the optimization objectives of task-offloading
strategies to cope with realistic task offloading in different scenarios.

Wang et al. [29] investigated server failures, where mobility and power constraints
caused tasks running on them to fail as well, and solved the problem by designing a new
model. Jiang et al. [30] considered the case of limited edge server computational power
and found a task-offloading strategy to effectively safeguard the QoE of end-users under
the condition of limited edge server computational power. The above work has led us
to recognize the need to consider the limitations of edge servers, which can cause task
execution to fail if the server fails.

As the complexity of offloading tasks gradually increases, deep reinforcement learning
(DRL) can be utilized to manage the burgeoning application tasks. In different scenarios,
it can be optimized by learning strategies to find an excellent task-offloading strategy.
Qiu et al. [31] proposed a DC-DRL algorithm to solve the problem, which can be trained in
two ways: distributed and centralized training. Zou et al. [32] proposed a dual-offloading
framework for realistic application scenarios by designing simulation experiments to
simulate realistic task-offloading scenarios for dynamic regional resource scheduling. This
is solved using an asynchronous advantageous participant–critic (A3C) algorithm to reduce
energy and time costs. Alam et al. [33] proposed an autonomic management framework
by considering the challenges surrounding mobility, heterogeneity, and the geographic
distribution of mobile devices, which were eventually solved using DRL. Ren et al. [34]
coordinated the offloading of software through multiple DRL agents on multiple edge
nodes, which can deal with dynamic environments and enable the cost of task offloading
to be optimized. Cao et al. [35] used deep reinforcement learning for optimization and a
modified algorithm of DDPG for solving.

The aforementioned literature used DRL to solve the task-offloading problem and
investigated various optimization objectives. The long-term optimization problem is crucial
when solving the task-offloading problem. Some studies have already started to focus on
long-term optimization. Some researchers have formulated the problem as an MDP and
proposed algorithms to solve it [36,37]. In addition, some studies performed the solution
by combining Lyapunov optimization with deep reinforcement learning [38,39]. However,
most studies do not consider the design of representing long-term constraints by construct-
ing multiple queues when using DRL methods to solve the task-offloading problem.

Unlike previous studies, this paper builds on existing research and investigates the
problem of the dynamic task-offloading strategy with long-term constraints for multi-user
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MEC dynamic scenarios. In a scenario with a dynamically changing system environment,
the performance constraint—where the long-term system energy consumption is stable and
does not exceed the long-term MEC energy budget—is considered, which is described as
an optimization problem with long-term constraints. A task-offloading strategy with long-
term constraints is proposed to co-optimize with the optimization objective by constructing
multiple queues to represent the long-term constraint states. The optimization problem
with long-term constrained task offloading is constructed as a MINLP problem. The
MINLP problem is decoupled by using Lyapunov optimization. On this basis, the problem
is described as a MDP. A LMADDPG algorithm is proposed for the solution. The algorithm
represents the long-term constraints in the form of multiple queues and makes use of
Lyapunov for optimization, which ensures that the long-term constraints find an optimal
task-offloading policy to ensure that the task-offloading cost is minimized.

3. System Model
3.1. System Overview

As Figure 1 shows, in this paper, a scenario with multiple edge servers (ESs) and mul-
tiple types of user equipment (UE) is considered, and each user has its energy consumption
queue and MEC energy queue. Each edge server has limited resources, and each user needs
to execute multiple tasks, which are processed by task offloading, where an edge server is
selected to offload part of the tasks and leave some to be executed locally.

Figure 1. Scenario involving multiple edge servers with multiple user devices, each with its own
energy queue and MEC energy queue.

Let N = {1, 2, . . . , N} denote the set of user devices, for each user device i ∈ N,
computational tasks will be executed at each time slot. And these tasks need to be handed
off to the edge server by way of offloading, or they can be executed on local devices. The
task queue has a queuing form, which needs to queue until the end of the previous tasks
before the subsequent tasks can be executed, and the latest processing end time of the
whole task is its execution time. The set of edge servers is S = {1, 2, . . . , S}, j ∈ S. In a
continuous time, the edge server assists the user device in computing for a duration, T,
set to a number of consecutive time slots, which we define as time slots T = {1, 2, . . . , T},
where t ∈ T is considered a time slot.

The aim of this paper is to consider the optimization of task-offloading costs under the
constraints of guaranteeing long-term task energy stability, not exceeding the MEC energy
budget. The optimal user QoE can be achieved by determining the best offloading strategy
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for each time slot. Therefore, the impact of task offloading to the ES for execution or local
execution on the QoE needs to be considered.

3.2. Task Transfer and Computational Model

It is assumed that the wireless access system of the edge servers uses orthogonal
frequency division multiple access (OFDMA). The network deployment uses the same
common bandwidth B. rul(t) indicates the uplink transmission rate and rdl(t) indicates
the downlink transmission rate. The offloading method uses partial offloading, where
the user device selects only one edge server at a time for offloading. f local

i represents the

local computational capacity for the ith UE (user equipment), and f edge
j represents the

computational capacity for the jth ES. Pij represents the offload ratio of user i for the jth
edge server, and datai represents the task data size. ci(t) represents the CPU cycles required
to execute the task, ci(t) = σ · datai, where σ represents the number of CPU cycles required
to process 1 bit of data. Task processing methods include local execution and offloading to
ES for execution.

(1) Local execution

The local computational delay Tlocal
ij (t) is as follows:

Tlocal
ij (t) =

(
1 − Pij

)
ci(t)

f local
i

(1)

The local energy consumption Elocal
ij (t) is as follows:

Elocal
ij (t) = κ

(
1 − Pij

)
ci(t)

(
f local
i

)2
(2)

where κ denotes the energy consumption coefficient.

(2) Offloading execution

The transmission delay Ttran
ij (t) is as follows:

Ttran
ij (t) =

datai(t)
rul(t)

+
datai(t)

rdl(t)
(3)

Using Shannon’s formula for uplink and downlink, respectively, rul(t) and rdl(t) are
denoted as follows:

rul(t) = Blog2

(
1 +

puehul
Γ2

)
(4)

rdl(t) = Blog2

(
1 +

pedgehdl

Γ2

)
(5)

where pue, pedge represent the transmission power of the UE and ES, respectively. hul , hdl

are the channel gains of the uplink and downlink, respectively, and Γ2 is the noise power.
The edge server computational delay Tedge

ij (t) is as follows:

Tedge
ij (t) =

Pijci(t)

f edge
j

(6)

The edge offloading delay TES
ij (t) is as follows:

TES
ij (t) = Ttran

ij (t) + Tedge
ij (t) (7)
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The transmission energy consumption Etran
ij (t) is as follows:

Etran
ij (t) = pue ·

datai(t)
rul(t)

+ pedge ·
datai(t)

rdl(t)
(8)

where pue and pedge represent the transmission power of the UE and ES, respectively.

The edge server computing energy consumption Eedge
ij (t) is as follows:

Eedge
ij (t) = κPijci(t)

(
f edge
j

)2
(9)

The edge server energy consumption EES
ij (t) is as follows:

EES
ij (t) = Etran

ij (t) + Eedge
ij (t) (10)

3.3. Queue Model
3.3.1. Energy Queue

To ensure long-term system energy consumption stabilization, we introduce N energy
consumption queues {Ki(t)}N

i=1 for each UE. We set Ki(0) = 0. The queue is dynami-
cally updated as follows:

Ki(t + 1) = max
{

Ki(t) + Elocal
ij (t)− γi, 0

}
(11)

where Elocal
ij (t) is the energy consumption of the ith UE, and γi is the energy consumption

threshold of the ith UE. When the energy consumption queue does not show an infinite
increasing trend, i.e., the UE’s energy consumption Elocal

ij (t) is less than or equal to the
energy consumption threshold γi can be satisfied.

3.3.2. MEC Energy Queue

To ensure that the MEC energy budget is not exceeded when offloading for long-term
tasks, we introduce N MEC energy queues {Mi(t)}N

i=1. Each UE has a MEC energy queue,
and the UEs incur different MEC energy consumption values under different offloading
policies. We set Mi(0) = 0 . The queue is dynamically updated as follows:

Mi(t + 1) = max
{

Mi(t) + Eedge
ij (t)− ςi, 0

}
(12)

where Eedge
ij (t) is the energy consumed on the edge server and ςi is the average energy

budget. When the ith user uses too much energy at the edge server, the MEC energy queue
at time slot t + 1 will expand and, thus, the queue can be used to measure the energy
constraint of the MEC.

4. Problem Description and Transformation

The task-offloading cost is defined as Si(t), which is the weighted sum of task latency
and user energy consumption, as follows:

Si(t) = λ1 max
{

Tlocal
ij (t), TES

ij (t)
}
+ λ2

(
Elocal

ij (t) + EES
ij (t)

)
(13)

where λ1, λ2 denote the respective corresponding weights.
The aim of this paper is to consider the optimization of task-offloading costs under the

constraints of guaranteeing long-term task energy stability, not exceeding the MEC energy
budget. The optimal user QoE can be achieved by determining the best offloading strategy



Electronics 2024, 13, 2307 7 of 20

for each time slot. Task-offloading optimization with long-term constraints needs to be
considered. Thus, the problem form is expressed as follows:

P1 : min S = lim
T→∞

1
T

T−1

∑
t=0

N

∑
i=1

Si(t) (14)

s.t.

C1 : lim
T→∞

1
T

T−1
∑

t=1
E
[

Elocal
ij (t)

]
≤ γi, ∀i

C2 : lim
T→∞

1
T

T−1
∑

t=1
E
[

Eedge
ij (t)

]
≤ ςi, ∀i

where C1 denotes the energy constraint of the local energy queue and C2 denotes the
energy constraint of the MEC energy queue.

Making optimal task-offloading decisions under a long-term constraint is very difficult
due to environment and task unknowns.

Lyapunov Optimization

The MINLP optimization problem is decoupled into a single time-slot determinis-
tic problem through Lyapunov optimization, as the optimization objective, as well as
the constraints of P1, have both long-term optimizations. In order to have control over

the system energy queue and the MEC energy queue, we define N(t) ∆
= {K(t), M(t)},

where K(t) = {Ki(t)}N
i=1, and M(t) = {Mi(t)}N

i=1, N(t) = {Ni(t)}N
i=1. According to the

Lyapunov optimization theory, the Lyapunov function L(Ni(t)), is denoted as follows:

L(Ni(t))
∆
=

1
2

(
N

∑
i=1

Ki(t)
2 +

N

∑
i=1

Mi(t)
2

)
(15)

The change in value will be referred to as the Lyapunov drift function ∆(Ni(t)),
denoted as follows:

∆(Ni(t))
∆
= E{L(Ni(t + 1))− L(Ni(t))|Ni(t)} (16)

Due to N(t) ∆
= {K(t), M(t)}; therefore, ∆(Ni(t)) can be derived from Ki(t), Mi(t).

Theorem 1. Given the dynamic relationship of the queues in the system, when E{L(Ni(t))} < ∞,
and there exist constants µ > 0, ε > 0, we can obtain an upper bound on the Lyapunov drift
∆(N(t)) as follows:

∆(Ni(t)) ≤ µ + ε
N

∑
i=1

Ni(t) (17)

Proof of Theorem 1. Using {max{x, 0}}2 ≤ x2, for the energy consumption queue, squar-
ing Equation (11), we have the following:

Ki(t + 1)2 =
{

max
{

Ki(t) + Elocal
ij (t)− γi, 0

}}2

≤
(

Ki(t) + Elocal
ij (t)− γi

)2
(18)

The drift function is as follows:

∆(Ki(t))
∆
= E{L(Ki(t + 1))− L(Ki(t))|Ki(t)} (19)
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This can be obtained by substituting Equation (18) into Equation (19), as follows:

∆(Ki(t)) =
1
2

N

∑
i=1

E
{

Ki(t + 1)2|Ki(t)
}
− 1

2

N

∑
i=1

E
{

Ki(t)2|Ki(t)
}

≤ 1
2

N

∑
i=1

E
{(

Ki(t) + Elocal
ij (t)− γi

)2
− Ki(t)2|Ki(t)

}

≤ 1
2

N

∑
i=1

E
{(

Elocal
ij (t)− γi

)2
|Ki(t)

}

+
N

∑
i=1

E
{

Ki(t)
(

Elocal
ij (t)− γi

)
|Ki(t)

}
≤ µ1 +

N

∑
i=1

E
{

Ki(t)
(

Elocal
ij (t)− γi

)
|Ki(t)

}

(20)

where µ1 is a constant, µ1
∆
= 1

2

N
∑

i=1

(
Elocal

ij,max(t)− γi

)2
, holds for all i ∈ N since all

Elocal
ij (t) ≤ Elocal

ij,max(t) .
For the MEC energy queue, we square Equation (12) as follows:

Mi(t + 1)2 =
{

max
{

Mi(t) + Eedge
ij (t)− ςi, 0

}}2

≤
(

Mi(t) + Eedge
ij (t)− ςi

)2
(21)

The drift function of the MEC energy queue is calculated as follows:

∆(Mi(t))
∆
= E{L(Mi(t + 1))− L(Mi(t))|Mi(t)} (22)

This can be obtained by substituting Equation (21) into Equation (22):

∆(Mi(t)) =
1
2

N

∑
i=1

E
{

Mi(t + 1)2 | Mi(t)
}
− 1

2

N

∑
i=1

E
{

Mi(t)
2 | Mi(t)

}
≤ 1

2

N

∑
i=1

E
{(

Mi(t) + Eedge
ij (t)− ςi

)2
− Mi(t)

2 | Mi(t)
}

≤ 1
2

N

∑
i=1

E
{(

Eedge
ij (t)− ςi

)2
| Mi(t)

}

+
N

∑
i=1

E
{

Mi(t)
(

Eedge
ij (t)− ςi

)
| Mi(t)

}
≤ µ2 +

N

∑
i=1

E
{

Mi(t)
(

Eedge
ij (t)− ςi

)
| Mi(t)

}

(23)

where µ2 is a constant, µ2
∆
= 1

2

N
∑

i=1

(
Eedge

ij,max(t)− ςi

)2
, holds for all i ∈ N since all

Eedge
ij (t) ≤ Eedge

ij,max(t).
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Summarizing Equations (20) and (23) yields the following:

∆(Ni(t)) = ∆(Ki(t)) + ∆(Mi(t))

≤ µ +
N

∑
i=1

E
{

Ki(t)
(

Elocal
ij (t)− γi

)
| Ni(t)

}
+

N

∑
i=1

E
{

Mi(t)
(

Eedge
ij (t)− ςi

)
| Ni(t)

} (24)

where µ = µ1 + µ2.

This is optimized to ensure long-term task energy consumption stability without
exceeding the constraints of the MEC energy budget. This is achieved using the Lyapunov
drift plus penalty, minimizing its upper bound. The expression is given as follows:

∆(Ni(t)) + VE

{
N

∑
i=1

Si(t)|Ni(t)

}
(25)

where V is a hyperparameter and V > 0; the first term is the Lyapunov drift function
containing the energy consumption queue and the MEC energy queue, and the second

term VE
{

N
∑

i=1
Si(t)|Ni(t)

}
is the penalty term. The optimal QoE is found by minimizing

the upper bound. According to Theorem 1, Equation (24) can be obtained by substituting
into Equation (25):

∆(Ni(t)) + VE
{

N
∑

i=1
Si(t)|Ni(t)

}
≤ µ +

N
∑

i=1
E
{

Ki(t)
(

Elocal
ij (t)− γi

)
|Ni(t)

}
+

N
∑

i=1
E
{

Mi(t)
(

Eedge
ij (t)− ςi

)
|Ni(t)

}
+VE

{
N
∑

i=1
Si(t)|Ni(t)

}
(26)

Therefore, the long-term optimization problem P1 is decoupled into a single time-slot
MINLP subproblem, transforming the P1 problem into the following:

P2 : min R(t) =
N

∑
i=1

E
{

Ki(t)
(

Elocal
ij (t)− γi

)
| Ni(t)

}
+

N

∑
i=1

E
{

Mi(t)
(

Eedge
ij (t)− ςi

)
| Ni(t)

}
+ VE

{
N

∑
i=1

Si(t) | Ni(t)

} (27)

When all P2 problems are solved, the P1 problem can be solved. Decisions within the
current time slot are based on the current state without regard to the historical state.

5. Deep Reinforcement Learning-Based Solutions
5.1. Markov Decision Process

In the environment designed in this paper, the UE is viewed as the DRL-Agent. In the
face of dynamically changing MEC environments, it is often difficult to go to the state trans-
fer probability matrix P. Thus, it is not possible to rely on the full quaternion (S, a, R, P),
which contains state, action, reward, and state transfer probability, to characterize the MDP.
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Therefore, in this paper, we turn to the use of the ternary (S, a, R), which contains state,
action, and reward, without considering state transfer probability.

(1) State space: Reinforcement learning involves the use of one’s own powerful learn-
ing ability to improve one’s decision-making by learning the information stored in the
experienced replay buffer, which updates the strategy based on its improved decision-
making. Therefore, defining an appropriate state space is crucial for overall performance
improvement. In defining the state space, the complete environment needs to be added to
it. For user device i, define the state space as follows:

s(t) = (s1(t), s2(t), . . . , si(t)) (28)

si(t) =
(

P(t), rj
ul
(t), rj

dl
(t), Cloacl

i , Cedge
j

)
(29)

where Cloacl
i , Cedge

j represent the computational resources of UE and ES, respectively.
(2) Action space: When the DRL-Agent acquires state s(t), it selects an action from the

action space that determines the target server ESj and the offload ratio Pij for offloading
tasks. This strategy aims to achieve a balanced allocation of tasks by processing some of
them locally and offloading others to edge servers. For the user device i, define the action
as follows:

a(t) = (a1(t), a2(t), . . . , ai(t)) (30)

ai(t) = [ESj, Pij] (31)

(3) Reward function: The aim of this paper is to consider the optimization of task-
offloading costs under the constraints of guaranteeing long-term task energy stability, not
exceeding the MEC energy budget. However, the aim of reinforcement learning is to obtain
the highest reward value, and the task-offloading cost is inversely proportional to the
reward value. Therefore, the reward function for time slot t is as follows:

r(t) = reward(s(t), a(t)) = −R(t) (32)

5.2. DRL-Based Algorithm Design
5.2.1. Deep Reinforcement Learning Algorithms

Traditional reinforcement learning algorithms typically use a Q-value table to select
out the best action. However, as the complexity of the problem changes, it eventually makes
the size of the Q-value table explode, resulting in a significant increase in storage and com-
putational cost and, thus, is no longer advantageous in high-dimensional spaces. However,
Deep Q-Network (DQN) introduces a neural network to approximate the Q-function,
thus avoiding the need to directly store Q-values and being able to handle more complex
problems. However, a single Q-learning or DQN cannot be used to implement complex
interactions between multiple ‘intelligences’. In this case, the use of the multi-agent deep
deterministic policy gradient (MADDPG) algorithm offers significant advantages. The
MADDPG algorithm facilitates co-learning among ‘intelligences’ and enhances overall per-
formance through policy sharing, making it more effective in addressing multi-intelligence
collaborative decision-making problems.

The MADDPG algorithm achieves better performance by utilizing deep learning and
policy gradient methods that allow multiple ‘intelligences’ to learn and make decisions
collaboratively in the environment. Its distributed learning feature makes the algorithm
scalable and adaptable to large-scale multi-intelligent body systems. The algorithm uses
the structure of the two networks joined so that the algorithm can be used in a dynamically
changing environment, and can autonomously learn an advantageous strategy, through
the learning of the strategy constantly updated and adjusted, in the face of dynamic tasks
and different scenarios can be reasonably adjusted to the optimal strategy. In addition, the
algorithm can further optimize and adjust the optimal strategy through the interaction
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between multiple ‘intelligences’, so that each intelligence can fully improve its own decision-
making level.

5.2.2. Actor–Critic Network

The actor–network will maximize the reward value accumulated over time by receiv-
ing states as inputs and then outputting actions, and it learns the best action to choose in
each state by continuously adjusting the network parameters. This network contains an
evaluation network µi(si, ωi), and a target network µ′

i(si, ω′
i), where ωi, ω′

i denote the re-
spective parameters of the two networks. The critic–network is used to evaluate the action’s
output by the actor–network and provide feedback to improve the strategy. The network
receives states and actions as its inputs and outputs the payoff values of the selected actions.
The critic–network then provides feedback to the actor–network by accurately estimating
these values so that the actor–network can use the feedback to optimize its strategy. The
network also includes an evaluation network Qi(si, ai|θi ) and a target network Q′

i(si, ai|θ′ i ),
where θi, θ′i denote the parameters of each of the two networks.The updating of the network
parameters between the two networks is done by gradient descent.

5.2.3. LMADDPG Algorithm Design

Each user device is individually defined as an intelligence, and each intelligence has
two queues each, i.e., the system energy queue and the MEC energy queue, which are
used to represent the long-term constraints. The use of the actor–critic network in this
algorithm is used for learning to optimize the task-offloading decision. In order to reduce
the data relevance of the input experience during the training process and to improve
the data utilization, the LMADDPG algorithm employs an experience replay mechanism,
which improves the performance of the algorithm by creating an experience replay buffer
D. During training, samples are randomly selected from the experience replay buffer D.
Each data sample includes information about the state, action, reward, and next state. It is
assumed that Z data, each denoted as

(
sj, aj, rj, sj+1

)
, are randomly drawn from D for each

training session.The corresponding loss values are computed using these randomly drawn
data, and the computed loss values are used to update the parameters of the network. The
critic–network at each intelligence interacts with each other through the ‘intelligences’ to
update the network parameters by minimizing the computed loss function. Define the
objective value as follows:

yj
i = rj

i + γQ′
(

s′j, a′j1 , . . . , a′N
j | ωi

)∣∣∣
a′ i=µ′

i

(
s′ji
) (33)

where γ is the discount factor.
The loss function its expression is as follows:

Li(ωi) =
1
Z

Z

∑
j=1

(
yj

i − Qi

(
sj, aj

1, . . . , aj
N |ωi

))2
(34)

To update the actor–network using the policy gradient, the actor–network is used to
compute the action in the current state, and then the gradient of the action value function
computed by the critic–network is used to update the actor–network parameters with the
following formula:

∇θi J(µk) ≈
1
Z

Z

∑
j=1

∇θi µk

(
sj

i

)
∇ai Qi

(
sj, aj

1, . . . , aj
N |ωi

)∣∣∣ai=µi(s′ii )
(35)

Use the soft update strategy to update the target actor–network and target critic–
network parameters:

ω′
i = τωi + (1 − τ)ω′

i (36)
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θ′i = τθi + (1 − τ)θ′i (37)

The reward function is optimized using Lyapunov optimization based on the multiple
queues created. Each intelligent body obtains the reward value by executing an action
after acquiring the environment information and accumulates experience data using the
experience playback mechanism. Each intelligent body updates its policy network with
the accumulated data, using a deep deterministic policy gradient approach to optimize its
policy to maximize the expected cumulative reward. The queue information is updated at
each training time slot. When updating the policy network, the intelligence also uses the
target policy network to stabilize the training process by updating the parameters of the tar-
get network through a soft update approach. During the training process, the ‘intelligences’
learn from each other and optimize their respective strategies through collaboration and
competition to achieve the global optimal solution. In this way, the LMADDPG algorithm
enables multiple ‘intelligences’ to learn to work together effectively in a collaborative
environment to achieve finding an optimal task-offloading decision under the performance
constraint of stable long-term system energy consumption and not exceeding the long-term
MEC energy budget. The overall execution process is shown in Algorithm 1.

Algorithm 1 LMADDPG task-offloading algorithm

1: Initialization: Initialize the parameters of each agent’s actor and critic evaluations and
target networks. Initialize the replay buffer D, learning rate, the discount factor, the
maximum learning epoch, steps.

2: for epoch = 1 to M do
3: Initialize a random process N for action exploration
4: Initialize K(0) = 0, M(0) = 0
5: for t = 1 to T do
6: For each agent i, select action a(t), a(t) based on the current observed state: a(t) =

µi(si|ωi) + N(t)
7: Execute actions a(t) = (a1(t), a2(t), . . . , ai(t)), obtain the reward ri(t) based on

Lyapunov drift-plus-penalty function, and the subsequent new state s′i(t)
8: For each agent i, input the new state s′i(t) to agent i
9: Store the agent’s information into the experience replay buffer D as a tuple of four

elements (s, a, r, s′)
10: si = s′i
11: for Each agent i = 1 to N do
12: Sample a random mini-batch of Z samples from the replay buffer D

13: yj
i = rj

i + γQ′
(

s′ j, a′ j1, . . . , a′ jN |ωi

)∣∣∣∣a′ i=µ′
i

(
s′ji
)

14: Update the critic–network according to the following loss function: Li(ωi) =

1
Z

Z
∑

j=1

(
yj

i − Qi

(
sj, aj

1, . . . , aj
N |ωi

))2

15: Update the actor–network using the sampled gradient based on Equation (36)
16: Update K(t) using Equation (11)
17: Update M(t) using Equation (12)
18: end for
19: Update target network parameters for each agent with:

ω′
i = τωi + (1 − τ)ω′

i
θ′i = τθi + (1 − τ)θ′i

20: end for
21: end for

5.2.4. Algorithm Complexity Analysis

In the LMADDPG algorithm, each intelligent body uses the actor–critic network ar-
chitecture. The number of ‘intelligences’ is N. La denotes the number of network layers
of actor–network and Lc denotes the number of network layers of critic–network. Ila−1, Ila



Electronics 2024, 13, 2307 13 of 20

denotes the dimensions of inputs and outputs of the la layer of actor–network and Ilc−1, Ilc

denotes the dimensions of inputs and outputs of the lc layer respectively. Therefore, the algo-

rithm complexity of LMADDPG can be calculated as O
(

2N ·
(

La

∑
la=1

Ila−1Ila +
Lc

∑
lc=1

Ilc−1Ilc

))
.

6. Simulation Experiment and Analysis
6.1. Experimental Parameters

This research conducted simulation experiments within a Python 3.10.7 environment
on a Windows 11 operating system. In this paper, the simulation scenario is set up as a
multi-user multi-MEC scenario, where each UE can transmit data to and from ES through
channel. The size of each task datai, follows a uniform distribution. The computational
power of the UE of the mobile device is set up to be [1.2, 1.8] Ghz, and that of the edge
server is set up to be [6, 7] Ghz. The task size is [1.5, 2] Mb. The main parameters are shown
in Table 1:

Table 1. Experimental parameter.

Parameters Value

Number of users N 5
Number of edge servers S 7

Bandwidth B 40 Mhz
Lyapunov weights V 30

User equipment transmission power pue 0.01 W
Edge server transmission power pedge 0.1 W

Gaussian noise power Γ2 −174 dBm
The local computing capability f local

i [1.2, 1.8] Ghz
The MEC computing capability f edge

j
[6, 7] Ghz

Actor–network learning rate 0.001
Critic–network learning rate 0.001

Size of mini-batch 32
Training epochs 1000

Time slots T 500
Optimizer Adam

6.2. Comparative Experiments
6.2.1. Comparative Algorithms Overview

In order to prove the superiority and reliability of this paper’s algorithm, this paper’s
algorithm is compared with five other baseline algorithms.

(1) DDQN-based algorithm [40]. Double DQN algorithm is an improved algorithm
based on DQN. DDQN improves the performance by using two independent neural
networks for selecting the action and evaluating the value of the action.

(2) D3QN-based algorithm [41]. D3QN estimates the function of state values and ad-
vantage separately by introducing the Double Q-Learning mechanism while using
the Dueling Network architecture. It enables the Agent to learn the task-offloading
strategy more accurately.

(3) MAPPO-based algorithm [42]. MAPPO is a multi-intelligence body algorithm. A
centralized approach is used during training to acquire information from multiple
‘intelligences’ and optimize the decision making of the ‘intelligences’. In the execution
process the decision is based on local observation information only. The algorithm
deals with the problem of policy learning in a multi-intelligent body environment
through a proximal policy optimization approach.

(4) Local Computing Only (LOC) scheme. All the tasks are all computed locally without
task offloading.

(5) Random scheme (Random). Directly randomly generate task-offloading strategies for
task offloading.
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6.2.2. Simulation Results and Analysis

Firstly, the convergence of the algorithm designed in this paper is evaluated, and this
paper evaluates the convergence through two objects. The LMADDPG algorithm proposed
in this paper performs task offloading through actor–critic network, so the first object for
evaluation is the loss function values of the two networks. DRL-Agent will probabilistically
choose the action in each step and, thus, the image will fluctuate continuously. Where
Figure 2 represents the actor–network loss value and Figure 3 represents the critic–network
loss value. As can be seen from Figures 2 and 3, with the increase in the number of iterations,
the loss values of the two networks are decreasing and both of them begin to converge
gradually, indicating that both networks are functioning properly.

Figure 2. Actor-network loss value.
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Figure 3. Critic-network loss value.

The LMADDPG algorithm reward value is used as the second evaluation object. In
Figure 4, the convergence judgment of the LMADDPG algorithm is demonstrated. The
algorithm, which undergoes a learning process, has a strong tendency to jitter in the initial
phase due to the randomness of early reinforcement learning. However, the reward value
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obviously grows as the number of iterations increases. Through the learning process, an
optimal task-offloading decision is finally learned, which leads to the stabilization of the
reward value, i.e., the LMADDPG algorithm gradually reaches convergence. Moreover,
the algorithm of this paper can reach convergence in a very short number of iterations,
which can be attributed to its policy update. This update integrates the deterministic
behavioral policy with the exploitation of the Q-value function. The effectiveness of the
LMADDPG algorithm is based on the proof of convergence of the two evaluated objects
described above.

Figure 4. Convergence performance and reward of the proposed task-offloading algorithm for
LMADDPG.

Then, the energy consumption is evaluated for the system energy queue and the
MEC energy queue. In Figure 5 experiments are conducted for four different algorithms
for the system energy queue, where the horizontal coordinate is the time slot and the
vertical coordinate is the energy consumption. In this process, as the time slots increase,
all algorithms through optimization simultaneously keep the system energy consumption
queue stable and do not show an explosive rising trend. It means that in the environment
of long-term task offloading, the system energy consumption queue will not be oversized.
Instead, it shows a gradual reduction trend and eventually remains in a stable state. This
is because the algorithm can maintain a relatively stable queue length after learning.
In addition, comparing the LMADDPG algorithm with other baseline algorithms, the
LMADDPG algorithm maintains the smallest queue length, i.e., the best optimization.

In Figure 6, the energy consumption of four different algorithms MEC energy queues
are evaluated. It can be seen that the MEC energy queues of the optimized algorithms do
not have an infinite rising trend. As the time slot progresses, it becomes evident that the
MEC energy queue of the LMADDPG algorithm exhibits a more stable behavior compared
to the other algorithms. Although the performance of LMADDPG will be lower than other
algorithms in the initial process of task offloading, the performance of LMADDPG is more
advantageous in the long-term process. The LMADDPG algorithm outperforms the other
baseline algorithms more in keeping the MEC energy stable during long-term optimization.
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Figure 5. Energy consumption of the energy queue.
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Figure 6. Energy consumption of MEC energy queue.

In addition, the effect of penalty coefficient adjustment average task-offloading cost
is experimentally compared. The impact of Lyapunov penalty coefficient V on the per-
formance of LMADDPG is further demonstrated in Figure 7, where the delay and energy
weighted sum of tasks will be compared by adjusting the penalty coefficient V, setting
V ∈ [1, 10, 20, 30, 40, 50, 60]. As V increases, the average cost is decreasing, which is due to
the skewing of the fairness of the optimization strategy when the penalty factor is increas-
ing. This trend is due to the fact that the higher the value of V gives more weight to the
weighted delay and energy cost, which drives the algorithm towards cost optimization.
Therefore, in practical scenarios, a suitable V value needs to be set to balance the average
system energy consumption as well as the stability between the average MEC energy and
the average cost.
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Figure 7. Effect of different parameters V on the weighted sum of average delay and energy consumption.

Figure 8 shows the performance comparison between the LMADDPG algorithm and
the MADDPG algorithm using multi-queue optimization. Both algorithms perform task-
offloading decisions separately and calculate the average task-offloading cost, i.e., the
average cost. The proposed LMADDPG algorithm is able to reach stability in a very short
number of iterations, converges better than the MADDPG algorithm, and produces a
much smaller average cost than the MADDPG algorithm. This shows that the LMADDPG
outperforms MADDPG in terms of performance.
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Figure 8. Comparison of average delay and energy weighted sum of LMADDPG algorithm and
MADDPG algorithm.

Finally, the advantages of the algorithms over the baseline algorithms are verified,
and the computational delay and energy weighted sums are compared for the different
baseline algorithms. The results are shown in Figure 9, where the task-offloading strategy
of LMADDPG is compared with other algorithms and the weighted sum of delay and
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energy consumption is calculated. It is found that our algorithm reduces the cost and finds
the optimal task-offloading strategy faster compared to the other five baseline algorithms.
Compared to other baseline algorithms, our algorithm is more advantageous.
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Figure 9. Comparison of LMADDPG algorithm with other baseline algorithms.

7. Conclusions

In this paper, we propose a multi-queue-based real-time task-offloading strategy
for deep reinforcement learning. We establish multiple queues to represent the long-term
constraint states and co-optimize with the optimization objective. The optimization problem
with long-term constraints is decoupled into subproblems to be solved in a single time
slot using Lyapunov optimization, which describes the problem as an MDP. We propose a
DRL-based LMADDPG algorithm to solve the task-offloading decision problem. During
the training process, all the ‘intelligences’ share a unified strategy network in order to
utilize the experience of all the ‘intelligences’ during the training process. However, in the
execution phase, each intelligence independently executes its own policy to interact with
the environment. Finally, an optimal task-offloading strategy is found, which can effectively
maintain long-term system energy consumption and MEC energy stability. The simulation
results prove the effectiveness of the improved algorithm and it is more advantageous in
comparison with other baseline algorithms.
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